Supporting Information for

Regio- and Stereoselective Hydrostannation of Allenes Using Dibutyliodotin Hydride (Bu₂SnIH) and Successive Coupling with Aromatic Halides

Naoki Hayashi,^a Kazunao Kusano,^a Shingo Sekizawa,^a Ikuya Shibata,^{*b} Makoto Yasuda^a and Akio Baba^{*a}

^a Department of Applied Chemistry, Graduate School of Engineering, Osaka University,
2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Fax: 81 6 6879 7387; Tel: 81 6 6879 7386;
E-mail: baba@chem.eng.osaka-u.ac.jp
^b Research Center for Environmental Preservation, Osaka University,
2-4 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Fax: 81 6 6879 8978; Tel: 81 6 6879 8974;
E-mail: shibata@epc.osaka-u.ac.jp

Analysis:

IR spectra were recorded as thin film on a Horiba FT-720 spectrometer. All ¹H and ¹³C NMR spectra were recorded with a JEOL JMTC-400/54/SS (400 and 100 MHz, respectively) in deuteriochloroform (CDCl₃) containing 0.03% (w/v) of tetramethylsilane as internal standard. ¹¹⁹Sn NMR (148 MHz) spectra were obtained in deuteriochloroform (CDCl₃) with Me₄Sn in THF-*d*₈ as external standard. Mass spectra were recorded on a JEOL JMS-DS-303 spectrometer. Column chromatography was performed by using Fuji Davison silica gel FL-100DX. Purification of products by recycle GPC system was performed by JAPAN ANALYTICAL INDUSTRY CO., LTD. LC-908. Yields were determined by ¹H NMR using internal standard. Stetrochemistry of products was determined by NOE-difference spectrum or coupling constant of ¹H NMR.

Materials:

Di-*n*-butyltin dihydride (*n*-Bu₂SnH₂) was prepared by the reduction of di-*n*-butyltin dichloride (*n*-Bu₂SnCl₂) with LiAlH₄.¹ Di-*n*-butyliodotin hydride (*n*-Bu₂SnIH) was synthesized *in situ* by the redistribution reaction between Bu₂SnI₂ and Bu₂SnH₂.²

THF was purchased in dehydrated form.

Undeca-1,2-diene (Octylallene) (1a) was prepared according to the known procedures.³

Propa-1,2-dienyl-cyclohexane (Cyclohexylallene) (1b) was prepared by similar method to octylallene (1a).

4,4-Dimethyl-penta-1,2-diene (Tert-butylallene) (1c) was prepared according to the known procedure.⁴

4-Methyl-4-Phenyl-penta-1,2-diene (1d) was prepared according to our reported method.⁵ To the mixture of InCl₃ (0.275 g, 1.25 mmol) and propargyl trimethylsilane (68% purity 8.40g, 50.8 mmol) and chlorotrimethylsilane (1.39 g, 12.8 mmol) in dry dichloromethane (45 mL) was added dropwise 2-phenyl-propan-2-ol (2.98 g, 22 mmol) at 0 °C under nitrogen. After stirring at 0 °C for 2 h, the reaction mixture was warmed up to rt and then diluted with saturated NaHCO₃(aq) and extracted by Hexane/AcOEt= 9/1. The combined organic layer was dried over MgSO₄, filtered and concentrated. The residue was purified by silica gel column chromatography eluting with hexane and then distilled under reduced pressure. (100 °C/ 8 mmHg, 1.87 g, 54% yield)

4-Butoxy-buta-1,2-diene (Butoxymethylallene) (1e) was prepared according to the known procedure.⁶

1-Methoxy-propa-1,2-diene (Methoxyallene) (**1f**) was prepared according to the known procedure.⁷

Cyclonona-1,2-diene (1g) was prepared according to the known procedures.⁸

3-Methoxy-undeca-1,2-diene (1h) was prepared according to the known procedures.⁹

Vinylidene-cyclohexane (1i) was prepared according to the known procedures.¹⁰

3-Methoxy-2-methyl-penta-3,4-dien-2-ol (1j) was known compound. To the stirred solution of 1-Methoxy-propa-1,2-diene (**1f**) (3.48 g, 49.7 mmol) in THF (40 mL) was added dropwise a 1.6 M BuLi in hexane (26 mL, 41.6 mmol) at -78 °C. After stirring at -78 °C for 2.5 h, acetone (6.32 g, 108.8 mmol) was added dropwise to this solution. Stirring was continued for 0.5 h at -78 °C and then warmed up to rt. The reaction mixture was diluted with water and extracted by diethyl ether. The combined organic layer was dried over MgSO₄, filtered and concentrated. The residue was purified by distillation under reduced pressure. (28 °C/0.05 mmHg, 2.79g, 52% yield)

Unless otherwise noted, materials obtained from commercial supplier were used without further purification.

Typical experimental procedures:

Hydrostannation of allenes using Bu₂SnIH

A 10 mL of round bottom flask was dried by flame under nitrogen atmosphere. After nitrogen was filled, THF (1.0 mL) was added. Bu₂SnH₂ (0.117 g, 0.5 mmol) and Bu₂SnI₂ (0.243 g, 0.5 mmol) were added successively to generate Bu₂SnIH by the redistribution reaction. To the mixture was added allene **1d** (0.158 g, 1.0 mmol) and resulting mixture was stirred at rt for 44 h when IR absorption of Sn-H at 1855 cm⁻¹ disappeared. To the resulting solution was added CHCl₃ (5 mL) to completely decompose the remained tin hydride and volatiles were removed under reduced pressure. Product **2d** was determined by ¹H NMR. Purification was performed by silica gel column chromatography eluting with hexane. Further purification was performed by recycle GPC eluting with CHCl₃. (0.130 g, 25%)

Synthesis of multisubstituted alkenes

A 10 mL of round bottom flask was dried by flame under nitrogen atmosphere. After nitrogen was filled, THF (1.0 mL) was added. Bu₂SnH₂ (0.117 g, 0.5 mmol) and Bu₂SnI₂ (0.243 g, 0.5 mmol) were added to generate Bu₂SnIH by the redistribution reaction. To the mixture was added allene **1f** (0.070 g, 1.0 mmol) and resulting mixture was stirred at rt for 12 h when IR absorption of Sn-H at 1855 cm⁻¹ disappeared. [In the case of applying initiator, 1M Et₃B solution (0.1 mL) was added after the addition of allenes.] PhI (0.204 g, 1.0 mmol), Pd₂(dba)₃-CHCl₃ (0.010 g, 1 mol%) and 1M Bu₄NF solution in THF (3.0 mL) were added and the mixture was stirred at 65 °C for 24 h. After the reaction, resulting solution was filtrated by cerite. After concentration of the filtrate, yield of product **5f** was determined by ¹H NMR. Further purification was performed by silica gel column chromatography eluting with hexane/AcOEt = 95/5 followed by distillation under reduced pressure. (0.070 g, 48%)

Hydrostannation of Octylallene (1a) using Bu₃SnH in the presence of Et₃B

A 10 mL of round bottom flask was dried by flame under nitrogen atmosphere. After nitrogen was filled, hexane (1.0 mL), Bu₃SnH (0.291 g, 1.0 mmol) and allene **1a** (0.152 g, 1.0 mmol) were added successively. To the mixture was added 1M Et₃B solution in hexane (0.1 mL) and resulting mixture was stirred at rt for 90 h. To the resulting solution was added CHCl₃ (5 mL) to decompose the remained tin hydride and volatiles were removed under reduced pressure. Products were determined by ¹H NMR.

Physical and spectral data:

2-(Di-*n*-butyliodostannyl)-undec-2-ene (2a) and 2-(Di-*n*-butyliodostannyl)-undec-1-ene (3a)

These compounds were not purely isolated and were obtained as mixture of regio- and stereoisomers. (2a-E:2a-Z:3a = 39:34:27); See NMR spectrum. The observed data was shown below.

Colorless liquid

IR (neat) 1612 (C=C) cm⁻¹

¹H NMR (CDCl₃, 400 MHz) δ 6.14 (tq, J= 7.2 and 1.5 Hz, ³J(¹¹⁹Sn-¹H)= 191.8 Hz, 1H, SnC=C<u>H</u> **2a-Z**), 5.76 (d, J= 1.0 Hz, ³J(¹¹⁹Sn-¹H)= 203.6 Hz, 1H, SnC=C<u>H</u> **3a**), 5.69 (tq, J= 6.8 and 1.7 Hz, ³J(¹¹⁹Sn-¹H)= 105.6 Hz, 1H, SnC=C<u>H</u> **2a-E**), 5.32 (d, J= 1.0 Hz, ³J(¹¹⁹Sn-¹H)= 88.5 Hz, 1H, SnC=C<u>H</u> **3a**), 2.38 (t, J= 7.5 Hz, 2H, **3a**), 2.16 (dt, J= 7.5 and 6.8 Hz, 2H, C=CC<u>H</u>₂, **2a-E**), 2.03 (s, ³J(¹¹⁹Sn-¹H)= 58.0 Hz, 3H, SnCC<u>H</u>₃, **2a-E**), 2.00 (dt, J= 7.5 and 7.2 Hz, 2H, C=CC<u>H</u>₂, **2a-Z**), 1.93 (d, ⁴J(¹H-¹H)= 1.0 Hz, ³J(¹¹⁹Sn-¹H)= 62.3 Hz, 3H, SnCC<u>H</u>₃, **2a-Z**), 1.73-1.19 (m, 74H), 0.96-0.85 (m, 27H, SnCH₂CH₂CH₂CH₂C<u>H</u>₃, **2a-E**, **2a-Z**, **3a**)

¹³C NMR (CDCl₃, 100 MHz) δ 153.25 (**3a**), 143.86 (**2a**-*E*), 142.04 (**2a**-*Z*), 136.25 (**2a**), 135.92 (**2a**), 126.90 (**3a**), 39.90 (**3a**), 35.60 (**2a**), 31.88, 31.87, 31.84, 29.87, 29.54, 29.50, 29.46, 29.40, 29.34, 29.28, 29.24, 29.17, 29.08, 29.06, 28.44, 26.77, 26.58, 26.56, 22.67, 18.48, 17.90, 16.86, 16.25, 14.11, 13.58, 13.56

¹¹⁹Sn NMR (CDCl₃, 148 MHz) δ 23.75, 19.02, 17.01

MS (EI, 70 eV) *m*/*z* 457 (M⁺ - Bu, 100), 387 (M⁺ - I, 8), 247 (ISn, 21), 177 (BuSn, 6), 69 (23), 55 (27)

Anal. calcd for C₁₉H₃₉ISn: C, 44.47; H, 7.66, found: C, 44.54; H, 7.56.

2-(Di*n***-butyliodostannyl)-1-cyclohexyl-prop-1-ene (2b)** and **2-(Di***n***-butyliodostannyl)-1-cyclohexyl-prop-2-ene (3b)**

These compounds were not purely isolated and were obtained as mixture of regio- and stereoisomers. (**2b-E**:**2b-Z**:**3b** = 44:44:12); See NMR spectrum. The observed data was shown below.

Colorless liquid

IR (neat) 1624 (C=C) cm⁻¹

¹H NMR (CDCl₃, 400 MHz) δ 5.97 (dq, ³*J*(¹H-¹H)= 9.7 Hz, ⁴*J*(¹H-¹H)= 1.7 Hz, ³*J*(¹¹⁹Sn-¹H)= 191.3 Hz, 1H, SnC=C<u>H</u>_{*t*}, **2b**-*Z*), 5.71 (d, *J*= 1.4 Hz, ³*J*(¹¹⁹Sn-¹H)= 244 Hz, 1H, SnC=C<u>H</u>_{*t*}, **3b**), 5.49 (dq, ³*J*(¹H-¹H)= 8.7 Hz, ⁴*J*(¹H-¹H)= 1.7 Hz, ³*J*(¹¹⁹Sn-¹H)= 102.9 Hz, 1H, SnC=C<u>H</u>_{*c*}, **2b**-*E*), 5.36 (d, *J*= 1.4 Hz, ³*J*(¹¹⁹Sn-¹H)= 90.3 Hz, 1H, SnC=C<u>H</u>_{*c*}, **3b**), 2.46-2.38 (m, 1H, **2b**-*E*), 2.28 (d, *J*= 7.0 Hz, 2H, **3b**), 2.00 (d, ⁴*J*(¹H-¹H)= 1.7 Hz, ³*J*(¹¹⁹Sn-¹H)= 59.4 Hz, 3H, SnCC<u>H</u>₃, **2b**-*Z*), 1.95 (d, ⁴*J*(¹H-¹H)= 1.7 Hz, ³*J*(¹¹⁹Sn-¹H)= 64.2 Hz, 3H, SnCC<u>H</u>₃, **2b**-*E*), 1.81-1.02 (m, 68H), 0.98-0.89 (m, 18H, SnCH₂CH₂CH₂CH₂CH₂C<u>H</u>₃, **2b**-*E*, **2b**-*Z*, **3b**)

¹³C NMR (CDCl₃, 100 MHz) δ 151.96 (**3b**), 149.27 (**2b**-*E*), 147.74 (**2b**-*Z*), 134.24 (**2b**), 133.85 (**2b**), 128.08 (**3b**), 48.20 (**3b**), 45.63 (**2b**-*Z*), 37.24 (**2b**-*E*), 37.33 (**3b**), 33,23, 33.19, 33.15, 33.04, 32.68, 32.65, 32.61, 32.48, 29.29, 29.18, 29.12, 29.07, 29.04, 28.99, 28.88, 26.91, 26.84, 26.56, 26.50, 26.42, 26.78, 26.19, 25.97, 25.81, 25.69, 25.66, 18.59, 17.94, 16.84, 16.23, 13.55 ¹¹⁹Sn NMR (CDCl₃, 148 MHz) δ 25.32, 16.52, 16.06

MS (EI, 70 eV) m/z 427 (M⁺ - Bu, 100), 357 (M⁺ - I, 8), 247 (ISn, 21), 123 (M⁺ - Bu₂ISn, 17), 81 (47), 55 (25)

HRMS calcd for $C_{13}H_{24}ISn$: 426.9945, found: m/z 426.9951 (EI, (M⁺ - Bu), + 0.7 mmu) Anal. calcd for $C_{17}H_{33}ISn$: C, 42.27; H, 6.89, found: C, 42.03; H, 6.85.

(E)-2-(Di-*n*-butyliodostannyl)-4,4-dimethyl-pent-2-ene (2c)

Colorless liquid IR (neat) 1604 (C=C) cm⁻¹ ¹H NMR (CDCl₃, 400 MHz) δ 5.59 (q, ⁴*J*(¹H-¹H)= 1.9 Hz, ³*J*(¹¹⁹Sn-¹H)= 115.9 Hz, 1H, SnC=C<u>H</u>_c), 2.09 (d, ⁴*J*(¹H-¹H)= 1.9 Hz, ³*J*(¹¹⁹Sn-¹H)= 70.0 Hz, 3H, SnCC<u>H</u>₃), 1.66-1.30 (m, 12H, SnC<u>H₂CH₂CH₂CH₃), 1.15 (s, 9H, ¹Bu), 0.92 (t, *J*= 7.2 Hz, 6H, SnCH₂CH₂CH₂CH₂C<u>H</u>₃) ¹³C NMR (CDCl₃, 100 MHz) δ 152.50, 136.17, 35.32, 30.74, 29.01, 26.53, 19.96, 16.45, 13.58 ¹¹⁹Sn NMR (CDCl₃, 148 MHz) δ 29.75 MS (EI, 70 eV) *m*/*z* 401 (M⁺ - Bu, 100), 361 (Bu₂ISn, 6), 331 (M⁺ - I, 11), 247 (ISn, 31), 97 (M⁺ -Bu₂ISn , 34), 57 (Bu, 30) HRMS calcd for C₁₁H₂₂ISn: 400.9788, found: *m*/*z* 400.9782 (EI, (M⁺ - Bu), - 0.6 mmu) Anal. calcd for C₁₅H₃₁ISn: C, 39.42; H, 6.84, found: C, 39.41; H, 6.71.</u>

(E)-2-(Di-*n*-butyliodostannyl)-4,4-dimethyl-pent-1-ene (3c)

SnIBu₂

This compound was a minor product and was not purely isolated. The identifiable signals in the crude mixture were shown below.

¹H NMR (CDCl₃, 400 MHz) δ 5.79 (d, *J*= 1.2 Hz, 1H, C=C<u>H</u>), 5.57 (d, *J*= 1.2 Hz, 1H, C=C<u>H</u>)

(E)-2-(Di-n-butyliodostannyl)-4-methyl-4-phenyl-pent-2-ene (2d)

SnIBu₂

Colorless liquid

IR (neat) 1601 (C=C) cm⁻¹

¹H NMR (CDCl₃, 400 MHz) δ 7.35 (m, 2H, Ph), 7.29 (m, 2H, Ph), 7.17 (m, 1H, Ph), 5.98 (q, ⁴*J*(¹H-¹H)= 1.9 Hz, ³*J*(¹¹⁹Sn-¹H)= 107.2 Hz, 1H, SnC=C<u>H</u>_c), 1.52 (d, *J*= 1.9 Hz, 3H, C=CC<u>H</u>₃), 1.46 (s, 6H, PhC(C<u>H</u>₃)₂), 1.67-1.32 (m, 12H, SnC<u>H</u>₂C<u>H</u>₂C<u>H</u>₂CH₃), 0.94 (t, *J*= 7.3Hz, 6H, SnCH₂CH₂CH₂CH₂CH₂CH₂)

¹³C NMR (CDCl₃, 100 MHz) *δ* 152.39, 149.72, 138.69, 128.18, 125.96, 125.47, 41.97, 31.03, 29.04, 26.53, 20.11, 16.52, 13.61

¹¹⁹Sn NMR (CDCl₃, 148 MHz) δ 25.92

MS (EI, 70 eV) m/z 520 (M⁺, 0.12), 463 (M⁺ - Bu, 100), 393 (M⁺ - I, 20), 361 (Bu₂ISn, 20), 247 (ISn, 19), 159 (M⁺ - Bu₂ISn, 24), 119 (C(CH₃)₂Ph, 100), 91 (37)

HRMS calcd for C₁₆H₂₄ISn: 462.9944, found: *m*/*z* 462.9940 (EI, (M⁺ - Bu), - 0.4 mmu)

Anal. calcd for C₂₀H₃₃ISn: C, 46.28; H, 6.41, found: C, 46.44; H, 6.34.

(Z)-3-(Di-*n*-butyliodostannyl)-1-butoxy-but-2-ene (2e)

OBu SnIBu₂ 2e

This compound was isolated including small amount of **3e**.

Colorless liquid

IR (neat) 1635 (C=C), 1095 (C-O-C) cm⁻¹

¹H NMR (CDCl₃, 400 MHz) δ 6.28 (m, ³*J*(¹¹⁹Sn-¹H)= 189.6 Hz, 1H, SnC=C<u>H</u>_{*t*}), 4.14-4.08 (m, 2H, C=CC<u>H</u>₂O), 3.62 (t, *J*= 7.3 Hz, 2H, OC<u>H</u>₂CH₂CH₂CH₃), 2.17 (q, ⁴*J*(¹H-¹H)= 1.9 Hz, ³*J*(¹¹⁹Sn-¹H)= 61.8 Hz, 3H, SnCC<u>H</u>₃), 1.76-1.28 (m, 16H, SnC<u>H</u>₂C<u>H</u>₂C<u>H</u>₂CH₃ and OCH₂C<u>H</u>₂C<u>H</u>₂CH₃), 0.96 (t, *J*= 7.3 Hz, 3H, OCH₂CH₂CH₂C<u>H</u>₃), 0.91 (t, *J*= 7.3 Hz, 6H, SnCH₂CH₂CH₂CH₂C<u>H</u>₃)

 $^{13}\mathrm{C}$ NMR (CDCl₃, 100 MHz) δ 133.19, 131.13, 71.47, 70.45, 30.36, 28.73, 28.61, 26.36, 22.00, 18.84, 13.82, 13.66

MS (EI, 70 eV) *m*/*z* 431 (M⁺ - Bu, 56), 361 (Bu₂ISn, 78), 247 (ISn, 20), 177 (BuSn, 15), 127 (M⁺ - Bu₂ISn, 23), 71 (100), 57 (27)

HRMS calcd for $C_{16}H_{34}OISn$: 489.0676, found: m/z 489.0674 (CI, (M⁺ + H), - 0.3 mmu) Anal. calcd for $C_{16}H_{33}OISn$: C, 39.46; H, 6.83, found: C, 39.31; H, 6.86.

(Z)-3-(Di-*n*-butyliodostannyl)-1-butoxy-but-1-ene (3e)

```
OBu
SnIBu<sub>2</sub>
3e
```

This compound was a minor product and was not purely isolated. The identifiable signals in the crude mixture were shown below.

¹H NMR (CDCl₃, 400 MHz) δ 5.98 (d, ²*J*(¹H-¹H)= 1.5 Hz, ³*J*(¹¹⁹Sn-¹H)= 193.7 Hz, 1H, SnC=C<u>H</u>_{*t*}), 5.85 (d, ²*J*(¹H-¹H)= 1.5 Hz, ³*J*(¹¹⁹Sn-¹H)= 88.9 Hz, 1H, SnC=C<u>H</u>_{*c*}), 3.49 (t, *J*= 7.3 Hz, 2H, OCH₂), 3.49 (t *J*= 5.8 Hz, 2H, OCH₂), 2.64 (t, ³*J*(¹H-¹H)= 5.8 Hz, ³*J*(¹¹⁹Sn-¹H)= 71.5 Hz, 2H, SnCC<u>H₂</u>) ¹³C NMR (CDCl₃, 100 MHz) δ 136.41, 71.59, 70.88, 40.11, 31.06, 28.98, 26.45, 19.80, 19.09, 13.84, 13.61.

(Z)-2-(Di-*n*-butyliodostannyl)-1-methoxy-prop-1-ene (2f)

QМе

SnIBu₂

This compound was decomposed by silica gel column chromatography and was isolated by GPC. Colorless liquid

IR (neat) 1631 (C=C), 1141 (C-O-C) cm⁻¹

¹H NMR (CDCl₃, 400 MHz) δ 6.46 (q, ⁴*J*(¹H-¹H)= 1.7 Hz, ³*J*(¹¹⁹Sn-¹H)= 127.5 Hz, 1H, SnC=C<u>H</u>_{*t*}), 3.53 (s, 3H, OCH₃), 1.84 (d, ⁴*J*(¹H-¹H)= 1.7 Hz, ³*J*(¹¹⁹Sn-¹H)= 61.8 Hz, 3H, SnCC<u>H</u>₃), 1.64-1.31 (m, 12H, SnC<u>H</u>₂C<u>H</u>₂C<u>H</u>₂CH₃), 0.91 (t, *J*= 7.3 Hz, 6H, SnCH₂CH₂CH₂CH₃)

¹³C NMR (CDCl₃, 100 MHz) δ150.87, 111.74, 58.79, 28.93, 26.37, 18.15, 17.73, 13.59

MS (EI, 70 eV) *m*/*z* 375 (M⁺ - Bu, 100), 335 (58), 305 (M⁺ - I, 23), 247 (ISn, 42), 151 (48), 57 (Bu, 73)

HRMS calcd for C₈H₁₆OISn: 374.9268, found: m/z 374.9291 (EI, (M⁺), + 2.3 mmu).

(E)-1-(Di-*n*-butyliodostannyl)-cyclonon-1-ene (2g)

Colorless liquid

IR (neat) 1608 (C=C) cm^{-1}

¹H NMR (CDCl₃, 400 MHz) δ 5.88 (t, ³*J*(¹H-¹H)= 8.2 Hz, ³*J*(¹¹⁹Sn-¹H)= 101.9 Hz, 1H, SnC=C<u>H</u>_c), 2.53 (t, ³*J*(¹H-¹H)= 5.6 Hz, ³*J*(¹¹⁹Sn-¹H)= 87.7 Hz, 2H, SnCC<u>H</u>₂), 2.33-2.23 (m, 2H, SnC=CC<u>H</u>₂), 1.70-1.33 (m, 22H), 0.92 (t, *J*= 7.3 Hz, 6H, CH₃)

 $^{13}\mathrm{C}$ NMR (CDCl₃, 100 MHz) δ 143.62, 142.90, 31.03, 29.14, 27.69, 26.66, 26.02, 25.71, 25.32, 24.70, 16.62, 13.59

¹¹⁹Sn NMR (CDCl₃, 148 MHz) δ24.25

MS (EI, 70 eV) *m*/*z* 427 (M⁺ - Bu, 100), 361 (M⁺, 14), 247 (24), 123 (M⁺ - SnIBu₂, 68), 81 (90), 67 (35)

HRMS calcd for C₁₃H₂₄ISn: 426.9945, found: *m*/*z* 426.9940 (EI, (M⁺ - Bu), - 0.5 mmu).

(Z)-2-(Di-*n*-butyliodostannyl)-3-methoxy-undec-2-ene (2h)

This compound is unstable and was not purely isolated. This compound was decomposed by silica gel column chromatography. The identifiable signals in the crude mixture after GPC were shown below.

Colorless liquid

IR (neat) 1643 (C=C), 1092 (C-O-C) cm⁻¹

¹H NMR (CDCl₃, 400 MHz) δ 3.45 (s, 3H, OC<u>H</u>₃), 2.32 (t, 7.3 Hz, 2H, C=CC<u>H</u>₂), 1.86 (s, ³*J*(¹¹⁹Sn-¹H)= 69.1 Hz, 3H, SnCC<u>H</u>₃), 1.67-1.19 (m, 24H), 0.94-0.84 (m, 9H, C<u>H</u>₃ of C₈H₁₇ and SnCH₂CH₂CH₂CH₂C<u>H</u>₃)

 ^{13}C NMR (CDCl₃, 100 MHz) δ 158.25, 114.12, 55.76, 31.78, 29.35, 29.19, 28.99, 28.92, 27.09, 26.34, 25.12, 22.59, 18.65, 16.81, 14.04, 13.59

¹¹⁹Sn NMR (CDCl₃, 148 MHz) δ 33.01

MS (EI, 70 eV) *m*/*z* 544 (M⁺, 0.37), 487 (M⁺ - Bu, 50), 455 (80), 431 (24), 417 (M⁺ - I, 12), 361 (Bu₂ISn, 83), 335 (53), 265 (30), 247 (ISn, 78), 151 (36), 57 (Bu, 100), 41 (26)

HRMS calcd for C₁₆H₃₂IOSn: 487.0520, found: m/z 487.0527 (EI, (M⁺ - Bu), + 0.7 mmu).

(*E*)-2,2-Dimethyl-4-phenyl-pent-3-ene (5c)

15.9% NOE was observed at Ph by irradiation at 5-H (2.14 ppm).

15.6% NOE was observed at 1-H (1.21 ppm) by irradiation at 5-H (2.14 ppm).

No NOE was observed at 3-H (5.73 ppm) by irradiation at 5-H (2.14 ppm).

Me Mé Me Me 15.9% NOE 15.6% NOE

Colorless liquid IR (neat) 1597 (C=C) cm⁻¹ ¹H NMR (CDCl₃, 400 MHz) δ 7.35-7.18 (m, 5H, Ph), 5.73 (q, *J*= 1.5 Hz, 1H, C=C<u>H</u>), 2.14 (d, *J*= 1.5 Hz, 3H, C=CC<u>H</u>₃), 1.21 (s, 9H, ^{*t*}Bu) ¹³C NMR (CDCl₃, 100 MHz) δ 146.10, 139.27, 134.28, 128.03, 126.31, 125.91, 32.65, 30.93, 17.18 MS (EI, 70 eV) *m*/*z* 174 (M⁺, 45), 159 (M⁺ - Me, 100), 117 (M⁺ - CMe₃, 59) HRMS calcd for C₁₃H₁₈: 174.1409, found: *m*/*z* 174.1412 (EI, (M⁺), + 0.3 mmu) Anal. calcd for C₁₃H₁₈: C, 89.59; H, 10.41, found: C, 89.55; H, 10.48.

(Z)-1-Methoxy-2-phenyl-propene (5f)

4.8% NOE was observed at 1-H (6.12 ppm) by irradiation at 3-H (1.92 ppm).

11.1% NOE was observed at OMe (3.67 ppm) by irradiation at 3'-H (7.34-7.28 ppm).

10.9% NOE was observed at 3-H (1.92 ppm) by irradiation at 3'-H (7.34-7.28 ppm).

Little NOE was observed at 1-H (6.12 ppm) by irradiation at 3'-H (7.34-7.28 ppm).

Colorless liquid bp 90 °C/ 4 mmHg

IR (neat) 1651 (C=C), 1146 (C-O-C) cm⁻¹ ¹H NMR (CDCl₃, 400 MHz) δ 7.62-7.58 (m, 2H, Ph), 7.34-7.28 (m, 2H, Ph), 7.20-7.15 (m, 1H, Ph), 6.12 (q, *J*= 1.4 Hz, 1H, C=C<u>H</u>), 3.67 (s, 3H, OCH₃), 1.92 (d, *J*= 1.4 Hz, 3H, C=CC<u>H₃</u>) ¹³C NMR (CDCl₃, 100 MHz) δ 144.56, 138.31, 127.89, 127.44, 126.00, 110.78, 60.11, 18.27 MS (EI, 70 eV) *m*/*z* 148 (M⁺, 72), 121 (100), 105 (55), 77 (Ph, 29) HRMS calcd for C₁₀H₁₂O: 148.0888, found: *m*/*z* 148.0883 (EI, (M⁺), - 0.5 mmu) Anal. calcd for C₁₀H₁₂O: C, 81.04; H, 8.16, found: C, 80.83; H, 7.92.

(*E*)-1-Phenyl-cyclononene (5g)

5.5% NOE was observed at Ph by irradiation at 2-H (5.87 ppm). No NOE was observed at 9-H (2.32 ppm) by irradiation at 2-H (5.87 ppm).

н Ph 5.5% NOE 1.7% NOE

Colorless liquid bp 110 °C/ 0.3 mmHg IR (neat) 1597 (C=C) cm⁻¹ ¹H NMR (CDCl₃, 400 MHz) δ 7.41-7.38 (m, 2H, Ph), 7.32-7.28 (m, 2H, Ph), 7.25-7.19 (m, 1H, Ph), 5.87 (t, *J*= 8.5 Hz, 1H, C=C<u>H</u>), 2.63 (t, *J*= 5.5 Hz, 2H, C=CPhC<u>H</u>₂), 2.32 (dt, *J*= 8.5 and 5.5 Hz, 2H, C=CHC<u>H</u>₂), 1.62-1.49 (m, 10H)

¹³C NMR (CDCl₃, 100 MHz) *δ* 143.49, 140.46, 128.73, 128.13, 126.38, 126.13, 28.86, 27.46, 26.62, 26.25, 25.69, 25.40, 25.14

MS (EI, 70 eV) m/z 200 (M⁺, 32), 185 (11), 172 (7), 157 (16), 143 (23), 129 (28), 118 (100), 91 (23) HRMS calcd for C₁₅H₂₀: 200.1565, found: m/z 200.1574 (EI, (M⁺), + 0.9 mmu)

Anal. calcd for C₁₅H₂₀: C, 89.94; H, 10.06, found: C, 89.87; H, 10.21.

(Z)-3-Methoxy-2-phenyl-undec-2-ene (5h)

7.4% NOE was observed at Ph by irradiation at 1-H (1.95 ppm).

7.3% NOE was observed at 4-H (2.31 ppm) by irradiation at 1-H (1.95 ppm).

No NOE was observed at OMe (3.33 ppm) by irradiation at 1-H (1.95 ppm).

Colorless liquid

IR (neat) 1651 (C=C), 1092 (C-O-C) cm⁻¹

¹H NMR (CDCl₃, 400 MHz) δ 7.31-7.29 (m, 4H, Ph), 7.20-7.14 (m, 1H, Ph), 3.33 (s, 3H, OC<u>H₃</u>), 2.31 (t, *J*= 7.5 Hz, 2H, C=CC<u>H₂</u>), 1.95 (s, 3H, C=CC<u>H₃</u>), 1.54 (tt, *J*= 6.8 and 7.5 Hz, 2H, C=CCH₂C<u>H₂</u>), 1.42-1.22 (m, 10H), 0.89 (t, *J*= 6.8 Hz, 3H, C<u>H₃</u> of C₈H₁₇)

¹³C NMR (CDCl₃, 100 MHz) *δ* 152.17, 141.84, 128.33, 127.76, 125.73, 116.80, 56.94, 31.89, 29.53, 29.44, 29.31, 28.15, 27.39, 22.67, 18.81, 14.10

MS (EI, 70 eV) *m*/*z* 260 (M⁺, 94), 162 (28), 147 (42), 130 (100), 129 (60), 105 (36), 91 (38), 77 (Ph, 7)

HRMS calcd for $C_{18}H_{28}O$: 260.2140, found: m/z 260.2146 (EI, (M⁺), + 0.6 mmu)

Anal. calcd for C₁₈H₂₈O: C, 83.02; H, 10.84, found: C, 82.93; H, 10.67.

(1-Phenyl-ethylidene)-cyclohexane (5i)

This compound was isolated with small amount of 1-cyclohexyl-1-phenyl-ethylene (6i).

Colorless liquid bp 70 °C/ 0.4 mmHg IR (neat) 1601 (C=C) cm⁻¹ ¹H NMR (CDCl₃, 400 MHz) δ 7.33-7.28 (m, 2H, Ph), 7.21-7.17 (m, 1H, Ph), 7.13-7.10 (m, 2H, Ph), 2.30 (t, *J*= 5.8 Hz, 2H, C=CC<u>H</u>₂), 1.99 (t, *J*= 6.0 Hz, 2H, C=CC<u>H</u>₂), 1.95 (s, 3H, C<u>H</u>₃), 1.64-1.40 (m, 6H, C=CCH₂C<u>H₂CH₂CH</u>₂D ¹³C NMR (CDCl₃, 100 MHz) δ 145.29, 135.43, 128.39, 127.91, 126.60, 125.65, 31.90, 30.58, 28.46, 28.06, 26.85, 20.21 MS (EI, 70 eV) *m*/*z* 186 (M⁺, 100), 171 (M⁺ - Me, 40), 143 (40), 129 (46), 118 (33), 105 (60), 91 (26) HRMS calcd for C₁₄H₁₈: 186.1409, found: *m*/*z* 186.1412 (EI, (M⁺), + 0.3 mmu).

(E)-3-Methoxy-2-methyl-4-phenyl-pent-3-ene-2-ol (5j)

This compound was purified by column chromatography.

6.7% NOE was observed at Ph by irradiation at 5-H (1.98 ppm).

5.7% NOE was observed at OMe (3.78 ppm) by irradiation at 5-H (1.98 ppm).

No NOE was observed at 1-H (1.21 ppm) by irradiation at 5-H (1.98 ppm).

Yellow liquid

IR (neat) 3467 (O-H), 1651 (C=C), 1068 (C-O-C) cm⁻¹

¹H NMR (CDCl₃, 400 MHz) δ7.34-7.30 (m, 2H, Ph), 7.26-7.23 (m, 1H, Ph), 7.22-7.14 (m, 2H, Ph),

3.78 (s, 3H, OC<u>H</u>₃), 2.17 (s, 1H, OH), 1.98 (s, 3H, C=CC<u>H</u>₃), 1.21 (s, 6H, C(C<u>H</u>₃)₂)

¹³C NMR (CDCl₃, 100 MHz) δ156.92, 142.18, 128.37, 128.25, 126.72, 121.76, 73.73, 61.40, 30.15, 21.72

MS (EI, 70 eV) *m*/*z* 206 (M⁺, 20), 173 (100), 159 (M⁺ - 2Me - OH, 41), 131 (34), 105 (46)

HRMS calcd for $C_{13}H_{18}O_2$: 206.1307, found: m/z 206.1301 (EI, (M⁺), - 0.6 mmu)

Anal. calcd for C₁₃H₁₈O₂: C, 75.69; H, 8.80, found: C, 75.85; H, 8.64.

References:

- (1) W. P. Newman, J. Pedain, Tetrahedron Lett., 1964, 5, 2461-2465.
- (2) T. Kawakami, I. Shibata, A. Baba, J. Org. Chem., 1996, 61, 82-87.
- (3) T. Endo, K. Takagi, I. Tomita, Tetrahedron, 1997, 53, 15187-15196.

(4) L. Brandsma, H. D. Verkruijsse, *Synthesis of Acetylenes, Allenes and Cumulenes*, 1981, 13 & 157.

- (5) M. Yasuda, T. Saito, M. Ueba, A. Baba, Angew. Chem. Int. Ed., 2004, 43, 1414-1416.
- (6) F. Barbot, B. Dauphin, P. Miginiac, Synthesis, 1985, 768-770.
- (7) F. J. Weiberth, S. S. Hall, J. Org. Chem., 1985, 50, 5308-5314.
- (8) a) M. S. Baird, A. V. Nizovtsev, I. G. Bolesov, Tetrahedron, 2002, 58, 1581-1593; b) K. A.

Campbell, H. O. House, B. W. Surber, W. S. Trahanovsky, J. Org. Chem., 1987, 52, 2474-2481; c) J.

A. Murphy, K. A. Scott, R. S. Sinclair, N. Lewis, Tetrahedron Lett., 1997, 38, 7295-7298.

(9) R. W. Hoffmann, R. Metternich, Liebigs Ann. Chem., 1985, 12, 2390.

(10) J. Tsuji, T. Sugiura, I. Minami, Synthesis, 1987, 603-606.

¹³C NMR

S25

