SUPPORTING INFORMATION

Stable photoinduced charge separation in heptacene

Holger F. Bettinger,* Rajib Mondal, Douglas C. Neckers

Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany Fax: +49 234-321-4353 e-Mail: Holger.Bettinger@rub.de

Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403, USA

Experimental and Computational Details

The α -diketone **2** was synthesized as described previously.^[1] Matrix experiments were carried out according to standard techniques^[2] with APD CSW-20 displex closed-cycle helium cryostats. The photopresursor **2** was sublimed out of a quartz tube, which was resistively heated to 220–227 °C by Ta wire coiled around it, onto cold CsI (IR experiments) or sapphire windows with a large excess of argon, nitrogen (both Messer Griesheim, 99.9999%), or xenon (Air Liquide, 4.0), which were dosed to 2.0 sccm by a mass flow controller (MKS Mass Flo Type 247 four-channel read out). The windows were kept at 30 K, 28 K, or 55 K during deposition of argon, nitrogen, or xenon, respectively by resistive heating using an Oxford ITC 503 temperature controller. IR spectra were measured on Bruker IFS 66 and IFS 66/S spectrometers using a resolution of 0.5 cm⁻¹, while electronic spectra were measured using a Cary 5000 spectrometer.

The computational investigations used the B3LYP^[3, 4] hybrid functional as implemented in Gaussian^[5] for the optimization of the geometry and computation of harmonic vibrational frequencies of heptacene and its singly charged radical ions in conjunction with the 6-31G* basis set. All B3LYP computations were performed with Gaussian 03.^[5] Electronic excitations of heptacene were computed using the RICC2^[6, 7] method in conjunction with the TZVP^[8] basis set employing the Turbomole^[9] program. For the radical ions, time-dependent B3LYP was used in conjunction with the 6-31G* basis set for obtaining excitation energies, as the D₁ values of CC2 theory were unacceptably large (>0.08).

IR Spectral Data of Heptacene

Table S1. Mid-IR spectroscopic data of heptacene measured in an argon matrix at 15 K. For comparison theoretical data obtained at the RB3LYP/6-31G* level of theory is given. Due to the large number of IR active modes only those having a computed relative intensity larger than 5% are given.

Symmetry	Mode	$v_{\rm exp}/{\rm cm}^{-1}$	rel.	$\omega_{\text{theor}}/\text{cm}^{-1}$	rel.		
	Number	ľ	Intensity/%		Intensity/%		
B _{2u}	137	3085, 3054,	combined:	3209.6	113.5		
B _{1u}	136	3039 ^a	116.3 ^{<i>a</i>}	3197.3	59.3		
B _{2u}	133			3183.6	12.8		
B _{1u}	131			3180.5	65.8		
B_{2u}	130			3179.8	6.8		
B _{1u}	119			1689.8	8.2		
B_{2u}	95	1319	5.1	1362.5	8.9		
B _{1u}	93	1309	13.1	1333.4	46.7		
B _{1u}	77	1129	3.1	1160.4	5.6		
B _{3u}	70	953	6.4	963.5	5.6		
B _{3u}	65	901	100.0	922.1	100.0^{b}		
B _{3u}	59	863	6.7	880.6	12.5		
B _{3u}	51	799	4.3	812.4	6.1		
B _{3u}	43	741, 733	78.3	751.5	44.5		
B_{2u}	40			749.0	6.7		
B_{2u}	33	602	4.7	615.7	9.5		
B _{3u}	25	468	2.6	475.6	9.7		
B _{3u}	23	461	2.7	472.7	10.3		
^{<i>a</i>} The bands due to the $v(CH)$ stretching vibrations are broad and not resolved. The three							
maxima are given and the entire feature was integrated. ^{b} Absolute intensity: 127.1 km mol ^{-1} .							

UV/vis Data of Heptacene

Table S2.	Tentative as	ssignment of	f experiment	al and com	parison with	n computed		
(RICC2/TZVP//B3LYP/6-31G*) electronic transition energies and oscillator strengths f (in								
a.u.) for heptacene.								
	Exp	periment, Ar 1	0 K	RICC2/TZVP				
State	λ/nm	ω/eV	$\Delta v/cm^{-1}$	λ/nm	ω/eV	f		
	211	5.88	0					
4^1B_{2u}	243	5.09	0	232	5.35	0.003		
$3^{1}B_{2u}$	not obs.	not obs.	not obs.	265	4.67	0.001		
$4^{1}B_{1u}$	268	4.63	0	289	4.29	0.064		
	320	3.88	1705.1					
	326 ^{<i>a</i>}	3.80	1130.0					
	329	3.77	850.2					
$2^{1}B_{2u}$	338	3.66	0	310	3.99	5.407		
$3^{1}B_{1u}$	355	3.49	0	338	3.67	0.030		
$2^{1}B_{1u}$	not obs.	not obs.	not obs.	362	3.42	0.002		
	414	2.99	1405.4					
1^1B_{2u}	440 ^a	2.82	0	416	2.98	0.010		
	601	2.06	3632.6					
	610	2.03	3403.5					
	657	1.89	2222.9					
	670	1.85	1919.6					
	690	1.80	1485.9					
	704	1.76	1202.0					
	728 ^a	1.70	735.5					
$1^1 B_{1u}$	769	1.61	0	736	1.68	0.049		
^{<i>a</i>} Most intensive feature within a system.								

Most intensive feature within a system.

Spectral Data of Radical Ions and Tentative Assignments

Table S3. Experimental and computed (TD-UB3LYP/6-31G*//UB3LYP/6-31G*) transition wavelengths (λ in nm) and oscillator strengths (in a.u.) for heptacene radical ions.

Heptacene Radical Cation, ² B _{2g}				Heptacene Radical Anion, ² B _{3u}			
State	Ar, 10 K	Theory	f	State	Ar, 10 K	Theory	f
	407						
	449						
	466						
3^2B_{3u}	not obs.	491.4	0.002	2^2B_{1g}	472	466.0	0.151
$2^2 A_u$	480	495.9	0.217	3^2B_{2g}	not obs.	474.2	0.001
2^2B_{3u}	not obs.	628.9	0.000	2^2B_{2g}	not obs.	604.6	0.000
	971				991		
	1060						
	1087						
	1117						
	1146						
$1^2 A_u$	1248 ^a	1023.9	0.391	$1^2 B_{1g}$	1152	942.2	0.445
$1^2 B_{3u}$	2134	1908.3	0.009	$1^2 B_{2g}$	not obs.	2101.4	0.009
^a Most intense band within a system.							

References

- [1] R. Mondal, B. K. Shah, D. C. Neckers, J. Am. Chem. Soc. 2006, 128, 9612.
- [2] I. R. Dunkin, *Matrix-Isolation Techniques*, Oxford University Press, Oxford, **1998**.
- [3] A. D. Becke, J. Chem. Phys. **1993**, 98, 5648.
- [4] C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B* 1988, *37*, 785.
- [5] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Pittsburgh PA, **2003**.
- [6] C. Hättig, A. Köhn, J. Chem. Phys. 2002, 117, 6939.
- [7] C. Hättig, F. Weigend, J. Chem. Phys. 2000, 113, 5154.
- [8] A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829.
- [9] R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, Chem. Phys. Lett. 1989, 162, 165.