Total syntheses of (+)-7-epi-goniofufurone, (+)-goniopypyrone and (+)-

 goniofufurone from a common precursorVeejendra K. Yadav* and (Miss) Divya Agrawal

Department of Chemistry, Indian Institute of Technology, Kanpur 208 016, India
vijendra@iitk.ac.in

Supplementary Material (ESI) for Chemical Communications

This journal is (c) The Royal Society of Chemistry 2007
General. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded as solutions in CDCl_{3} at 400 MHz and 100 MHz and referred, respectively, to the TMS signal used as an internal standard and the central line for CDCl_{3}. Chemical shifts are reported in ppm (δ) and the coupling constants in Hz. HRMS were recorded using a Q-Tof Premier Micromass machine. Column chromatographic separations were performed using silica gel (100-200 mesh). Routine monitoring of reactions was performed using silica gel-G LR and silica gel $60 \mathrm{PF}_{254}$ in 3:1 ratio obtained from S.D.Fine and Merck, respectively. The radial chromatography was performed using plates coated with silica gel (60 PF_{254}). Reactions under anhydrous conditions were run under an atmosphere of nitrogen using flame-dried glasswares. The organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvents was performed on a rotovap under reduced pressure. Tetrahydrofuran was distilled from sodium benzophenone ketyl under nitrogen. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and CHCl_{3} were distilled from CaH_{2}. tert-Butyldiphenylsilyl chloride (TBDPSCl), Grubbs' catalyst ($2^{\text {nd }}$ generation), DMAP, m CPBA, vinylacetic acid, TBAF, CBr_{4} and DBU were obtained from Aldrich Chemical Company. Optical rotations were measured using Autopol III, Automatic Polarimeter at $25^{\circ} \mathrm{C}$.

1,2:3,4:5,6-Tri- O-isopropylidene-D-mannitol, 4

1,2:3,4:5,6-Tri- \boldsymbol{O}-isopropylidene-D-mannitol 4. To a suspension of D-mannitol ($30 \mathrm{~g}, 164.7$

 $\mathrm{mmol})$ in dry acetone (1.5 l) was added conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(98 \%, 9 \mathrm{~mL})$ and stirred for 6 h at room temperature. Reaction was neutralized by saturated aqueous $\mathrm{NaOH}(150 \mathrm{~mL})$ and the solvent was removed in vacuo. The resultant was diluted with EtOAc (200 mL) and saturated with $\mathrm{NaCl}(15$ g). The organic layer was separated and the remaining aqueous layer was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic solution was washed with aqueous saturated $\mathrm{NaOH}(1 \times 25$ $\mathrm{mL}), \mathrm{H}_{2} \mathrm{O}(1 \times 25 \mathrm{~mL})$ and brine ($1 \times 25 \mathrm{~mL}$) and dried. Removal of the solvent gave the crude product which was purified by column chromatography to isolate $4,42.30 \mathrm{~g}, 85 \%$, white solid, $\mathrm{mp} 68-70{ }^{\circ} \mathrm{C}$ (lit. ${ }^{1} \mathrm{mp} 70{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR $\delta 4.20-4.17(\mathrm{~m}, 2 \mathrm{H}), 4.10-4.07(\mathrm{dd}, J=8.6,6.4 \mathrm{~Hz}, 2 \mathrm{H})$, 4.01-3.94 (m, 4H), $1.43(\mathrm{~s}, 6 \mathrm{H}), 1.39(\mathrm{~s}, 6 \mathrm{H}), 1.36(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta 110.2,109.6,79.4,76.3$, 66.2, 27.4, 26.5, 25.4. IR (KBr) $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 3054,2986,1261,1067,843,740$.Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2007

1,2:3,4-Di- O-isopropylidene-D-mannitol, 5

1,2:3,4-Di- \boldsymbol{O}-isopropylidene-D-mannitol 5. Solid mannitol triacetonide 4 ($30 \mathrm{~g}, 99.34 \mathrm{mmol}$) was taken in 684 mL of 70% aqueous ethanol at a steady temperature of $45^{\circ} \mathrm{C}$. Conc. $\mathrm{HCl}(2.1$ mL) was added dropwise within 1 h while the temperature was maintained at $45^{\circ} \mathrm{C}$ and the content was vigorously stirred. Immediately after the addition of HCl , the reaction was quenched by the addition of solid $\mathrm{K}_{2} \mathrm{CO}_{3}(10 \mathrm{~g})$. The ethanol layer was separated and the aqueous phase was extracted with EtOAc ($1 \times 100 \mathrm{~mL}$). The combined organic solution was concentrated and the residue was taken in cold $\mathrm{H}_{2} \mathrm{O}$ when the unreacted starting material separated out as solid $(16.27 \mathrm{~g})$ and was filtered out. The aqueous layer was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$) to give the crude product $5,11.79 \mathrm{~g}, 99 \%$ based on the starting material recovered, low melting solid. The crude product was taken as such for the next step without further purification.

$1,2: 3,4-\mathrm{Di}-O$-isopropylidene-5,6-dideoxy-D-mannitol, 6

1,2:3,4-Di-O-isopropylidene-5,6-dideoxy-D-mannitol 6. To a solution of diol $\mathbf{5}$ ($10 \mathrm{~g}, 38.17$ mmol) in dry toluene (800 mL) was added triphenylphosphine ($40 \mathrm{~g}, 152.67 \mathrm{mmol}$) followed by imidazole ($10.4 \mathrm{~g}, 152.67 \mathrm{mmol}$) and stirred vigorously. To the resulting solution was added iodine ($29 \mathrm{~g}, 114.5 \mathrm{mmol}$) and the mixture was refluxed at $110^{\circ} \mathrm{C}$ for 3 h . The reaction mixture, after bringing to room temperature, was decanted into excess saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(100$ $\mathrm{mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ in a separatory funnel. The residue in the reaction flask was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). These extracts were combined with the material in the separatory funnel and shaken until the iodine was consumed. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(1 \times 100 \mathrm{~mL})$, dried, and concentrated. The crude residue was chromatographed to obtain 6, $7 \mathrm{~g}, 80.4 \%$, viscous liquid. ${ }^{1} \mathrm{H}$ NMR $\delta 5.92-5.83(1 \mathrm{H}, \mathrm{m}), 5.38(1 \mathrm{H}, \mathrm{d}, J=17.1 \mathrm{~Hz})$,

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2007
$5.18(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}), 4.32(1 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 4.12-4.04(2 \mathrm{H}, \mathrm{m}), 3.93-3.901 \mathrm{H},(\mathrm{dd}, J=7.8$, $4.4 \mathrm{~Hz}), 3.67(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 1.37(9 \mathrm{H}, \mathrm{s}), 1.31(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $\delta 135.8,117.2,109.6$, $109.4,81.1,80.4,76.6,66.9,26.9,26.8,26.6,25.2$. IR (neat) $\nu_{\max } / \mathrm{cm}^{-1} 2988,2931,2884,1376$, 1251, 1217, 1065, 925, 847. HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 251.1259$, found 251.1258.

3,4-O-isopropylidene-5,6-dideoxy-D-mannitol, 7

3,4-O-isopropylidene-5,6-dideoxy-D-mannitol 7. To a solution of the diacetonide $\mathbf{6}$ (10 g , $43.86 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(100 \mathrm{~mL})$ was added $\mathrm{CuCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}(7.48 \mathrm{~g}, 43.86 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and stirred at the same temperature for 40 min . The reaction was quenched by aqueous saturated $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and filtered through celite. The aqueous layer was extracted with EtOAc (3 x 20 mL). The combined organic extract was dried and concentrated to obtain a residue that was purified by column chromatography to isolate 2.5 g of the starting material and 6.18 g of the desired product $7,99.9 \%$ based on the starting material recovered, yellow oil. $[\alpha]_{\mathrm{D}}+6.7(c 0.58$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left[\mathrm{lit} .{ }^{2}[\alpha]_{\mathrm{D}}+6.4\left(c 0.47, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right] .{ }^{1} \mathrm{H}$ NMR $\delta 5.94-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.46-5.41(\mathrm{dt}, J=17.1$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.29-5.26(\mathrm{dt}, J=10.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.39(\mathrm{dd}, J=8.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.87$ $(\mathrm{m}, 1 \mathrm{H}), 3.81-3.78(\mathrm{dd}, J=8.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.68(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 2.28(\mathrm{bs}, 1 \mathrm{H}$, $\mathrm{OH}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta 135.8,118.8,109.3,81.1,79.2,71.9,63.4,26.9$, 26.8. IR (neat) $v_{\max } / \mathrm{cm}^{-1} 3401,2988,2933,1644,1378,1054,874$.

2,3-O-isopropylidene-4-pentenal, 8

2,3- \boldsymbol{O}-isopropylidene-4-pentenal 8. To a solution of diol 7 ($5 \mathrm{~g}, 26.6 \mathrm{mmol}$) in DCM (100 mL), $\mathrm{Pb}(\mathrm{OAc})_{4}(14.15 \mathrm{~g}, 31.9 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$ and the reaction was allowed to proceed with gradual warming to room temperature. After 3 h , when all the diol had been consumed, the reaction was quenched by addition of saturated aqueous NaHCO_{3} solution (20 mL). The solids

Supplementary Material (ESI) for Chemical Communications

This journal is (c) The Royal Society of Chemistry 2007
were removed by filtration through celite and the aqueous layer was extracted with DCM (3×20 $\mathrm{mL})$. The combined organic solution was washed with $\mathrm{H}_{2} \mathrm{O}(1 \times 20 \mathrm{~mL})$ and brine ($1 \times 20 \mathrm{~mL}$), dried, and concentrated to give the requisite aldehyde $\mathbf{8}, 4.1 \mathrm{~g}, 99 \%$, viscous liquid. The crude material was used as such in the next step.

3,4-O-isopropylidene-5-C-phenyl-
L-xylo-pent-1-en-5-ol, 9

3,4- O-isopropylidene-5- C-phenyl-
D-arabino-pent-1-en-5-ol, 10

3,4-O-isopropylidene-5-C-phenyl-L-xylo-pent-1-en-5-ol 9 and 3,4-O-isopropylidene-5-C-phenyl-D-arabino-pent-1-en-5-ol 10. In a flame-dried 500 mL 2 -neck round bottom flask were taken activated Mg turnings ($2.06 \mathrm{~g}, 84.6 \mathrm{mmol}$), a few crystals of iodine and 10 mL THF at 0 ${ }^{\circ} \mathrm{C}$. To the suspension was added bromobenzene ($0.6 \mathrm{~mL}, 5.7 \mathrm{mmol}$), dropwise, and stirred vigorously until the disappearance of iodine color. The reaction mixture was diluted with THF $(70 \mathrm{~mL})$ and a solution of bromobenzene $(7.5 \mathrm{~mL}, 71.2 \mathrm{mmol})$ in THF $(80 \mathrm{~mL})$ was added to it dropwise. The mixture was stirred for 1 h with gradual warming until the consumption of Mg was complete. The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and a solution of the aldehyde $\mathbf{8}(4 \mathrm{~g}$, 25.6 mmol) in THF (80 mL) was added to it dropwise. The stirring was continued for 8 h with gradual warming to room temperature. The reaction was quenched by saturated aq $\mathrm{NH}_{4} \mathrm{Cl}(30$ mL) and the aqueous phase was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic extract was washed with brine ($1 \times 50 \mathrm{~mL}$), dried, and concentrated. Purification by column chromatography afforded the two isomers $\mathbf{9}$ and $\mathbf{1 0}$ in the ratio of $1.5: 1 ; 77.3 \%$ yield, viscous liquid.

3,4- \boldsymbol{O}-isopropylidene-5- \boldsymbol{C}-phenyl-L-xylo-pent-1-en-5-ol 9. $[\alpha]_{\mathrm{D}}+14.9$ (c $\left.0.21, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ [lit. ${ }^{2}$ $\left.[\alpha]_{\mathrm{D}}+14.4\left(c 0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right] .{ }^{1} \mathrm{H}$ NMR $\delta 7.38-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.48-5.39(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=17.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.92$ (dd, $J=8.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta 139.9$, 134.7, 128.4, 128.3, 126.9, 118.2, 109.7, 84.4, 79.0, 74.1, 27.0. IR (neat) $v_{\max } / \mathrm{cm}^{-1} 3444,2987$, 2931, 1376, 1250, 1052, 703.

3,4-O-isopropylidene-5-C-phenyl-D-arabino-pent-1-en-5-ol 10. $[\alpha]_{\mathrm{D}}+4.6\left(c \quad 0.32, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $\left[\right.$ lit. $\left.{ }^{2}[\alpha]_{\mathrm{D}}+4.4\left(c 0.21, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right] .{ }^{1} \mathrm{H}$ NMR $\delta 7.37-7.25(\mathrm{~m}, 5 \mathrm{H}), 5.31-5.23(\mathrm{~m}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=$ $3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-$ $3.98(\mathrm{dd}, J=8.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR δ 138.6, 135.6, 128.2, 127.8, 126.0, 116.9, 109.2, 84.1, 76.9, 71.7, 26.9. IR (neat) $v_{\text {max }} / \mathrm{cm}^{-1} 3458$, 2988, 2889, 1376, 1249, 1054, 705.

3,4-O-isopropylidene-5-C-phenyl-5-O-(p-methoxy-pbenzyl)-L-xylo-pent-1-ene, 11

3,4- O-isopropylidene-5-C-phenyl-5- O-(p-methoxybenzyl)-L-xylo-pent-1-ene 11. A solution of the alcohol $9(3 \mathrm{~g}, 12.8 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$ was added to a $0^{\circ} \mathrm{C}$ cooled suspension of NaH (55% dispersion in mineral oil, $840 \mathrm{mg}, 19.23 \mathrm{mmol}$) in THF (30 mL). After stirring at $0{ }^{\circ} \mathrm{C}$ for 15 min , p-methoxybenzyl bromide ($3.1 \mathrm{~g}, 15.38 \mathrm{mmol}$) dissolved in THF (30 mL) was added dropwise, at the same temperature, followed by the addition of tetrabutylammonium iodide (94.7 $\mathrm{mg}, 0.26 \mathrm{mmol})$. The reaction mixture was stirred for 6 h with gradual warming to room temperature. After completion of the reaction, it was quenched by the addition of $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The aqueous solution was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic extract was dried and concentrated. Purification by column chromatography afforded the PMB-ether 11, 4.2 $\mathrm{g}, 92.5 \%$, viscous liquid. $[\alpha]_{\mathrm{D}}+92.6\left(c 0.81, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR} \delta 7.38-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.23(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.89-6.85(\mathrm{dd}, J=11.5,9.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.30-5.21(\mathrm{~m}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=1.02 \mathrm{~Hz}, 1 \mathrm{H})$, $4.81-4.80(\mathrm{~m}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.14 (t, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.99-3.96 (dd, J = 8.0, $6.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.80(\mathrm{~s}, 3 \mathrm{H}), 1.42$ (s, 3H), 1.38 (s , $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta 159.1,137.5,135.1,130.0,129.4,128.5,128.4,128.2,117.1,113.6,109.4$, $83.8,80.9,78.7,69.6,55.2,27.0,26.9$. IR (neat) $v_{\max } / \mathrm{cm}^{-1} 3410,2930,1612,1513,1248,1062$, 702.

5-C-phenyl-5-O-(p-methoxybenzyl)-L-xylo-pent-1-en-3,4-diol, 12

5-C-phenyl-5-O-(p-methoxybenzyl)-L-xylo-pent-1-en-3,4-diol 12. AcOH (50 mL) and $\mathrm{H}_{2} \mathrm{O}$ $(20 \mathrm{~mL})$ were mixed with $\mathbf{1 1}(4 \mathrm{~g}, 11.3 \mathrm{mmol})$ and the resultant was stirred for 4 h at $50^{\circ} \mathrm{C}$. After completion of the reaction, solvent was removed under reduced pressure and the crude was purified by column chromatography to obtain the diol $\mathbf{1 2}, 3.5 \mathrm{~g}, 99 \%$, viscous oil. $[\alpha]_{\mathrm{D}}+56.4$ (c 3.41, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\delta 7.42-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.88(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.87-5.79(\mathrm{~m}, 1 \mathrm{H}), 5.23-5.18(\mathrm{dt}, J=17.3,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.16-5.12(\mathrm{dt}, J=10.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.21(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{bs}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.63-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 2.62$ (bs, $1 \mathrm{H}, \mathrm{OH}$). ${ }^{13} \mathrm{C}$ NMR $\delta 159.4,138.1,138.0,129.7,129.6,128.7,128.4,127.7,116.0,113.9$, 81.4, 77.3, 71.4, 70.4, 55.3. IR (neat) $v_{\max } / \mathrm{cm}^{-1} 3415,2919,1612,1513,1248,1033,822,702$. HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$337.1416, found 337.1414.

5-C-phenyl-5-O-(p-methoxybenzyl)-3-O-t-butyldiphenylsilyl-L-xylo-pent-1-en-4-ol, 13

5-C-phenyl-5-O-(p-methoxybenzyl)-3-O-t-butyldiphenylsilyl-L-xylo-pent-1-en-4-ol 13. To a solution of the diol $12(3.5 \mathrm{~g}, 11.15 \mathrm{mmol})$ in anhydrous $\mathrm{DCM}(70 \mathrm{~mL})$ was added a solution of t-butyldiphenyl silane ($3.06 \mathrm{~g}, 11.15 \mathrm{mmol}$) in dry DCM (30 mL). The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and imidazole ($2.3 \mathrm{~g}, 33.45 \mathrm{mmol}$) was added. The reaction mixture was stirred for 12 h with gradual warming to room temperature. The reaction mixture was transferred to a separatory funnel and washed with water $(1 \times 30 \mathrm{~mL})$. The aqueous solution was separated and extracted with DCM ($3 \times 20 \mathrm{~mL}$). The combined organic extract was dried and concentrated. Purification of the residue by column chromatography afforded 540 mg of bis-protected and 4.3 g of the terminally mono-protected compound $\mathbf{1 3}$ along with the recovery of 700 mg of the starting diol 12. The cleavage of the O-Si bond in the bis-protected compound using 2.0 equivalents of TBAF at $0{ }^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$, afforded 215 mg of the starting diol $\mathbf{1 2}$, making the total starting material recovered to 915 mg . The desired mono-protected compound $\mathbf{1 3}$ was obtained in 95% yield (based on the starting diol recovered and also the conversion of the bis-protected compound to the diol) as viscous oil. $[\alpha]_{\mathrm{D}}+68.8\left(c 4.11, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\delta 7.61(\mathrm{t}, J=7.1 \mathrm{~Hz}$,

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2007
$4 \mathrm{H}), 7.41-7.30(\mathrm{~m}, 11 \mathrm{H}), 7.14(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.90-5.81(\mathrm{~m}, 1 \mathrm{H})$, $4.90(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=11.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.21-4.14(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.60-3.56(\mathrm{dd}, J=9.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{OH}), 1.03$ (s, 9H). ${ }^{13} \mathrm{C}$ NMR $\delta 159.2,139.6,137.1,136.0,135.9,133.7,133.6,130.0,129.7$, $129.5,128.3,127.7,127.5,127.3,117.1,113.7,78.5,78.1,76.1,70.0,55.2,27.0,19.3$. IR (neat) $v_{\max } / \mathrm{cm}^{-1} 3559,3070,2931,2857,1612,1513,1426,1249,1111,704$. HRMS calcd for $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{Si} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 575.2594$, found 575.2590 .

5-C-phenyl-5-O-(p-methoxybenzyl)-3-t-butyldiphenylsilyloxy-L-xylo-pent-1-en-4-yl-3-butenoate, 14

5-C-phenyl-5-O-(p-methoxybenzyl)-3-t-butyldiphenylsilyloxy-L-xylo-pent-1-en-4-yl-3-

butenoate 14. Vinylacetic acid ($1.85 \mathrm{~mL}, 21.74 \mathrm{mmol}$) and DMAP ($442 \mathrm{mg}, 3.6 \mathrm{mmol}$) were added to a solution of the alcohol $\mathbf{1 3}(4 \mathrm{~g}, 7.25 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(100 \mathrm{~mL})$. The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and mixed, dropwise, with a solution of DCC ($3.74 \mathrm{~g}, 18.12 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(60 \mathrm{~mL})$. The reaction mixture was stirred for 10 h with gradual warming to room temperature. The white solid formed was removed by filtration through celite. The filtrate was concentrated and the residue passed through a short silica gel column before the final separation of the product from the starting material through radial chromatography. Purification afforded 1.8 g of the starting material and 1.89 g of the ester $\mathbf{1 4}$; viscous oil, 76.49% yield based on the starting material recovered. $[\alpha]_{\mathrm{D}}+35.7\left(c 1.15, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\delta 7.64-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.24$ $(\mathrm{m}, 11 \mathrm{H}), 7.11-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.81(\mathrm{~m}, 2 \mathrm{H}), 5.75-5.71(\mathrm{~m}, 2 \mathrm{H}), 5.11-4.98(\mathrm{~m}, 3 \mathrm{H}), 4.86(\mathrm{~d}, J$ $=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.37(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{~d}, J$ $=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.88-2.86(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta 170.4,159.0,138.1$, 136.6, 136.1, 135.9, 133.8, 130.3, 130.0, 129.5, 129.3, 128.3, 127.9, 127.4, 118.1, 113.6, 78.6, $78.4,74.4,70.0,55.2,38.9,26.9,19.3$. IR (neat) $v_{\max } / \mathrm{cm}^{-1} 3369,3070,2932,2858,1744,1513$, $1248,1110,704$. HRMS calcd for $\mathrm{C}_{39} \mathrm{H}_{44} \mathrm{O}_{5} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})^{+} 643.2850$, found 643.2856 .

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2007

$7(R)-[(S)$-(p-methoxybenzyloxy)benzyl]-6(R)-t-butyldiphenylsilyloxy-4,5-didehydro-2-oxepanone, $\mathbf{1 5}$

7(R)-[(S)-(p-methoxybenzyloxy)benzyl]-6(R)-t-butyldiphenylsilyloxy-4,5-didehydro-2-

oxepanone 15. To a stirred solution of the ester $\mathbf{1 4}(1.8 \mathrm{~g}, 2.9 \mathrm{mmol})$ in dry benzene $(522 \mathrm{~mL})$ at $80{ }^{\circ} \mathrm{C}$ was added, dropwise, a solution of Grubbs' second generation catalyst ($123 \mathrm{mg}, 0.145$ $\mathrm{mmol})$ in dry benzene (123 mL) over a period of 1 h through an addition funnel. The resulting solution was stirred further for 10 h at the same temperature. The reaction mixture was brought to room temperature and concentrated. Purification by column chromatography afforded the 7membered ring lactone $\mathbf{1 5}, 1.1 \mathrm{~g}, 82 \%$ (based on 22% recovered starting material), viscous liquid. $[\alpha]_{\mathrm{D}}+97.4\left(c 0.25, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\delta 7.57-7.25(\mathrm{~m}, 17 \mathrm{H}), 6.89-6.86(\mathrm{~m}, 2 \mathrm{H}), 5.26-5.14$ $(\mathrm{m}, 2 \mathrm{H}), 5.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.42(\mathrm{~m}, 2 \mathrm{H}), 3.94-3.92(\mathrm{dd}, J=$ $4.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.79 (s, 3H), 3.52-3.47 (dd, $J=16.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.04-2.97 (dd, $J=16.8,8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta 171.3,159.2,137.8,135.8,135.3,133.8,133.7,131.5,129.9$, $129.8,129.7,128.7,128.3,127.7,127.4,120.4,113.8,83.0,79.9,71.0,68.0,55.2,34.0,26.9$, 19.3. IR (neat) $v_{\max } / \mathrm{cm}^{-1} 3369,2928,2857,1745,1252,1109,1038,823,702$.

$7(R)-[(S)$-(p-methoxybenzyloxy)benzyl]-6(R)-t-butyldiphenylsilyloxy-5(S)-hydroxy-3,4-didehydro-2-oxepanone, 16

7(R)-[(S)-(p-methoxybenzyloxy)benzyl]-6(R)-t-butyldiphenylsilyloxy-5(S)-hydroxy-3,4-

 didehydro-2-oxepanone 16. m-CPBA $(77 \%, 568 \mathrm{mg}, 2.53 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(212.5 \mathrm{mg}, 2.53$ $\mathrm{mmol})$ were added to a solution of $\mathbf{1 5}(1 \mathrm{~g}, 1.69 \mathrm{mmol})$ in dry DCM $(50 \mathrm{~mL})$ and the solvent was removed immediately on a rotovap with the water bath being held at $45^{\circ} \mathrm{C}$. The content was maintained at $45^{\circ} \mathrm{C}$ in an oil bath for 24 h . The flask was cooled to room temperature and mixed with DCM (50 mL), m-CPBA $(77 \%, 568 \mathrm{mg}, 2.53 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(212.5 \mathrm{mg}, 2.53 \mathrm{mmol})$.
Supplementary Material (ESI) for Chemical Communications

This journal is (c) The Royal Society of Chemistry 2007
The solvent was removed immediately, as above, and the content was maintained at $45^{\circ} \mathrm{C}$ for another 24 h . It was cooled to room temperature followed by dilution with DCM (20 mL). Saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}(20 \mathrm{~mL})$ was added and the content was stirred for 30 min . This was transferred to a separatory funnel, solid NaHCO_{3} was added and the content was shaken well. The organic solution was separated and aqueous solution was extracted with DCM ($3 \times 30 \mathrm{~mL}$). The combined organic solution was dried, concentrated, and purified by column chromatography to obtain $\mathbf{1 6}, 321.5 \mathrm{mg}, 77.34 \%$ (based on 40% starting material reacted), low melting solid. $[\alpha]_{\mathrm{D}}$ $+101.2\left(c 0.41, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\delta 7.60-7.14(\mathrm{~m}, 15 \mathrm{H}), 6.88(\mathrm{t}, J=6.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.07(\mathrm{~s}, 2 \mathrm{H})$, $4.69(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=11.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.02(\mathrm{bs}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta 166.5,159.2$, $139.2,137.1,136.1,135.7,133.1,132.4,130.1,129.6,128.5,127.9,127.7,122.4,113.8,80.1$, 78.6, 73.1, 72.3, 70.5, 55.3, 26.7, 19.2.

$7(R)-[(S)$-(hydroxy)benzyl]-6(R)-t-butyldiphenylsilyloxy-5(S)-hydroxy-3,4-didehydro-2-oxepanone, 17

$7(R)$-[(S)-(hydroxy)benzyl]-6(R)-t-butyldiphenylsilyloxy-5(S)-hydroxy-3,4-didehydro-2-

oxepanone 17. The hydroxy olefin $16(320 \mathrm{mg}, 0.53 \mathrm{mmol})$ was taken with $5 \% \mathrm{HF}$ in $\mathrm{CH}_{3} \mathrm{CN}$ (3.2 mL) in an eppendorf tube and the content was stirred at room temperature for 24 h . The reaction mixture was diluted with $\operatorname{EtOAc}(10 \mathrm{~mL})$ and washed with brine ($1 \times 5 \mathrm{~mL}$). The aqueous solution was extracted with EtOAc ($3 \times 3 \mathrm{~mL}$) and the combined organic extract was dried, concentrated, and purified by column chromatography to obtain the requisite diol 17, $200.34 \mathrm{mg}, 78 \%$, low melting solid. $[\alpha]_{\mathrm{D}}+47.3\left(c \quad 0.56, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\delta 7.65-7.61(\mathrm{~m}, 4 \mathrm{H})$, 7.48-7.09 (m, 12H), 5.99-5.97 (dd, $J=5.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.07-5.06(\mathrm{~m}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=4.6 \mathrm{~Hz}$, 1 H), 3.99 (t, $J=3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.68 (bs, 1H), 3.09 (bs, 1H, OH), 2.89 (bs, 1H, OH), 1.10 (s, 9H). ${ }^{13} \mathrm{C}$ NMR $\delta 172.2,154.3,140.2,136.0,132.2,132.1,130.4,128.5,128.1,128.0,126.6,122.0$, 82.2, 73.8, 72.4, 72.3, 27.0, 19.4.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2007

(+)-7-epi-goniofufurone, 2
(+)-7-epi-Goniofufurone 2. A solution of the hydroxyl olefin $17(200 \mathrm{mg}, 0.41 \mathrm{mmol})$ in CHCl_{3} (30 mL) containing DBU ($68.63 \mathrm{mg}, 0.45 \mathrm{mmol}$) was stirred at room temperature for 24 h . After the reaction was complete, the solvent was removed and the residue was purified by column chromatography to obtain the requisite bicyclic skeleton, $140 \mathrm{mg}, 70 \%$, viscous oil. $[\alpha]_{\mathrm{D}}+79.4$ (c $0.23, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR $\delta 7.70(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.20(\mathrm{~m}, 13 \mathrm{H}), 4.92(\mathrm{bs}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=$ 7. $6 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{bs}, 1 \mathrm{H}), 2.74-2.68(\mathrm{dd}, J=$ $19.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~d}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H})$.

AcOH ($1.32 \mathrm{mg}, 0.022 \mathrm{mmol}$) and TBAF (1 M in THF, $0.22 \mathrm{~mL}, 0.22 \mathrm{mmol}$) were added to a solution of the above bicyclic material ($100 \mathrm{mg}, 0.20 \mathrm{mmol}$) in anhydrous THF $(3.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and stirred for 5 min . The reaction mixture was diluted with EtOAc (5 mL) and washed with brine ($1 \times 5 \mathrm{~mL}$). The aqueous solution was extracted with EtOAc ($3 \times 3 \mathrm{~mL}$) and the combined organic extract was dried and concentrated to obtain a residue that was filtered through a short silica gel column to obtain (+)-7-epi-Goniofufurone 2, $50.2 \mathrm{mg}, 98 \%$, white solid, mp 192-194 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+104.0(c 0.7$, EtOH $)\left[\right.$ lit. ${ }^{3} \mathrm{mp} 190-192{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+108.0(c 0.2$, EtOH $\left.)\right] .{ }^{1} \mathrm{H}$ NMR $\delta 7.44-$ $7.34(\mathrm{~m}, 5 \mathrm{H}), 5.13-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{t}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{t}, J=$ $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.68(\mathrm{~m}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\delta 174.9,139.9,128.8,128.5$, $126.5,87.8,82.9,77.2,75.7,72.8,36.1$. IR (KBr) $v_{\max } / \mathrm{cm}^{-1} 3359,2923,1743,1602,1457,1020$, 761. HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}_{5}(\mathrm{M}-\mathrm{H})^{+} 249.0763$, found 249.0762.

7(R)-[(S)-hydroxy)benzyl]-6(R)-t-butyldiphenylsilyloxy-4,5-didehydro-2-oxepanone, 18
$7(R)-[(S)$-hydroxy)benzyl]-6(R)-t-butyldiphenylsilyloxy-4,5-didehydro-2-oxepanone 18.
$\mathrm{Ph}_{3} \mathrm{CBF}_{4}\left(415.8 \mathrm{mg}, 1.26 \mathrm{mmol}\right.$, prepared according to a literature procedure ${ }^{4}$) was added to a

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2007
solution of $\mathbf{1 5}(500 \mathrm{mg}, 0.84 \mathrm{mmol})$ in $\mathrm{DCM}(40 \mathrm{~mL})$ and stirred for 30 s . The reaction was quenched by the addition of saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with DCM ($3 \times 10 \mathrm{~mL}$). The combined organic extract was dried and concentrated. The residue was purified by filtration through a short silica gel column to afford the alcohol 18, $378.72 \mathrm{mg}, 95 \%$, viscous oil. $[\alpha]_{\mathrm{D}}+33.0\left(c 0.45, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\delta 7.54-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.20(\mathrm{~m}, 11 \mathrm{H}), 5.25(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.21-5.18(\mathrm{~m}, 2 \mathrm{H}), 4.35$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{bs}, 1 \mathrm{H}), 3.01-2.95$ (m, 1H), $0.99(\mathrm{~s}, 9 \mathrm{H})$.

$7(R)$-[(S)-hydroxy)benzyl]-6(R)-hydroxy-4,5-didehydro-2-oxepanone, 19
$7(R)-[(S)$-hydroxy)benzyl]-6(R)-hydroxy-4,5-didehydro-2-oxepanone 19. A solution of the alcohol 18 ($300 \mathrm{mg}, 0.64 \mathrm{mmol}$) and $\mathrm{CBr}_{4}(85 \mathrm{mg}, 0.26 \mathrm{mmol})$ in anhydrous $\mathrm{MeOH}(6.5 \mathrm{~mL})$ was refluxed for 12 h . After completion of the reaction, the solvent was removed and the residue was purified by column chromatography to obtain the diol $19,125.34 \mathrm{mg}, 85 \%$, viscous oil. $[\alpha]_{\mathrm{D}}$ $+9.6\left(c 0.14, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\delta 7.48-7.32(\mathrm{~m}, 5 \mathrm{H}), 5.96(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=10.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{bs}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-3.17(\mathrm{dd}, J=$ $22.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~d}, J=22.0 \mathrm{~Hz}, 1 \mathrm{H})$. HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$257.0790, found 257.0793.

$7(R)-[(S)$-hydroxy)benzyl]-6(R)-hydroxy-5(S)-hydroxy-3,4-didehydro-2-oxepanone, 20

$7(R)$-[(S)-hydroxy)benzyl]-6(R)-hydroxy-5(R)-hydroxy-3,4-didehydro-2-oxepanone, 21
$7(R)-[(S)$-hydroxy)benzyl]-6(R)-hydroxy-5(S)-hydroxy-3,4-didehydro-2-oxepanone 20 and $7(R)$-[(S)-hydroxy)benzyl]- $6(R)$-hydroxy- $5(R)$-hydroxy-3,4-didehydro-2-oxepanone 21. To a solution of the above diol $\mathbf{1 9}(100 \mathrm{mg}, 0.43 \mathrm{mmol})$ in anhydrous benzene $(35 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2007
added $\mathrm{VO}(\mathrm{acac})_{2}(17.14 \mathrm{mg}, 0.065 \mathrm{mmol})$ and $\mathrm{t}-\mathrm{BuOOH}(0.58 \mathrm{~mL}, 4.43 \mathrm{M}$ in anhydrous benzene) and the resultant was stirred at room temperature for 10 h . The solvent was evaporated and the residue was purified by column chromatography to afford $\mathbf{2 0}$ and $\mathbf{2 1}$ in the ratio 5:1 in 80% overall yield (based on 66% starting material reacted), both as white sticky solids.

7(R)-[(S)-hydroxy)benzyl]-6(R)-hydroxy-5(S)-hydroxy-3,4-didehydro-2-oxepanone 20. $[\alpha]_{\mathrm{D}}$ $+62.9\left(c 0.31, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\delta 7.44-7.31(\mathrm{~m}, 5 \mathrm{H}), 6.95-6.92(\mathrm{dd}, J=9.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.08$ (d, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.12(\mathrm{~s}, 1 \mathrm{H})$. HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}_{5}(\mathrm{M}-\mathrm{H})^{+}$249.0763, found 249.0766.

7(R)-[(S)-hydroxy)benzyl]-6(R)-hydroxy-5(R)-hydroxy-3,4-didehydro-2-oxepanone 21. ${ }^{1} \mathrm{H}$ NMR $\delta 7.42-7.35(\mathrm{~m}, 5 \mathrm{H}), 6.83(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=5.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.85(\mathrm{bs}, 1 \mathrm{H}), 4.06(\mathrm{bs}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H})$. HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}_{5}(\mathrm{M}-$ H) 249.0763 , found 249.0765 .

(+)-goniopypyrone, 3
(+)-Goniopypyrone 3. A solution of $\mathbf{2 0}(20 \mathrm{mg}, 0.08 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$ containing DBU $(13.4 \mathrm{mg}, 0.088 \mathrm{mmol})$ was stirred at room temperature for 0.5 h . After the reaction was complete, the solvent was removed and the residue filtered through a small silica gel column to obtain $3,16.8 \mathrm{mg}, 84 \%$, crystalline solid. mp $180-182{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}+55.0\left(c 0.9\right.$, EtOH) $\left[\mathrm{lit} .{ }^{5} \mathrm{mp} 182-\right.$ $\left.184{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+54.0(c 0.4, \mathrm{EtOH})\right] .{ }^{1} \mathrm{H}$ NMR $\delta 7.46-7.36(\mathrm{~m}, 5 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 4.83-4.81(\mathrm{dd}, J=$ $5.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.49-4.47 (dd, $J=4.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.03(\mathrm{~m}, 3 \mathrm{H}), 3.12-3.07(\mathrm{dd}, J=19.8$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.04-2.98(\mathrm{dd}, J=19.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta 167.8$, 135.9, 129.0, 128.7, 126.2, 72.7, 71.0, 70.4, 70.2, 64.5, 35.2. IR (KBr) $v_{\max } / \mathrm{cm}^{-1} 3355,2924$, 1744, 1452, 1221, 1058, 735. HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}_{5}(\mathrm{M}-\mathrm{H})^{+}$249.0763, found 249.0761.

3,4-O-isopropylidene-5-C-phenyl-5-O-(p-methoxybenzyl)-D-arabino-pent-1-ene, 22

Supplementary Material (ESI) for Chemical Communications

This journal is (c) The Royal Society of Chemistry 2007

3,4- \boldsymbol{O}-isopropylidene-5- \boldsymbol{C}-phenyl-5- \boldsymbol{O}-(p-methoxybenzyl)-D-arabino-pent-1-ene 22. In a flame-dried 2 -neck round bottom flask was placed a suspension of NaH (55% dispersion in mineral oil, $560 \mathrm{mg}, 12.82 \mathrm{mmol}$) in THF (20 mL) and cooled to $0{ }^{\circ} \mathrm{C}$. To it was added, dropwise, a solution of the alcohol $10(2 \mathrm{~g}, 8.54 \mathrm{mmol})$ in THF (20 mL). After stirring at $0^{\circ} \mathrm{C}$ for 15 min , p-methoxybenzyl bromide ($2.1 \mathrm{~g}, 10.25 \mathrm{mmol}$) dissolved in THF (20 mL) was added, dropwise, at the same temperature followed by the addition of tetrabutylammonium iodide (63.1 $\mathrm{mg}, 0.17 \mathrm{mmol})$. The reaction mixture was stirred for 6 h with gradual warming to room temperature and quenched by addition of $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$) and the combined organic extract was dried and concentrated. Purification by column chromatography afforded the PMB-ether $\mathbf{2 2}, 2.74 \mathrm{~g}, 90.5 \%$, viscous liquid. $[\alpha]_{\mathrm{D}}-97.8$ (c $\left.0.72, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\delta 7.46-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.25(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, 5.86-5.78 (m, 1H), 5.36-5.31 (dd, $J=17.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=$ $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-$ $3.99(\mathrm{dd}, \mathrm{J}=7.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta 159.2,138.2$, $136.3,130.1,129.5,128.2,128.1,128.0,117.1,113.7,109.4,83.8,81.0,79.7,70.4,55.2,27.1$, 26.8. IR (neat) $v_{\max } / \mathrm{cm}^{-1} 3444,2987,2872,1612,1513,1249,1069,702$.

5-C-phenyl-5-O-(p-methoxybenzyl)-D-arabino-pent-1-en-3,4-diol, 23

5-C-phenyl-5-O-(p-methoxybenzyl)-D-arabino-pent-1-en-3,4-diol 23. The PMB ether 22 (2.5 $\mathrm{g}, 7.06 \mathrm{mmol})$ was mixed with $\mathrm{AcOH}(30 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(12.5 \mathrm{~mL})$ and stirred for 4 h at $50{ }^{\circ} \mathrm{C}$. The solvents were removed and the residue filtered through a short silica gel column to afford the diol 23, $2.2 \mathrm{~g}, 99 \%$, viscous oil. $[\alpha]_{\mathrm{D}}-58.7\left(c 0.97, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\delta 7.47-7.36(\mathrm{~m}, 5 \mathrm{H})$, $7.25(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.96-5.87(\mathrm{~m}, 1 \mathrm{H}), 5.39-5.34(\mathrm{dt}, J=17.1,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.25-5.21(\mathrm{dt}, J=10.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.45-4.43(\mathrm{~m}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.69(\mathrm{dd}, J=6.1,2.2 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\delta 159.4,138.3,137.6,129.6,128.7,128.3,127.5,116.0,113.9,82.8,75.9,71.0,70.9$,

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2007
55.2. IR (neat) $v_{\max } / \mathrm{cm}^{-1} 3459,2909,1612,1514,1249,1062,1033,702$. HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$337.1416, found 337.1417.

5-C-phenyl-5- O-(p-methoxybenzyl)-3-O-t-butyldiphenylsilyl-D-arabino-pent-1-en-4-ol, 24

5-C-phenyl-5-O-(p-methoxybenzyl)-3-O-t-butyldiphenylsilyl-D-arabino-pent-1-en-4-ol 24. t Butyldiphenyl silane ($1.93 \mathrm{~g}, 7.00 \mathrm{mmol}$) in dry DCM $(20 \mathrm{~mL})$ was mixed with a solution of the above diol $23(2.2 \mathrm{~g}, 7.00 \mathrm{mmol})$ in $\mathrm{DCM}(45 \mathrm{~mL})$. The resultant was cooled to $0{ }^{\circ} \mathrm{C}$, mixed further with imidazole ($1.43 \mathrm{~g}, 21.00 \mathrm{mmol}$), and stirred for 12 h with gradual warming to room temperature. The reaction mixture was transferred to a separatory funnel and washed with water $(1 \times 20 \mathrm{~mL})$. The aqueous solution was separated and extracted with DCM ($3 \times 10 \mathrm{~mL}$). The combined organic extract was dried and concentrated to furnish a residue that was purified by column chromatography to afford an inseparable 1:2 (by weight) mixture of the bis- and monoprotected compounds in an overall yield of 97.56%, the yield of the desired mono-silylated compound $\mathbf{2 4}$ being 72.3% (based on the starting material recovered), viscous liquid.

5-C-phenyl-5- O-(p-methoxybenzyl)-3-t-butyldiphenylsilyloxy-D-arabino-pent-1-en-4-yl-3-butenoate, 25

5-C-phenyl-5-O-(p-methoxybenzyl)-3-t-butyldiphenylsilyloxy-D-arabino-pent-1-en-4-yl-3-

butenoate 25. To a solution of the above mixture of the mono- and bis-silylated compounds (4.2 g , containing 5.1 mmol of the required mono-silylated alcohol 24) in $\mathrm{CH}_{3} \mathrm{CN}(100 \mathrm{~mL})$ was added vinylacetic acid ($1.3 \mathrm{~mL}, 15.3 \mathrm{mmol}$) and DMAP ($311.5 \mathrm{mg}, 2.55 \mathrm{mmol}$). The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and mixed with a solution of DCC ($2.63 \mathrm{~g}, 12.75 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}$ $(60 \mathrm{~mL})$ dropwise. The reaction mixture was stirred for 8 h with gradual warming to room temperature. The white solid formed was filtered off through celite. The filtrate was concentrated and the residue filtered through a short silica gel column. Purification by radial chromatography

Supplementary Material (ESI) for Chemical Communications

This journal is (c) The Royal Society of Chemistry 2007
afforded the ester $\mathbf{2 5} ; 1.4 \mathrm{~g}, 78 \%$ yield (based on $\mathbf{5 7} \%$ mono-silylated compound reacted), viscous oil and 2.6 g of starting material was recovered (containing 1.4 g of bisilylated material). $[\alpha]_{\mathrm{D}}-21.2\left(c 0.85, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\delta 7.72-7.70(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 5 \mathrm{H}), 7.43-7.27(\mathrm{~m}, 10 \mathrm{H})$, 7.06-7.03 (dd, $J=8.6,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.67-5.59(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{bs}, 1 \mathrm{H})$, $5.05-4.96(\mathrm{~m}, 2 \mathrm{H}), 4.84(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.66-4.64(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{~d}$, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\delta 169.9,159.0,138.2,136.7,136.0,135.9,134.7,134.0,133.9,130.2,130.1,129.5$, 129.2, 128.3, 128.0, 127.6, 127.4, 127.3, 118.2, 117.5, 113.6, 79.2, 77.7, 74.0, 69.9, 55.2, 38.9, 27.0, 19.5. IR (neat) $v_{\max } / \mathrm{cm}^{-1} 3509,3071,2931,2857,1745,1514,1249,1112,703$.

$7(R)-[(R)-(\mathrm{p}-$ methoxybenzyloxy)benzyl]-6(R)-t-butyldiphenylsilyloxy-4,5-didehydro-2-oxepanone, 26

$7(R)$-[(R)-(p-methoxybenzyloxy)benzyl]-6(R)-t-butyldiphenylsilyloxy-4,5-didehydro-2-

oxepanone 26. To a stirred solution of the ester $25(1.4 \mathrm{~g}, 2.26 \mathrm{mmol})$ in dry benzene (404 mL) at $80{ }^{\circ} \mathrm{C}$ was added a solution of Grubbs' second generation catalyst ($96 \mathrm{mg}, 0.113 \mathrm{mmol}$) in dry benzene (96 mL), dropwise, within a period of 1 h using an addition funnel. The resulting solution was stirred further for 10 h at the same temperature. The reaction mixture was brought to room temperature and the solvent was removed. Purification by column chromatography afforded the 7 -membered ring lactone $\mathbf{2 6}, 1.0 \mathrm{~g}, 85 \%$ (based on 88% starting material reacted), white solid, mp 190-192 ${ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}-116.4\left(c \quad 0.45, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR} \delta 7.77(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.67 (d, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.51-7.29 (m, 11H), 7.06 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 6.84 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 5.42-5.36 (m, 2H), 5.00 (bs, 2H), 4.43 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.26 (d, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.07$ (d, $J=$ $10.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.88(\mathrm{dd}, J=16.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.09$ $(\mathrm{s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta 170.8,159.3,138.8,136.0,135.7,133.6,132.2,130.0,129.9,129.7,129.4$, 128.6, 128.4, 127.9, 127.8, 127.5, 119.9, 113.8, 82.0, 78.6, 70.3, 67.3, 55.3, 33.8, 26.9, 19.5. IR $(\mathrm{KBr}) \nu_{\max } / \mathrm{cm}^{-1} 3031,2930,2856,1748,1514,1249,1110,1065,822,701$. HRMS calcd for $\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})^{+} 615.2543$, found 615.2544 .

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2007

$7(R)-[(R)$-hydroxy)benzyl]-6(R)-t-butyldiphenylsilyloxy-4,5-didehydro-2-oxepanone, 27
$7(R)-[(R)$-hydroxy)benzyl]-6(R)-t-butyldiphenylsilyloxy-4,5-didehydro-2-oxepanone 27. To a solution of $26(1.0 \mathrm{~g}, 1.69 \mathrm{mmol})$ in $\mathrm{DCM}(80 \mathrm{~mL})$ at room temperature was added $\mathrm{Ph}_{3} \mathrm{CBF}_{4}$ $(825 \mathrm{mg}, 2.5 \mathrm{mmol})$ and the resultant was stirred for 5 min . The reaction was quenched by the addition of aqueous saturated $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with DCM ($3 \times 20 \mathrm{~mL}$). The combined organic extract was dried and concentrated. Purification by filtration of the residue through a short silica gel column afforded 27, $753.45 \mathrm{mg}, 94.5 \%$, white solid, $\mathrm{mp} 130 \pm 4^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}-20.7\left(c 0.96, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR δ $7.76-7.74(\mathrm{dd}, J=7.6,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.64(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.18(\mathrm{~m}, 11 \mathrm{H})$, 5.52-5.47 (m, 1H), 5.42-5.37 (td, $J=8.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.01-4.98(\mathrm{dd}, J=8.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.77-$ 4.75 (dd, $J=4.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.25 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.22-3.17$ (dd, $J=16.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.92-2.85 (dd, $J=16.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta 170.7$, 141.1, 135.9, 135.7, 133.5, 133.2, 131.9, 130.1, 129.8, 128.5, 128.2, 127.9, 127.6, 126.8, 120.3, 82.1, 71.4, 67.2, 33.8, 26.9, 19.5. IR (KBr) $v_{\max } / \mathrm{cm}^{-1} 3453,2930,2856,1736,1428,1267,1112$, 1041, 702. HRMS for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})^{+} 495.1966$, found 495.1968 .

$7(R)-[(R)$-(hydroxy)benzyl]-6(R)-t-butyldiphenylsilyloxy-5(S)-hydroxy-3,4-didehydro-2-oxepanone, 28

$7(R)-[(R)$-(hydroxy)benzyl]-6(R)-t-butyldiphenylsilyloxy-5(S)-hydroxy-3,4-didehydro-2-

oxepanone 28. To a solution of the alcohol $27(750 \mathrm{mg}, 1.6 \mathrm{mmol})$ in DCM (30 mL) was added m-CPBA $(77 \%, 896.5 \mathrm{mg}, 4 \mathrm{mmol})$ at $45^{\circ} \mathrm{C}$ and the contents stirred at the same temperature for 24 h . The reaction vessel was cooled to room temperature followed by dilution with DCM (10 $\mathrm{mL})$. Saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}(10 \mathrm{~mL})$ was added and the reaction mixture was stirred for 30

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2007
min. The contents were transferred to a separatory funnel, a little NaHCO_{3} was added, and shaken well. The organic layer was separated and the aqueous layer was extracted with DCM (3 x 20 mL). The combined organic extract was dried and concentrated to obtain a residue that was purified by column chromatography to obtain $\mathbf{2 8}, 539 \mathrm{mg}, 96.2 \%$ (based on 72.26% starting material reacted), low melting solid. $[\alpha]_{\mathrm{D}}-41.6\left(c 0.63, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\delta 7.75(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.62(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.19(\mathrm{~m}, 11 \mathrm{H}), 6.13-6.09(\mathrm{dd}, J=13.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~d}$, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.21(\mathrm{bs}, 1 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta 166.2,140.8,139.8,136.1,135.8,133.3,132.4,130.3$, 128.4, 128.1, 128.0, 127.9, 126.6, 121.8, 79.1, 73.3, 72.6, 72.2, 26.8, 19.4.

(+)-goniofufurone, 1
(+)-Goniofufurone 1. A solution of the hydroxyl olefin 28 ($200 \mathrm{mg}, 0.41 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(30$ mL) containing DBU ($68.66 \mathrm{mg}, 0.45 \mathrm{mmol}$) was stirred at rt for 24 h . The solvent was removed and the residue purified by filtration through a short silica gel column to obtain the requisite bicyclic skeleton, $164 \mathrm{mg}, 82 \%$, viscous oil. $[\alpha]_{\mathrm{D}}+3.2\left(c 0.45, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\delta 7.76-7.71$ (m, $4 \mathrm{H}), 7.50-7.32(\mathrm{~m}, 11 \mathrm{H}), 5.01-4.98(\mathrm{dd}, J=8.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J$ $=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-4.03(\mathrm{dd}, J=8.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.50(\mathrm{~m}, 2 \mathrm{H})$, $1.94(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H})$.

To a solution of the above bicyclic material ($100 \mathrm{mg}, 0.20 \mathrm{mmol}$) in anhydrous THF (3.5 mL) at $0{ }^{\circ} \mathrm{C}$ was added AcOH ($1.32 \mathrm{mg}, 0.022 \mathrm{mmol}$) followed by TBAF (1 M in THF, $0.22 \mathrm{~mL}, 0.22$ mmol) and the contents stirred for 5 min . The reaction mixture was diluted with EtOAc (5 mL) and washed with brine ($1 \times 5 \mathrm{~mL}$). The organic layer was separated and aqueous layer was extracted with EtOAc ($3 \times 3 \mathrm{~mL}$). The combined organic extract was dried and concentrated, and the residue obtained was filtered through a short silica gel column to obtain (+)-Goniofufurone 1, $50.5 \mathrm{mg}, 98.6 \%$, white solid, mp $148-150{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+9.3(c 0.27, \mathrm{EtOH})\left[\mathrm{lit} .{ }^{5} \mathrm{mp} 152-154{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}\right.$ $+9.0(c 0.5, \mathrm{EtOH})] .{ }^{1} \mathrm{H}$ NMR $\delta 7.44-7.33(\mathrm{~m}, 5 \mathrm{H}), 5.19(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{t}, J=4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.86(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{bs}, 1 \mathrm{H}), 4.26(\mathrm{bs}, 1 \mathrm{H}), 4.10-4.08(\mathrm{dd}, J=4.6,2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.00(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 2.78-2.72(\mathrm{dd}, J=18.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR δ

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2007
$175.2,138.9,128.8,128.5,125.9,87.5,83.0,77.4,74.6,73.6,36.1 . \mathrm{IR}(\mathrm{KBr}) \mathrm{v}_{\max } / \mathrm{cm}^{-1} 3412$, 2924, 1783, 1454, 1191, 1047, 701. HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}_{5}(\mathrm{M}-\mathrm{H})^{+}$249.0763, found 249.0764.

References

1. Wiggins, L. F. J. Chem. Soc. 1946, 13.
2. Babjek, M.; Kapitán, P.; Gracza, T. Tetrahedron 2005, 61, 2471.
3. Fang, X.-P.; Anderson, J. E.; Chang, C.-J.; McLaughlin, J. L.; Fanwick, P. E. J. Nat. Prod. 1991, 54, 1034.
4. Dauben, H. J.; Honnen, L. R.; Harmon, K. M. J. Org. Chem. 1960, 25, 1442.
5. Fang, X.-P.; Anderson, J. E.; Fanwick, P. E.; McLaughlin, J. L. J. Chem. Soc., Perkin Trans. 1 1990, 1655.
