Supporting Information

Trapped Inorganic Phosphate Dimer

P. S. Lakshminarayanan, I. Ravikumar, E. Suresh, and Pradyut Ghosh

E-mail: *icpg@iacs.res.in*

Experimental Section

Materials. Tris-(2-aminoethyl)amine, pentafluorophenyl isocyanate, tetrabutylammonium dihydrogenphosphate, tetrabutyammonium acetate, tetrabutyammonium nitrate, and tetrabutyammonium perchlorate were purchased from Sigma-Aldrich, USA and were used as received dichloromethane (DCM) purchased from S.D. Fine, India was distilled over anhydrous calcium hydride prior to use.

Physical Measurements. ¹H and ¹³C NMR spectra were recorded on Bruker 200 MHz and 75.47 MHz FT-NMR spectrometers instruments respectively. HRMS (ESI) measurements were carried out on Waters QTof-Micro instruments.

X-ray Crystallography. The crystallographic data and details of data collection for L and **1** are given in Table 1S and Table 4S respectively. In each case, a crystal of suitable size was selected from the mother liquor and immersed in paratone oil, then mounted on the tip of a glass fiber and cemented using epoxy resin. Intensity data for all three crystals were collected using Mo K_{α} (λ = 0.7107 Å) radiation on a Bruker SMART APEX diffractometer equipped with CCD area detector at 100K. The data integration and reduction were processed with SAINT^{1a} software. An empirical absorption correction was applied to the collected reflections with SADABS^{1b}. The structures were solved by direct methods using SHELXTL² and were refined on F^2 by the full-matrix least-squares technique using the SHELXL-97³ program package. Graphics are generated using PLATON⁴ and MERCURY 1.3.⁵ In both cases the non-hydrogen atoms are refined anisotropically till the convergence. Hydrogen atoms attached to the amide nitrogens in both the compounds and the hydrogen atoms attached to the dihydrogenphosphate moiety of compound **1** were located from the difference Fourier map and refined isotropically. Rest of the hydrogen atoms in both of the compounds were stereochemically fixed at idealized positions.

^{(1) (}a) SAINT and *XPREP*, 5.1 ed.; Siemens Industrial Automation Inc.: Madison, WI, 1995.Sheldrick, G. M. (b) *SADABS, empirical absorption Correction Program*; University of Göttingen: Göttingen, Germany, 1997.

⁽²⁾ Sheldrick, G. M. SHELXTL Reference Manual: Version 5.1; Bruker AXS: Madison, WI, 1997.

⁽³⁾ Sheldrick, G. M. SHELXL-97: Program for Crystal Structure Refinement; University of Göttingen: Göttingen, Germany, 1997.

⁽⁴⁾ Spek, A. L. PLATON-97; University of Utrecht: Utrecht, The Netherlands, 1997.

⁽⁵⁾ Mercury 1.3 Supplied with Cambridge Structural Database; CCDC: Cambridge, U.K., 2003-2004.

Synthesis

Synthesis of Compound L:

2.6 mL (20 mmol) of pentafluorophenyl isocyanate was dissolved in 25 mL of dry dichlorometahne (DCM) at room temperature in a 100 mL 2-neck round bottom flask equipped with a dropping funnel. Tris-(2-aminoethyl) amine (1.0 mL, 6.5 mmol) was dissolved in 25 mL of dry DCM and was added drop-wise with constant stirring. The resulting solution was stirred for another 1 h at room temperature in N₂ atmosphere. The colorless precipitate formed was filtered off and washed with DCM twice. The precipitate collected was dried in air. Yield of L is 98%. Single crystals of L suitable for X-ray analysis were isolated when we attempted complexation of bromide with L upon treating L with tetrabutylammonium bromide in dimethylforamide (DMF). Slow evaporation of above solution yielded colorless crystals of L after 3 days which were filtered off from the mother liquor. Isolated yield is 50%. ¹H NMR (300 MHz, DMSO-d₆): δ 2.55 (t, 6H, NCH₂), 3.15 (t, 6H, NCH₂CH₂), 6.55 (s, 3H, NH_a), 8.352 (s, 3H, NH_b). ¹³C NMR (75.47 MHz, DMSO-d₆): δ 38.914 (NCH₂), 54.528 (NCH₂CH₂), 115.737 (m of s, Ar, CC-F, J_{CCF} = 15Hz), 137.94 (m of d, Ar, C-F, J_{CF} = 247 Hz), 138.77 (m of d, Ar, C-F J_{CF} = 247 Hz), 143.62 (m of d, Ar, C-F, J_{CF} = 246 Hz), 155.36 (s, C=O). Positive ESI HRMS: m/z 774.5637 [L+H⁺] 100%.

Synthesis of Complex 1:

50 mg of **L** was dissolved in 5 mL DMF/MeCN (1:1 v/v, pH ~ 7.89) binary solvent in a 25 mL beaker. In to this solution 25 mg of n-Bu₄N⁺H₂PO₄⁻ was added in one shot and mixture was stirred for 5 min with a magnetic stirrer at room temperature. Resulting solution was filtered using a filter paper. Filtrate was allowed to evaporate under room temperature. Colorless crystals of the dihydrogenphosphate complex of **L**, $[L(H_2PO_4)]$ ·DMF (1), suitable for X-ray diffraction was obtained after a week. Isolated Yield of 1 is 60%. ¹H NMR (200 MHz, DMSO-d₆): δ 1.20 (t, 3H, NCH₂CH₂CH₂CH₃), 1.55 (m, 2H, NCH₂CH₂CH₂CH₃), 1.62 (m, 2H, NCH₂CH₂CH₂CH₃), 2.45 (s, 6H, NCH₂), 3.15 (s, 6H, NCH₂CH₂CH₂), 3.20 (m, 2H, NCH₂CH₂CH₂CH₃), 7.87 (br, 3H, NH_a), 9.43 (br, 3H, NH_b). Positive ESI HRMS: m/z 774.5637 [L+H⁺].

¹H NMR studies. Binding constants were obtained by ¹H NMR (200 MHz Bruker) titrations of L with $[n-Bu]_4N^+A^-$ (A-: H₂PO₄⁻, CH₃COO⁻) in DMSO-d₆ at 25°C. The initial concentration of L was 20 mM. Aliquots of anions were added from two different stock solutions 25 mM and 50 mM of anions (host : guest = up to 1:1, 25 mM stock solution was used, and above 1:1 ratio higher concentration anion was used). Tetramethylsilane (TMS) in DMSO-d₆ was used as an internal reference, and each titration was performed by 15 measurements at room temperature. All proton signals were referred to TMS. The association constants⁶, *K*, were calculated by fitting the change in the N-H chemical shift with a 1:1 association model with non-linear least square analysis. The error limit in *K* was less than 10%. There were no detectable chemical shift of -NH in cases of NO₃⁻ and ClO₄⁻ guests indicate no host-guest complex formation.

The equation $\Delta \delta = \{([A]_0 + [L]_0 + 1/K) \pm (([A]_0 + [L]_0 + 1/K)^2 - 4[L]_0 [A]_0)^{1/2}\} \Delta \delta_{max}/2[L]_0 \text{ was used.} \}$

(6) Hynes, M. J. J. Chem. Soc., Dalton Trans. 1993, 311-312.

Crystal Data	Ligand
Empirical formula	$C_{27}H_{18}F_{15}N_7O_3$
FW	773.48
Crystal size (mm)	0.65X0.45X0.23
Crystal description	BLOCKS
Crystal system	Triclinc
Space group	P-1
a/Å	9.2984(10)
b/Å	13.3540(14)
c /Å	13.7161(14)
$\alpha/^0$	118.317(2)
β^{0}	90.295(2)
$\gamma/^{0}$	96.329(2)
Volume / Å ⁻³	1487.0(3)
Ζ	2
D _{calc.} /Mgm ⁻³	1.728
F(000)	776
μ MoK _{α} (mm ⁻¹)	0.179
Temperature (K)	100(2)
2θ max (°)	28.29
Observed reflections $[I > 2 \sigma(I)]$	6733, (R _{int} =0305)
Parameters refined	493
Goodness of fit	1.081
Final R_1 on observed data	0.0582
Final wR ₂ on observe data	0.1215

Table 1S: Crystallographic Parameters for Ligand L

Figure 1S: ORTEP diagram of L with atom numbering with 50% probability factor for the thermal ellipsoids.

Figure 2S: Packing diagram of L viewed down a-axis showing the one dimensional hydrogen bonded layers of molecules in the bc-plane.

Packing diagram of L is viewed down a-axis depicting the various H-bonding interactions are shown in Figure 2S. As shown in the figure the alternate ligand moiety is oriented in opposite direction along b-axis and are involved various intermolecular hydrogen bonding interactions to form a layered network along bc-plane. Thus, Hydrogen atoms attached of the diamide nitrogens from all the strands are involved in intermolecular hydrogen bonding via N-H...O and and N-H...F interactions with the tethered urea oxygen of oppositely oriented tripodal ligands. Thus three N-H...O , two N-H...F and one C-H...F interaction between the methylene hydrogen H11B with F15 of the pentaflouro aryl ring is responsible for the generation of layared network arrangement in the packing mode.

D-H···A	<i>d</i> (H···A), Å	<i>d(</i> D····A), Å	<dha deg<="" th=""></dha>
$N(2)-H(2C)-O(3)^{1}$	$H(2C) \cdots O(3) = 2.18(4)$	$N(2) \cdots O(3) = 3.003(3)$	$N(2)-H(2C)\cdots O(3) = 162(3)$
$N(3)-H(3C)\cdots F(11)^{1}$	H(3C)••• $F(11) = 2.35(3)$	$N(3) \cdot \cdot \cdot F(11) = 3.027(3)$	$N(3)-H(3C)\cdots F(11) = 136(2)$
$N(3)-H(3C)-F(7)^{2}$	$H(3C) \cdot \cdot \cdot F(7) = 2.47(3)$	N(3)···F(7)= 3.015(3)	N(3) $H(3C)$ $F(7) = 122(2)$
$N(3)-H(3C)-O(3)^{1}$	$H(3C)\cdots O(3) = 2.44(3)$	$N(3) \cdots O(3) = 3.176(3)$	$N(3)-H(3C)\cdots O(3) = 144(2)$
$N(4)-H(4C)\cdots O(1)^3$	H(4C) · · · · $O(1) = 2.16(4)$	$N(4) \cdots O(1) = 2.888(3)$	$N(4)-H(4C)\cdots O(1) = 144(3)$
$N(5)-H(5C)-O(1)^{3}$	$H(5C)\cdots O(1) = 2.03(4)$	N(5)···· $O(1)=2.823(3)$	N(5)-H(5C)-O(1) = 153(2)
$N(6)-H(6C)-O(2)^4$	H(6C)···· $O(2) = 2.10(3)$	N(6)···· $O(2) = 2.871(3)$	$N(6)-H(6C)\cdots O(2) = 150(2)$
$N(7)-H(7C)-O(2)^4$	H(7C)···O(2) = 2.07(3)	$N(7) \cdots O(2) = 2.834(3)$	N(7)-H(7C)-O(2) = 158(2)
$C(11) -H(11B) -F(15)^4$	$H(11B)\cdots F(15)=2.50$	$C(11) \cdots F(15) = 3.414(3)$	$C(11)-H(11B)\cdots F(15) = 157$
1. x, y,z 2. 1+x,y,z 3x,1-y,-z 4x,2-y,-z			

Table 2S: Hydrogen bonding table for L with symmetry code

Table 3S: Different Non-bonding Interactions in L

C-F···F-C/Cg···F-C	d (F…F/Cg…F) in Å	< C-F…F/Cg…F-C in (deg)	
$C(6)-F(2)\cdots F(9)-C(17)^{1}$	$F(2)\cdots F(9) = 2.753$	$C(17)-F(9)\cdots F(2) = 158.12$	
$C(25)-F(13)\cdots F(1)-C(5)^{1}$	$F(13)\cdots F(1) = 2.741$	$C(5)-F(1)\cdots F(13) = 159.40$	
$Cg1F(13)-C(25)^{1}$	$Cg1 \cdots F(13) = 3.027$	$Cg1 \cdots F(13) - C(25) = 128.12$	
symmetry code : 1x, 2-y, 1-	Z		

Where Cg1 represents the centroid of C13-C18.

Figure 3S. ORTEP diagram of **1** with atom numbering with 40% probability factor for the thermal ellipsoids.

Table 4S: Crystallographic Parameters for Complex 1

Crystal Data	Complex 1
Empirical formula	$C_{46}H_{63}F_{15}N_9O_3P_1$
FW	1186.02
Crystal size (mm)	0.35 x 0.24 x 0.22
Crystal description	PLATES
Crystal system	Triclinic
Space group	P-1
a/Å	13.3363(11)
b/Å	14.0385(11)
c /Å	15.5942(13)
$\alpha/^{0}$	99.391(2)
$\beta/^0$	95.841(2)
$\gamma/^{0}$	108.885(2)
Volume / Å ⁻³	2687.8(4)
Ζ	2
D _{calc} /Mgm ⁻³	1.465
F(000)	1232
μ MoK _{α} (mm ⁻¹)	0.163
Temperature (K)	100(2)
20 max	25
Observed reflections $[I > 2 \sigma(I)]$	9400 [R(int) = 0.0411]
Parameters refined	750
Goodness of fit	1.117
Final R ₁ on observed data	0.0640
Final wR ₂ on observe data	0.1252

D-H …A	<i>d</i> (H…A), Å	<i>d(</i> D ···A), Å	<dha th="" °<=""></dha>
$N(2)-H(2C)-O(5)^{1}$	$H(2C)\cdots O(5) = 2.10(3)$	$N(2)\cdots O(5) = 2.898(4)$	$N(2)-H(2C)\cdots O(5) = 169(3)$
$N(3)-H(3C)-O(6)^{1}$	$H(3C)\cdots O(6) = 2.03(4)$	N(3)···O(6) = 2.893(3)	N(3) - H(3C) - O(6) = 160(3)
$N(4)-H(4C)\cdots O(5)^{1}$	$H(4C)\cdots O(5) = 2.36(3)$	$N(4)\cdots O(5) = 3.132(4)$	$N(4)-H(4C)\cdots O(5) = 164(3)$
$N(5)-H(5C)-O(7)^{1}$	$H(5C)\cdots O(7) = 1.95(4)$	$N(5)\cdots O(7) = 2.753(4)$	$N(5)-H(5C)\cdots O(7) = 172(3)$
$N(6)-H(6C)-O(5)^{1}$	$H(6C)\cdots O(5) = 2.19(3)$	$N(6)\cdots O(5) = 2.976(4)$	$N(6)-H(6C)\cdots O(5) = 159(4)$
$O(6)-H(6D)\cdots O(7)^2$	$H(6D)\cdots O(7) = 1.67(3)$	$O(6)\cdots O(7) = 2.563(3)$	$O(6)-H(6D)\cdots O(7) = 177(3)$
$N(7)-H(7C)-O(5)^{1}$	$H(7C) \cdots O(5) = 2.16(4)$	N(7)···O(5) = 2.966(3)	$N(7)-H(7C)\cdots O(5) = 160(4)$
$N(7)-H(7C)-O(8)^{1}$	$H(7C)\cdots O(8) = 2.59(3)$	$N(7)\cdots O(8) = 3.202(4)$	$N(7)-H(7C)\cdots O(8) = 131(3)$
$O(8) - H(8D) \cdots O(4)^3$	$H(8D) \cdots O(4) = 1.76(4)$	$O(8) \cdots O(4) = 2.576(4)$	$O(8) -H(8D) \cdots O(4) = 168(4)$
$C(28) - H(28A) - O(3)^4$	$H(28A) \cdots O(3) = 2.37$	C(28)····O(3)=3.332(4)	$C(28) -H(28A) \cdots O(3) = 172$
$C(29) - H(29B) \cdots O(2)^{1}$	H(29B) ····O(2)= 2.55	C(29) ····O(2)=3.432(4)	C(29) -H(29B) ····O(2)= 151
$C(32)-H(32B) \cdots O(1)^5$	$H(32B) \cdots O(1) = 2.53$	C(32) ···O(1)=3.491(4)	$C(32) - H(32B) \cdots O(1) = 173$
$C(37) - H(37A) \cdots O(3)^4$	$H(37A) \cdots O(3) = 2.52$	C(37) ···O(3)=3.430(5)	$C(37) - H(37A) \cdots O(3) = 155$
$C(40) - H(40A) \cdots O(2)^{1}$	$H(40A) \cdots O(2) = 2.31$	C(40) ····O(2)=3.284(4)	$C(40) - H(40A) \cdots O(2) = 179$
1. x, y, z 2x, 1-y, -z 31+x, y, z 4. 1-x, 1-y, 1-z 5. 1+x, y, z			

Table.5S: Hydrogen bonding table for the complex 1.

Table 6S: Different Non-bonding Interactions in Complex 1

C-F···F-C/Cg···F-C	d (F…F/Cg…F) Å	< C-F…F/ Cg…F-C deg
C(18)-F(10)···F(5)-C(9) ¹	$F(10)\cdots F(5) = 2.872$	C(9)- $F(5)$ ··· $F(10) = 163.76$
$Cg2O(4)-C(46)^{*2}$	Cg2O(4) = 3.474	$Cg2\cdots O(4)-C(46) = 152.19$
$Cg3O(8)-P(1)^{1}$	Cg3O(8) = 3.420	$Cg3\cdots O(8)-P(1) = 140.85$
$Cg4F(3)-C(7)^{1}$	Cg4F(3) = 3.545	Cg4F(3)-C(7) = 124.89
Symmetry code: 1x, 1-y, -z 2. 1-x, 1-y, -z		

Where Cg2, Cg3, and Cg4 represents the centroids of C4-C9 and C22-C27 respectively. * with the shortest distance C23 \cdots O4 = 3.025 Å

Figure 4S: Packing diagram of **1** viewed down c-axis showing the arrangement of the dimeric anion encapsulated capsules along b-axis and the n-tetrabutyl ammonium cations between the adjacent layers of the anionic capsules.

Packing diagram of the compound viewed down c-axis is shown in Fig. 3S. As depicted in the Figure the dihydrogen phosphate dimers are wrapped by two tripodal moiety are oriented along with the DMF molecules are H-boned with the [H₂PO₄]⁻ units form either end of the dimres and are oriented as a layer along along b-axis. The tert-butyl cations are occupied between the adjacent anionic layers; two tert-butyl cations molecules are surrounded by the four of the paired anionic capsules. Extensive strong C-H...O hydrogen bonding do exits between the amide oxygens of the tripodal moiety and the ethylenic and methyl hydrogens from different arms of the tert-butyl ammonium cation. These C-H...O interactions not only stabilize the cation between the four anionic tripodal capsules but also a bridge between the adjacent encapsulated anionic tripodal array along a-axis.

Figure 5S: Job plot for L with $n-Bu_4N^+H_2PO_4^-$ in DMSO-d₆ at 25°C.

Figure 6S: Job plot for L with $n-Bu_4N^+CH_3COO^-$ in DMSO-d₆ at 25°C.

Figure 7S: Solution state ¹H-NMR Experiments of L in presence of different combination of anions.

