SUPPLEMENTARY INFORMATION for:

Reactivity of a Coordinatively Unsaturated $C p * R u\left(\kappa^{2}-P, O\right)$ Complex

Matthew A. Rankin, ${ }^{\text {a }}$ Kevin D. Hesp, ${ }^{\text {a }}$ Gabriele Schatte, ${ }^{\text {b }}$ Robert McDonald, ${ }^{\text {c }}$ and Mark Stradiotto*, ${ }^{*}$
E-mail: mark.stradiotto@dal.ca
${ }^{\text {a }}$ Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4J3 (Canada).
${ }^{\mathrm{b}}$ Saskatchewan Structural Sciences Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9 (Canada).
${ }^{c}$ X-Ray Crystallography Laboratory, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 (Canada).

Contents:

- Experimental Section (general considerations, numbering scheme, synthetic details, and characterization data).
- Crystallographic Solution and Refinement Details.

Experimental Section

General Considerations. All manipulations were conducted in the absence of oxygen and water under an atmosphere of dinitrogen, either by use of standard Schlenk methods or within an mBraun glovebox apparatus, utilizing glassware that was oven-dried $\left(130^{\circ} \mathrm{C}\right)$ and evacuated while hot prior to use. Celite ${ }^{\circledR}$ (Aldrich) was oven-dried for 5 d and then evacuated for 24 h prior to use. The non-deuterated solvents dichloromethane, benzene, and pentane were deoxygenated and dried by sparging with dinitrogen gas, followed by passage through a double-column solvent purification system purchased from mBraun Inc. Dichloromethane was purified over two alumina-packed columns, while benzene and pentane were purified over one alumina-packed column and one column packed with copper-Q5 reactant. Benzene- d_{6} and toluene- d_{8} (Cambridge Isotopes) were degassed by using three repeated freeze-pump-thaw cycles and then dried over $4 \AA$ molecular sieves for 24 h prior to use. All solvents used within the glovebox were stored over activated $4 \AA$ molecular sieves. Both $[\mathrm{Cp} * \mathrm{RuCl}]_{4}{ }^{\mathrm{S} 1}$ and $1-$ diisopropylphosphino-2-indanone ${ }^{\mathrm{S} 2}$ were prepared using literature procedures, and were dried in vacuo for 24 h prior to use. $\mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2}$ (Aldrich) was dried in vacuo for 24 h prior to use. Hydrogen (99.999%, UHP Grade) and carbon monoxide gases (99.5%, chemically pure grade) were obtained from Air Liquide and were used as received. Whereas PhCN (Aldrich) was degassed by sparging with dinitrogen gas, PhSiH_{3} (Strem) was degassed by using three repeated freeze-pump-thaw cycles, and $\mathrm{Ph}_{2} \mathrm{SiH}_{2}$ (Gelest, shipped under argon) was not degassed, each of these reagents was dried over $4 \AA$ molecular sieves for 24 h prior to use. Variable-temperature NMR experiments were conducted on a Bruker AC-250 spectrometer. Unless otherwise stated, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{29} \mathrm{Si}$ and ${ }^{31} \mathrm{P}$ NMR characterization data were collected at 300 K on a Bruker AV-500 spectrometer operating at 500.1, 125.8, 99.4 and 202.5 MHz (respectively) with chemical shifts reported in parts per million downfield of SiMe_{4} (for ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{29} \mathrm{Si}$) or $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ in $\mathrm{D}_{2} \mathrm{O}$ (for ${ }^{31} \mathrm{P}$). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shift assignments are based on data obtained from ${ }^{13} \mathrm{C}$-DEPT, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC, and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC NMR experiments.
${ }^{29} \mathrm{Si}$ NMR chemical shift assignments are given on the basis of data obtained from ${ }^{1} \mathrm{H}-{ }^{29} \mathrm{Si} \mathrm{HMQC}\left({ }^{1} \mathrm{H}-\right.$ coupled experiments were employed in the determination of ${ }^{1} J_{\text {SiH }}$ values) as well as ${ }^{1} \mathrm{H}^{-29} \mathrm{Si} \mathrm{HMBC}(\mathrm{J}-$ HMBC ${ }^{\text {S3 }}$ experiments were employed in the determination of ${ }^{\mathrm{n}} J_{\text {SiH }}$ values for $\mathrm{n}>1$) experiments. IR data were collected on a Bruker VECTOR 22 FT-IR instrument. Raman data were collected on powdered samples (sealed in glass capillaries under dry dinitrogen) using a Bruker RFS 100 FT-Raman spectrometer. Elemental analyses were performed by Canadian Microanalytical Service Ltd., Delta, British Columbia, Canada.

Atomic Numbering Scheme Employed:

Synthesis of ($\kappa^{2}-P, O-1$-diisopropylphosphino-2-indanone) $\mathbf{C p} * R u C l$. To a glass vial containing a magnetically stirred suspension of $[\mathrm{Cp} * \mathrm{RuCl}]_{4}(0.72 \mathrm{~g}, 0.66 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added a solution of 1-diisopropylphosphino-2-indanone $(0.66 \mathrm{~g}, 2.66 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ all at once via Pasteur pipette. The addition caused an immediate color change of the suspension from dark brown to dark red. The vial was then sealed with a PTFE-lined cap and the solution was stirred magnetically for $45 \mathrm{~min} .{ }^{31} \mathrm{P}$ NMR data collected on an aliquot of this solution indicated the quantitative formation of the target complex. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent was then removed in vacuo, yielding an oily dark red solid. The solid was then triturated with pentane $(1.5 \mathrm{~mL})$ and the pentane was removed in vacuo. The residue was then washed with pentane $(2 \times 3 \mathrm{~mL})$ and dried in vacuo to yield $\left(\kappa^{2}-P, O-1-\right.$ diisopropylphosphino-2-indanone) $\mathrm{Cp} * \mathrm{RuCl}$ as an analytically pure orange-pink powder (1.32 g, 2.55 mmol, 96 \%). Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{POClRu}$: C 57.74; H 6.98; N 0.00. Found: C 57.93; H 6.68; N < 0.3. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.03-6.91\left(\mathrm{~m}, 3 \mathrm{H}\right.$, aryl-Hs), $6.62\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}\right.$ or C7-H), $5.27(\mathrm{~d}$,
$\left.{ }^{2} J_{\mathrm{PH}}=12.0 \mathrm{~Hz}, 1 \mathrm{H},{ }^{i} \mathrm{Pr}_{2} \mathrm{PC}-\mathrm{H}\right), 2.85\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}\left(H_{a}\right)\left(\mathrm{H}_{\mathrm{b}}\right)\right), 2.64\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}\left(\mathrm{H}_{\mathrm{a}}\right)\left(H_{b}\right)\right), 2.57(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{P}\left(\mathrm{C} H \mathrm{Me}_{\mathrm{a}} \mathrm{Me}_{\mathrm{b}}\right)\right), 1.96\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{P}\left(\mathrm{C} H \mathrm{Me}_{\mathrm{c}} \mathrm{Me}_{\mathrm{d}}\right)\right), 1.77\left(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 15 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{5}\right), 1.69\left(\mathrm{~d}\right.$ of d, ${ }^{3} J_{\mathrm{PH}}=$ $\left.13.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{P}\left(\mathrm{CHMe}{ }_{a} \mathrm{Me}_{\mathrm{b}}\right)\right), 1.32\left(\mathrm{~d}\right.$ of d, ${ }^{3} J_{\mathrm{PH}}=17.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{P}\left(\mathrm{CHMe}_{\mathrm{a}} M e_{b}\right)\right), 0.86\left(\mathrm{~d}\right.$ of d, $\left.{ }^{3} J_{\mathrm{PH}}=14.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{P}\left(\mathrm{CH} M e_{c} \mathrm{Me}_{\mathrm{d}}\right)\right), 0.58\left(\mathrm{~d}\right.$ of d, ${ }^{3} J_{\mathrm{PH}}=$ $\left.12.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 3 \mathrm{H} \mathrm{P}\left(\mathrm{CHMe}_{\mathrm{c}} M e_{d}\right)\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 226.2(\mathrm{~m}, \mathrm{C} 2), 138.5(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, C3a or C7a), $137.8(\mathrm{~d}, J=3.3 \mathrm{~Hz}, \mathrm{C} 7 \mathrm{a}$ or C3a), 127.3 (C5 or C6), $127.0($ aryl-CH), $125.4(\mathrm{C} 4$ or C 7$)$, 124.8 (aryl-CH), $79.8\left(C_{5} \mathrm{Me}_{5}\right), 60.8\left({ }^{i} \mathrm{Pr}_{2} \mathrm{PC}-\mathrm{H}\right), 41.6\left(\mathrm{CH}_{2}\right), 27.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=11.2 \mathrm{~Hz}, \mathrm{P}\left(C \mathrm{HMe}_{\mathrm{c}} \mathrm{Me}_{\mathrm{d}}\right)\right)$, $26.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=16.3 \mathrm{~Hz}, \mathrm{P}\left(C \mathrm{HMe}_{\mathrm{a}} \mathrm{Me}_{\mathrm{b}}\right)\right), 21.6\left(\mathrm{P}\left(\mathrm{CHMe} e_{a} \mathrm{Me}_{\mathrm{b}}\right)\right), 20.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=9.7 \mathrm{~Hz}, \mathrm{P}\left(\mathrm{CHMe}_{\mathrm{a}} M e_{b}\right)\right)$, $18.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=4.8 \mathrm{~Hz}, \mathrm{P}\left(\mathrm{CH} M e_{c} \mathrm{Me}_{\mathrm{d}}\right)\right), 17.6\left(\mathrm{P}\left(\mathrm{CHMe}_{\mathrm{c}} M e_{d}\right)\right), 11.3\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta$ 100.5. Slow evaporation of a concentrated benzene solution of ($\kappa^{2}-P, O-1$-diisopropylphosphino-2indanone) $\mathrm{Cp} * \mathrm{RuCl}$ produced a crystal (benzene hemisolvate) suitable for X-ray diffraction analysis. Synthesis of $1 \mathbf{1 a}_{2} \cdot\left(\mu-\mathbf{N}_{2}\right)$. To a glass vial containing a magnetically stirred deep red suspension of $\left(\kappa^{2}-\right.$ P, O-1-diisopropylphosphino-2-indanone $) \mathrm{Cp} * \mathrm{RuCl}(0.10 \mathrm{~g}, 0.19 \mathrm{mmol})$ in benzene $(8 \mathrm{~mL})$, was added solid $\mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2}(0.037 \mathrm{~g}, 0.20 \mathrm{mmol})$ all at once. The vial was sealed with a PTFE-lined cap and magnetic stirring was initiated. Over the course of several seconds, the reaction mixture became dark green. After $45 \mathrm{~min},{ }^{31} \mathrm{P}$ NMR data collected on an aliquot of this crude reaction mixture indicated the quantitative formation of $\mathbf{1 a}_{2} \cdot\left(\mu-\mathbf{N}_{2}\right)$. The solution was filtered through Celite and the benzene solvent and other volatile materials were removed in vacuo, yielding an oily dark green solid. The residue was triturated with pentane ($2 \times 1 \mathrm{~mL}$), after which the pentane was removed in vacuo. Pentane ($2 \times 3 \mathrm{~mL}$) was then added to wash the solid, and the dark green supernatant solution was removed carefully via Pasteur pipette, leaving a greenish-brown solid. Analysis of ${ }^{31} \mathrm{P}$ NMR data collected on the pentane washings indicated relatively minor amounts of $\mathbf{1} \mathbf{a}_{2} \cdot\left(\mu-\mathbf{N}_{2}\right)$ and as such these washings were discarded. The residue was dried in vacuo, yielding $\mathbf{1 a}_{2} \cdot\left(\mu-\mathbf{N}_{2}\right)$ as a greenish-beige powder $(0.074 \mathrm{~g}, 0.074 \mathrm{mmol}$, 78 \%). Anal. Calcd. for $\mathrm{C}_{50} \mathrm{H}_{70} \mathrm{P}_{2} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{Ru}_{2}$: C 60.32; H 7.09; N 2.82. Found: C 60.34; H 7.10; N 2.10 .

The somewhat low $\% \mathrm{~N}$ value determined for $\mathbf{1} \mathbf{a}_{2} \cdot\left(\mu-\mathbf{N}_{2}\right)$ is in keeping with some other Ru dinitrogen complexes. ${ }^{\text {S4 }}{ }^{1} \mathrm{H}$ NMR ($500.1 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$, under dinitrogen) : $\delta 7.38-6.80$ (broad $\mathrm{m}, 4 \mathrm{H}$, arylHs), 3.35-3.17 (broad m, 2H, CH2), 2.62-2.38 (broad m, 2H, P(CHMe $)_{2}$), 1.71-0.93 (broad m, 27H, $\mathrm{C}_{5} \mathrm{Me}_{5}$ and $\left.\mathrm{P}(\mathrm{CHMe})_{2}\right) \cdot{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202.5 MHz, 300K, $\mathrm{C}_{6} \mathrm{D}_{6}$, under dinitrogen $): \delta 50.1\left(\Delta v_{1 / 2}=\right.$ 213 Hz). ${ }^{1} \mathrm{H}$ NMR ($250.1 \mathrm{MHz}, 300 \mathrm{~K}$, toluene- d_{8}, degassed sample): $\delta 7.43-6.80$ (broad m, 4H, arylHs), 3.28-3.05 (broad m, 2H, CH_{2}), 2.77-0.53 (broad m, 29H, $\mathrm{P}\left(\mathrm{CHMe}_{2}\right)_{2}$ and $\mathrm{C}_{5} \mathrm{Me}_{5}$ and $\left.\mathrm{P}(\mathrm{CHMe})_{2}\right)$; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101.3 MHz, 300K, toluene- d_{8}, degassed sample $): \delta 44.9\left(\Delta v_{1 / 2}=240 \mathrm{~Hz}\right)$. No useful information could be derived from the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 a}_{2} \cdot\left(\mu-\mathbf{N}_{2}\right)\left(125.8 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$, under dinitrogen). Raman $\left(\mathrm{cm}^{-1}\right) v\left(\mathrm{~N}_{2}\right)$: 2042. Layering of a $\mathrm{C}_{6} \mathrm{D}_{6}$ solution of $\mathbf{1 \mathbf { a } _ { 2 }} \cdot\left(\mu-\mathbf{N}_{\mathbf{2}}\right)$ with pentane and slow evaporation of the resultant mixture over the course of approximately two weeks produced a crystal suitable for X-ray diffraction analysis.

Variable-temperature behavior of $\mathbf{1 a}_{2} \cdot\left(\mu-\mathbf{N}_{2}\right)$. For samples of $\mathbf{1 a}_{2} \cdot\left(\mu-\mathbf{N}_{2}\right)$ dissolved in toluene- d_{8} that were sealed under an atmosphere of dinitrogen, the initially deep green solutions (300K) turned to redbrown (reversibly) upon cooling below 250 K ; conversely, only deep green solutions were observed over this temperature range for samples that had been thoroughly degassed. Low-temperature NMR data for $\mathbf{1 a}_{2} \cdot\left(\mu-\mathbf{N}_{2}\right):{ }^{1} \mathrm{H}$ NMR ($250.1 \mathrm{MHz}, 223 \mathrm{~K}$, toluene- d_{8}, under dinitrogen): $\delta 7.19-6.96(\mathrm{~m}, 4 \mathrm{H}$, aryl-Hs), 3.60-3.15 (AB multiplet, $\left.2 \mathrm{H}, \mathrm{C}\left(H_{a}\right)\left(H_{b}\right)\right), 2.86\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{P}\left(\mathrm{CHMe}_{\mathrm{a}} \mathrm{Me}_{\mathrm{b}}\right)\right), 2.04(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{P}\left(\mathrm{C} H \mathrm{Me}_{\mathrm{c}} \mathrm{Me}_{\mathrm{d}}\right)\right)$, 1.78-0.97 (m, 27H, $\mathrm{C}_{5} \mathrm{Me}_{5}$ and $\mathrm{P}\left(\mathrm{CHMe} e_{a} M e_{b}\right)$ and $\left.\mathrm{P}\left(\mathrm{CH} M e_{c} M e_{d}\right)\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101.3 MHz, 223K, toluene- d_{8}, under dinitrogen): $\delta 52.1\left(\Delta v_{1 / 2}=9 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101.3 MHz, 223 K , toluene $-d_{8}$, degassed sample $): \delta 52.0\left(\Delta v_{1 / 2}=10 \mathrm{~Hz}\right), 39.1\left(\Delta v_{1 / 2}=65 \mathrm{~Hz}\right)(1: 1$ ratio $)$. We are hesitant to provide a definitive interpretation of these temperature-dependent observations. However, it is feasible that in solution $\mathbf{1 a} \mathbf{a}_{2} \cdot\left(\mu-\mathbf{N}_{2}\right)$ exists in a dynamic equilibrium with $\mathbf{1 a} \cdot\left(\sigma-\mathbf{N}_{2}\right)$, whereby the position of this equilibrium is dependent both on temperature and on the availability of dissolved dinitrogen. ${ }^{\text {S5 }}$ Furthermore, some aspects of the observed temperature-dependent lineshape changes may
be attributable to the exchange of free and bound N_{2} in both $\mathbf{1 a} \mathbf{a}^{2} \cdot\left(\mu-\mathbf{N}_{\mathbf{2}}\right)$ and $\mathbf{1 a} \cdot\left(\sigma-\mathbf{N}_{2}\right)$, as well as restricted rotation about the $\mathrm{Ru}-\mathrm{N}-\mathrm{N}-\mathrm{Ru}$ axis in $\mathbf{1 a} \mathbf{2}_{2} \cdot\left(\mu-\mathbf{N}_{2}\right)$ at low temperatures.

Synthesis of $\mathbf{1 a} \cdot \mathbf{C O}$. Within a glovebox, a J. Young NMR tube was charged with $\mathbf{1 a}_{2} \cdot\left(\mu-\mathbf{N}_{2}\right)(0.045 \mathrm{~g}$, 0.045 mmol) and 0.8 mL of $\mathrm{C}_{6} \mathrm{D}_{6}$. The tube was sealed and the solution was mixed by inversion of the tube several times. The tube containing the resulting deep green solution was removed from the glovebox, connected to a Schlenk line, and degassed via three repeated freeze-pump-thaw cycles. An atmosphere of CO was introduced to the NMR tube, upon which the solution was observed to change gradually in color to brown over the course of several min. After $30 \mathrm{~min},{ }^{31} \mathrm{P}$ and ${ }^{1} \mathrm{H}$ NMR data collected on this reaction mixture indicated quantitative conversion to $\mathbf{1 a} \cdot \mathbf{C O}$. Upon removal of solvent and other volatile materials in vacuo, followed by trituration with pentane ($2 \times 1.5 \mathrm{~mL}$), $\mathbf{1 a} \cdot \mathbf{C O}$ was isolated as an analytically pure, tan powder ($0.043 \mathrm{~g}, 0.084 \mathrm{mmol}, 93 \%)$. Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{PO}_{2} \mathrm{Ru}: \mathrm{C} 61.02 ; \mathrm{H} 6.90 ; \mathrm{N} 0.00$. Found: C 61.01; H 6.97; N <0.3. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.22(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}$ or C6-H), $7.01\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}\right.$ or C7-H), 6.93-6.87 (m, 2 H , aryl-Hs), 3.28-3.17 $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{C}\left(H_{a}\right)\left(H_{b}\right)\right), 2.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{P}\left(\mathrm{C} H \mathrm{Me}_{\mathrm{a}} \mathrm{Me}_{\mathrm{b}}\right)\right), 2.01\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{P}\left(\mathrm{C}_{\mathrm{c}} H \mathrm{Me}_{\mathrm{c}} \mathrm{Me}_{\mathrm{d}}\right)\right), 1.59(\mathrm{~d}, J=1.0 \mathrm{~Hz}$, $\left.15 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{5}\right), 1.38\left(\mathrm{~d}\right.$ of d, $\left.{ }^{3} J_{\mathrm{PH}}=16.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{P}\left(\mathrm{CH} M e_{a} \mathrm{Me}_{\mathrm{b}}\right)\right), 1.23\left(\mathrm{~d}\right.$ of d, ${ }^{3} J_{\mathrm{PH}}=11.5$ $\left.\mathrm{Hz},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{P}\left(\mathrm{CH} M e_{c} \mathrm{Me}_{\mathrm{d}}\right)\right), 1.02-0.94\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{P}\left(\mathrm{CHMe}_{\mathrm{a}} M e_{b}\right)\right.$ and $\left.\mathrm{P}\left(\mathrm{CHMe}_{\mathrm{c}} M e_{d}\right)\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 208.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=19.1 \mathrm{~Hz}, \mathrm{CO}\right), 200.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=21.3 \mathrm{~Hz}, \mathrm{C} 2\right), 146.7(\mathrm{C} 3 \mathrm{a}$ or C7a), $139.7(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, \mathrm{C} 7 \mathrm{a}$ or C3a), $127.2(\mathrm{C} 5$ or C6), $124.4(\operatorname{aryl}-\mathrm{CH}), 120.0(\operatorname{aryl}-\mathrm{CH}), 116.4(\mathrm{C} 4$ or C7), $99.9(\mathrm{~d}$, $\left.{ }^{1} J_{\mathrm{PC}}=48.8 \mathrm{~Hz}, \mathrm{C} 3\right), 94.1\left(C_{5} \mathrm{Me}_{5}\right), 38.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=8.8 \mathrm{~Hz}, \mathrm{C} 1\right), 27.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=18.6 \mathrm{~Hz}, \mathrm{P}\left(C \mathrm{HMe}_{\mathrm{c}} \mathrm{Me}_{\mathrm{d}}\right)\right)$, $24.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=35.6 \mathrm{~Hz}, \mathrm{P}\left(\mathrm{CHMe}_{\mathrm{a}} \mathrm{Me}_{\mathrm{b}}\right)\right), 19.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=6.3 \mathrm{~Hz}, \mathrm{P}\left(\mathrm{CHMe} \mathrm{C}_{\mathrm{d}}\right)\right), 19.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=6.3 \mathrm{~Hz}\right.$, $\mathrm{P}\left(\mathrm{CHMe}_{\mathrm{a}} \mathrm{Me}_{b}\right)$ or $\left.\mathrm{P}\left(\mathrm{CHMe}_{\mathrm{c}} M e_{d}\right)\right), 18.9-18.8\left(\mathrm{~m}, \mathrm{P}\left(\mathrm{CH} \mathrm{Ce}_{a} \mathrm{Me}_{\mathrm{b}}\right)\right.$ and either $\mathrm{P}\left(\mathrm{CHMe}_{\mathrm{c}} \mathrm{Me}_{d}\right)$ or $\left.\mathrm{P}\left(\mathrm{CHMe}_{\mathrm{a}} \mathrm{Me}_{b}\right)\right), 10.3\left(\mathrm{C}_{5} M e_{5}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 63.0$. FTIR $\left(\mathrm{CsI} ; \mathrm{cm}^{-1}\right) v(\mathrm{CO}): 1903$.

Synthesis of $\mathbf{1 a} \cdot \mathbf{N C P h}$. To a glass vial containing a magnetically stirred solution of $\mathbf{1 a} \cdot \mathbf{2} \cdot\left(\mu-\mathbf{N}_{\mathbf{2}}\right)(0.11 \mathrm{~g}$, $0.11 \mathrm{mmol})$ in benzene was added $\mathrm{PhCN}(0.21 \mathrm{~mL}, 0.22 \mathrm{mmol})$ all at once via Eppendorf pipette. A
change in the color of the solution from dark green to orange-red was observed upon the addition of PhCN . The vial was sealed with a PTFE-lined cap, and the solution was stirred for $30 \mathrm{~min} .{ }^{31} \mathrm{P}$ NMR data collected on an aliquot of this solution indicated quantitative conversion to $\mathbf{1 a} \cdot \mathbf{N C P h}$. The solvent and other volatile materials were removed in vacuo, yielding an oily dark red-brown solid. The residue was triturated with pentane ($2 \times 1.5 \mathrm{~mL}$), and the pentane was removed in vacuo to yield $\mathbf{1 a} \cdot \mathbf{N C P h}$ as an analytically pure, orange-brown powder, 91%. Anal. Calcd. for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{PONRu}$: C $65.49 ; \mathrm{H} 6.88 ; \mathrm{N}$ 2.39. Found: C 65.49; H 6.64; N 2.31. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.25\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}\right.$ or $\left.\mathrm{C} 6-\mathrm{H}\right)$, $7.16(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}$ or $\mathrm{C} 7-\mathrm{H}), 7.02-6.97\left(\mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{NC}-\right.$ aryl-Hs and either C7-H or C4-H), $6.85\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}\right.$ $=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}$ or $\mathrm{C} 5-\mathrm{H}), 6.81\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NC}-\operatorname{aryl}-\mathrm{H}\right), 6.64\left(\right.$ apparent $\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{NC}-\mathrm{aryl}-\mathrm{Hs}$), 3.44-3.35 (broad s, $2 \mathrm{H}, \mathrm{C}\left(H_{a}\right)\left(H_{b}\right)$), $1.74\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{5}\right), 1.43-1.25(\mathrm{~m}, 14 \mathrm{H}$, $\mathrm{P}\left(\mathrm{CHMe}_{\mathrm{a}} \mathrm{Me}_{\mathrm{b}}\right)$ and $\mathrm{P}\left(\mathrm{CHMe}_{\mathrm{c}} \mathrm{Me}_{\mathrm{d}}\right)$ and $\mathrm{P}\left(\mathrm{CHMe}{ }_{a} M e_{b}\right)$ and $\left.\mathrm{P}\left(\mathrm{CHMe} e_{c} M e_{d}\right)\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 199.8(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{PC}}=23.7 \mathrm{~Hz}, \mathrm{C} 2\right), 149.0(\mathrm{C} 3 \mathrm{a}$ or C7a), $139.0(\mathrm{~d}, J=7.8 \mathrm{~Hz}, \mathrm{C} 7 \mathrm{a}$ or C3a), 131.6-131.4 (m, NC-arylCHs), 129.0 (NC-aryl-CHs), 126.7 (C5 or C6), 123.9 (C4 or C7), 118.7 (C6 or C5), 115.9 (C7 or C4), 113.7 (NC-aryl-C), $98.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=41.6 \mathrm{~Hz}, \mathrm{C} 3\right), 82.8\left(C_{5} \mathrm{Me}_{5}\right), 39.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=8.1 \mathrm{~Hz}, \mathrm{C} 1\right), 20.9-19.2$ (broad $\mathrm{m}, \mathrm{P}\left(C \mathrm{HMe}_{\mathrm{a}} \mathrm{Me}_{\mathrm{b}}\right)$ and $\mathrm{P}\left(C \mathrm{HMe}_{\mathrm{c}} \mathrm{Me}_{\mathrm{d}}\right)$ and $\mathrm{P}\left(\mathrm{CHMe} e_{a} \mathrm{Me}_{b}\right)$ and $\mathrm{P}\left(\mathrm{CHMe} e_{c} M e_{d}\right)$), $10.8\left(\mathrm{C}_{5} M e_{5}\right)$; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 53.9$.

Synthesis of $\mathbf{1 a} \cdot\left(\boldsymbol{\sigma}-\mathbf{H}_{\mathbf{2}}\right)$. A protocol analogous to that described for the synthesis of $\mathbf{1 a} \cdot \mathbf{C O}$ was employed, using H_{2} in place of CO . Introduction of an atmosphere of H_{2} to a degassed solution of $\mathbf{1 a}_{2} \cdot\left(\mu-\mathbf{N}_{\mathbf{2}}\right)(0.020 \mathrm{~g}, 0.020 \mathrm{mmol})$ in toluene $-d_{8}(0.8 \mathrm{~mL})$ caused the solution to lighten gradually in color from deep green to lime green over the course of several min. After $20 \mathrm{~min},{ }^{31} \mathrm{P}$ and ${ }^{1} \mathrm{H}$ NMR data collected on this reaction mixture indicated the quantitative conversion of $\mathbf{1 a} \mathbf{a}_{2} \cdot\left(\mu-\mathbf{N}_{2}\right)$ into $\mathbf{1 a} \cdot\left(\boldsymbol{\sigma}-\mathbf{H}_{2}\right)$. Whereas solutions of $\mathbf{1 a} \cdot\left(\boldsymbol{\sigma}-\mathbf{H}_{\mathbf{2}}\right)$ prepared in this manner were found to be stable for a minimum of 8 h , some decomposition (${ }^{31} \mathrm{P}$ NMR) was detected upon standing for 18 h . For freshly prepared solutions of $\mathbf{1 a} \cdot\left(\boldsymbol{\sigma}-\mathbf{H}_{\mathbf{2}}\right)$, removal of volatiles in vacuo led to the quantitative conversion of $\mathbf{1 a} \cdot\left(\boldsymbol{\sigma}-\mathbf{H}_{\mathbf{2}}\right)$ back to $\mathbf{1 a} \cdot \mathbf{(} \mu-$
$\mathbf{N}_{\mathbf{2}}$) (as determined by ${ }^{31} \mathrm{P}$ NMR analysis of a $\mathrm{C}_{6} \mathrm{D}_{6}$ solution of the dried solid that had been prepared under an atmosphere of dinitrogen). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500.1 \mathrm{MHz}, 300 \mathrm{~K}\right.$, toluene- $\left.d_{8}\right): \delta 7.20\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}$ or $\mathrm{C} 6-\mathrm{H}), 7.01\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}\right.$ or $\left.\mathrm{C} 7-\mathrm{H}\right), 6.93\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 7-\mathrm{H}\right.$ or $\mathrm{C} 4-\mathrm{H}), 6.86\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}\right.$ or $\left.\mathrm{C} 5-\mathrm{H}\right), 3.25\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{P}\left(\mathrm{CHMe} \mathrm{a}_{\mathrm{a}} \mathrm{Me}_{\mathrm{b}}\right), 1.64\right.$ $\left(\mathrm{s}, 15 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{5}\right), 1.19\left(\mathrm{~d}\right.$ of d, $\left.{ }^{3} J_{\mathrm{PH}}=13.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{P}\left(\mathrm{CH} M e_{a} \mathrm{Me}_{\mathrm{b}}\right)\right), 1.11\left(\mathrm{~d}\right.$ of d,${ }^{3} J_{\mathrm{PH}}=$ $\left.16.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{P}\left(\mathrm{CHMe}_{\mathrm{a}} M e_{b}\right)\right),-5.73\left(\operatorname{broad~s}, \Delta v_{1 / 2}=23 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ru}\left(\mathrm{H}_{2}\right)\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ (125.8 MHz, 300K, toluene- d_{8}): $\delta 199.9$ (m, C2), 146.8 (m, C3a or C7a), 139.9 (m, C7a or C3a), 126.8 (C5 or C6), 124.2 (C 4 or C7), 119.7 (C 6 or C5), 116.3 (C 7 or C 4), $81.1\left(C_{5} \mathrm{Me}_{5}\right), 38.6\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PC}}=8.4\right.$ $\mathrm{Hz}, \mathrm{C} 1), 24.5\left(\right.$ broad m, $\left.\mathrm{P}\left(\mathrm{CHMe}_{\mathrm{a}} \mathrm{Me}_{\mathrm{b}}\right)\right), 19.6-19.3\left(\right.$ broad $\left.\mathrm{m}, \mathrm{P}\left(\mathrm{CHMe} e_{a} M e_{b}\right)\right), 11.1\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202.5 MHz, 300K, toluene- d_{8}): $\delta 65.2\left(\right.$ broad $\left.\mathrm{m}, \Delta v_{1 / 2}=180 \mathrm{~Hz}\right)$. The $T_{1(\min)}$ relaxation time value $(218 \mathrm{~K}, 17 \mathrm{~ms}, 250 \mathrm{MHz})$ associated with the $\sigma-\mathrm{H}_{2}$ unit in $\mathbf{1 a} \cdot\left(\boldsymbol{\sigma}-\mathbf{H}_{\mathbf{2}}\right)$ was obtained by using the inversion-recovery technique. ${ }^{\text {S6 }}$ Variable-temperature behavior of $\mathbf{1 a} \cdot\left(\boldsymbol{\sigma}-\mathbf{H}_{\mathbf{2}}\right)$. The initially green toluene solution of $\mathbf{1 a} \cdot\left(\boldsymbol{\sigma}-\mathbf{H}_{\mathbf{2}}\right)$ observed at 300 K becomes brown in appearance (reversibly) upon cooling below $253 \mathrm{~K} .{ }^{1} \mathrm{H}$ NMR ($250.1 \mathrm{MHz}, 223 \mathrm{~K}$, toluene- d_{8}): $\delta 7.34-6.94(\mathrm{~m}, 4 \mathrm{H}$, aryl-Hs), 3.40-3.15 (AB multiplet, $\left.2 \mathrm{H}, \mathrm{C}\left(H_{a}\right)\left(H_{b}\right)\right), 2.53\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{P}\left(\mathrm{C} H \mathrm{Me}_{\mathrm{a}} \mathrm{Me}_{\mathrm{b}}\right)\right), 1.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{P}\left(\mathrm{C} H \mathrm{Me}_{\mathrm{c}} \mathrm{Me}_{\mathrm{d}}\right)\right), 1.63(\mathrm{~s}$, $\left.15 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{5}\right), 1.42-0.83\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{P}\left(\mathrm{CHMe} e_{a} M e_{b}\right)\right.$ and $\left.\mathrm{P}\left(\mathrm{CHMe} e_{c} M e_{d}\right)\right),-6.40\left(\right.$ broad s, $\Delta v_{1 / 2}=51 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{Ru}\left(\mathrm{H}_{2}\right)\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101.3 MHz, 223K, toluene- $\left.d_{8}\right): \delta 72.2\left(\Delta v_{1 / 2}=20 \mathrm{~Hz}\right)$. While ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data for $\mathbf{1 a} \cdot\left(\boldsymbol{\sigma}-\mathbf{H}_{\mathbf{2}}\right)$ collected at 300 K are consistent with a C_{S}-symmetric structure, the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 a} \cdot\left(\boldsymbol{\sigma}-\mathbf{H}_{\mathbf{2}}\right)$ collected at 223 K is in keeping with the C_{1}-symmetry expected for this complex. We tentatively attribute these temperature-dependent NMR features to the exchange of free and bound H_{2} in $\mathbf{1 a} \cdot\left(\boldsymbol{\sigma}-\mathbf{H}_{\mathbf{2}}\right)$ - a process which is slowed (on the NMR timescale) at 223 K .

Synthesis of 2a. To a glass vial containing a magnetically stirred deep green suspension of $\mathbf{1 a} \cdot \mathbf{2} \cdot\left(\mu-\mathbf{N}_{\mathbf{2}}\right)$ $(0.020 \mathrm{~g}, 0.020 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}(2 \mathrm{~mL})$, was added $\mathrm{PhSiH}_{3}(0.0051 \mathrm{~mL}, 0.041 \mathrm{mmol})$ via microsyringe. The vial was sealed with a PTFE-lined cap and magnetic stirring was initiated. Over the course of several seconds, the reaction mixture became an orange-yellow homogeneous mixture. After $3 \mathrm{~h},{ }^{31} \mathrm{P}$

NMR data collected on an aliquot of this crude reaction mixture indicated the quantitative formation of
2a. The benzene solvent and other volatile materials were removed in vacuo, yielding an oily orange solid. The residue was triturated with pentane ($2 \times 1 \mathrm{~mL}$), after which the pentane was removed in vacuo to yield 2a as an orange powder ($0.023 \mathrm{~g}, 0.038 \mathrm{mmol}, 95 \%$). Anal. Calcd. for $\mathrm{C}_{31} \mathrm{H}_{43} \mathrm{POSiRu}$: C 62.91; H 7.32; N 0.00. Found: C 62.95; H 7.04; $\mathrm{N}<0.3 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 8.18-8.15(\mathrm{~m}, 2 \mathrm{H}$, Si-aryl-Hs), 7.42-7.36 (m, 3H, 2 Si-aryl-Hs and aryl-H), 7.26 (m, 1H, Si-aryl-H), 7.16 (m, 1H, aryl-H), 6.96-6.89 (m, 2H, aryl-Hs), $6.61(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Si}-\mathrm{H}), 3.26-2.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}\left(H_{a}\right)\left(H_{b}\right)\right), 2.74-2.61(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{P}\left(\mathrm{CHMe}_{\mathrm{a}} \mathrm{Me}_{\mathrm{b}}\right)$ and $\left.\mathrm{P}\left(\mathrm{CH} \mathrm{Me}_{\mathrm{c}} \mathrm{Me}_{\mathrm{d}}\right)\right), 1.73\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{5}\right), 1.09-1.00\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{P}\left(\mathrm{CH} \mathrm{Me}_{a} \mathrm{Me}_{b}\right)\right.$ and $\left.\mathrm{P}\left(\mathrm{CH} M e_{c} \mathrm{Me}_{\mathrm{d}}\right)\right), 0.94\left(\mathrm{~d}\right.$ of d, $\left.{ }^{3} J_{\mathrm{PH}}=16.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{P}\left(\mathrm{CHMe}_{\mathrm{c}} M e_{d}\right)\right),-11.14(\mathrm{~d}, 1 \mathrm{H}, J=$ $\left.34.0 \mathrm{~Hz}, \mathrm{Ru}-\mathrm{H}_{\mathrm{a}}\right),-11.92\left(\right.$ apparent d of d, $\left.1 \mathrm{H}, J=32.5 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, \mathrm{Ru}-\mathrm{H}_{\mathrm{b}}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 177.0$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{PC}}=8.6 \mathrm{~Hz}, \mathrm{C} 2\right), 146.5$ (C3a or C7a), 145.5 (Si-aryl-C), 135.2-135.1 (m, Si-aryl-CHs and either C7a or C3a), 128.9 (Si-aryl-CH), 128.2-128.1 (Si-aryl-CHs), 126.2 (aryl-CH), 123.5 (aryl-CH), 122.5 (aryl-CH), $120.2(\operatorname{aryl}-\mathrm{CH}), 103.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=54.1 \mathrm{~Hz}, \mathrm{C} 3\right), 95.6\left(C_{5} \mathrm{Me}_{5}\right), 42.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=7.7 \mathrm{~Hz}, \mathrm{C} 1\right)$, $29.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=25.9 \mathrm{~Hz}, \mathrm{P}\left(C \mathrm{HMe}_{\mathrm{c}} \mathrm{Me}_{\mathrm{d}}\right)\right), 27.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=27.2 \mathrm{~Hz}, \mathrm{P}\left(C \mathrm{HMe}_{\mathrm{a}} \mathrm{Me}_{\mathrm{b}}\right)\right), 20.7$
$\left(\mathrm{P}\left(\mathrm{CHMe}_{\mathrm{c}} M e_{d}\right)\right), 20.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=7.9 \mathrm{~Hz}, \mathrm{P}\left(\mathrm{CHMe} e_{a} \mathrm{Me}_{\mathrm{b}}\right)\right.$ or $\mathrm{P}\left(\mathrm{CHMe}_{\mathrm{a}} M e_{b}\right)$ or $\left.\mathrm{P}\left(\mathrm{CHMe} \mathrm{Ce}_{\mathrm{d}}\right)\right), 20.3$ $\left(\mathrm{P}\left(\mathrm{CHMe}_{\mathrm{a}} M e_{b}\right)\right.$ or $\mathrm{P}\left(\mathrm{CHMe}{ }_{c} \mathrm{Me}_{\mathrm{d}}\right)$ or $\left.\mathrm{P}\left(\mathrm{CH} M e_{a} \mathrm{Me}_{\mathrm{b}}\right)\right), 19.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=5.9 \mathrm{~Hz}, \mathrm{P}\left(\mathrm{CH} M e_{c} \mathrm{Me}_{\mathrm{d}}\right)\right.$ or $\mathrm{P}\left(\mathrm{CHMe} e_{a} \mathrm{Me}_{\mathrm{b}}\right)$ or $\left.\mathrm{P}\left(\mathrm{CHMe}_{\mathrm{a}} M e_{b}\right)\right), 11.6\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 67.4 ;{ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: $\delta 60.4\left({ }^{1} \mathrm{H}^{29}{ }^{2} \mathrm{Si} \mathrm{HMBC} / \mathrm{HMQC}\right),{ }^{1} J_{\mathrm{SiH}}=199.7 \mathrm{~Hz}\left({ }^{1} \mathrm{H}\right.$-coupled $\left.{ }^{1} \mathrm{H}^{-29}{ }^{2} \mathrm{Si} \mathrm{HMQC}\right),{ }^{2} J_{\mathrm{SiH}}=9.4 \mathrm{~Hz}(\mathrm{~J}-$ HMBC).

Synthesis of $\mathbf{2 b}$. To a glass vial containing a magnetically stirred deep green suspension of $\mathbf{1} \mathbf{a}_{\mathbf{2}} \cdot\left(\mu-\mathbf{N}_{\mathbf{2}}\right)$ $(0.060 \mathrm{~g}, 0.060 \mathrm{mmol})$ in benzene $(8 \mathrm{~mL})$, was added $\mathrm{Ph}_{2} \mathrm{SiH}_{2}(0.025 \mathrm{~mL}, 0.13 \mathrm{mmol})$ via Eppendorf pipette. The vial was sealed with a PTFE-lined cap and magnetic stirring was initiated. Over the course of several seconds, the reaction mixture became an orange-yellow homogeneous mixture. After 15 min , ${ }^{31} \mathrm{P}$ NMR data collected on an aliquot of this crude reaction mixture indicated the quantitative formation of $\mathbf{2 b}$. The benzene solvent and other volatile materials were removed in vacuo, yielding an
oily orange solid. The residue was triturated with pentane $(2 \times 1 \mathrm{~mL})$, after which the pentane was removed in vacuo to yield $\mathbf{2 b}$ as a peach powder $(0.079 \mathrm{~g}, 0.12 \mathrm{mmol}, 95 \%)$. Anal. Calcd. for $\mathrm{C}_{37} \mathrm{H}_{47} \mathrm{POSiRu}: \mathrm{C} 66.53$; H 7.09; N 0.00. Found: C 66.13; H 6.89; N <0.3. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: $\delta 8.03-$ $8.01\left(\mathrm{~m}, 4 \mathrm{H}\right.$, Si-aryl-Hs), $7.41\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}\right.$ or C7-H), $7.36\left(\right.$ apparent $\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}$, 4H, Si-aryl-Hs), 7.27-7.23 (m, 2H, Si-aryl-Hs), 7.13 (m, 1H, aryl-H), 6.96-6.92 (m, 2H, aryl-Hs), 3.17 $\left(\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{P}\left(\mathrm{CHMe} \mathrm{a}_{\mathrm{a}} \mathrm{Me}_{\mathrm{b}}\right)\right), 1.67\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{5}\right), 1.09\left(\mathrm{~d}\right.$ of d, ${ }^{3} J_{\mathrm{PH}}=17.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=$ $\left.7.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{P}\left(\mathrm{CHMe} e_{a} \mathrm{Me}_{\mathrm{b}}\right)\right), 0.94\left(\mathrm{~d}\right.$ of d, $\left.{ }^{3} J_{\mathrm{PH}}=15.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{P}\left(\mathrm{CHMe}_{\mathrm{a}} M e_{b}\right)\right),-11.02(\mathrm{~d}$, $\left.2 \mathrm{H},{ }^{2} J_{\mathrm{PH}}=32.5 \mathrm{~Hz}, \mathrm{Ru}-\mathrm{Hs}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 177.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=9.1 \mathrm{~Hz}, \mathrm{C} 2\right), 146.5(\mathrm{C} 3 \mathrm{a}$ or C7a), 146.2 (Si-aryl-C), 135.9 (Si-aryl-CHs), 135.1 (d, $J=6.9 \mathrm{~Hz}, \mathrm{C} 7$ a or C3a), 128.4 (Si-aryl-CHs), 127.4 (Si-aryl-CHs), $126.4(\operatorname{aryl}-\mathrm{CH}), 123.5(\operatorname{aryl}-\mathrm{CH}), 122.4\left(\mathrm{C} 5\right.$ or C6), $120.3\left(\mathrm{C} 4\right.$ or C7), $103.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=52.3\right.$ $\mathrm{Hz}, \mathrm{C} 3), 96.1\left(C_{5} \mathrm{Me}_{5}\right), 42.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=7.4 \mathrm{~Hz}, \mathrm{C} 1\right), 28.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=26.9 \mathrm{~Hz}, \mathrm{P}\left(C \mathrm{HMe}_{\mathrm{a}} \mathrm{Me}_{\mathrm{b}}\right)\right), 20.3$ $\left(\mathrm{P}\left(\mathrm{CHMe}_{\mathrm{a}} M e_{b}\right)\right), 19.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=5.8 \mathrm{~Hz}, \mathrm{P}\left(\mathrm{CH} M e_{a} \mathrm{Me}_{\mathrm{b}}\right)\right), 11.6\left(\mathrm{C}_{5} M e_{5}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 65.1$; ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 57.4\left({ }^{1} \mathrm{H}-{ }^{29} \mathrm{Si} \mathrm{HMBC}\right),{ }^{2} J_{\mathrm{SiH}}=9.8 \mathrm{~Hz}(\mathrm{~J}-\mathrm{HMBC})$. A crystal of 2b suitable for X-ray diffraction analysis was grown from a concentrated pentane solution at $-35^{\circ} \mathrm{C}$.

Crystallographic Solution and Refinement Details

Crystallographic Characterization of ($\kappa^{2}-P, O-1$-diisopropylphosphino-2-

indanone) $\mathbf{C p} * \mathbf{R u C l} \cdot \mathbf{0 . 5 C} \mathbf{C}_{6} \mathbf{H}_{6}$ and $\mathbf{1 a}_{2} \cdot\left(\mu-\mathbf{N}_{2}\right)$. Crystallographic data for these complexes were obtained at 173($\pm 2)$ K on a Nonius KappaCCD 4-Circle Kappa FR540C diffractometer using a graphitemonochromated Mo $\mathrm{K} \alpha(\lambda=0.71073 \AA)$ radiation, employing samples that were mounted in inert oil and transferred to a cold gas stream on the diffractometer. Cell parameters were initially retrieved by using the COLLECT software (Nonius), and refined with the HKL DENZO and SCALEPACK software. ${ }^{\text {S7a }}$ Data reduction and absorption correction (multi-scan) were also performed with the HKL DENZO and SCALEPACK software. The structures were solved by using the direct methods package
in SIR-97, ${ }^{\text {S7b }}$ and refined by use of the SHELXL97-2 program, ${ }^{58}$ employing full-matrix least-squares procedures (on F^{2}) with R_{1} based on $F_{0}^{2} \geq 2 \sigma\left(F_{\mathrm{o}}{ }^{2}\right)$ and $w R_{2}$ based on $F_{\mathrm{o}}{ }^{2} \geq-3 \sigma\left(F_{\mathrm{o}}{ }^{2}\right)$. Anisotropic displacement parameters were employed throughout for the non-H atoms. For ($\kappa^{2}-P, O-1-$ diisopropylphosphino-2-indanone) $\mathrm{Cp} * \mathrm{RuCl} \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{6}$, the H -atom attached to C 1 was located in the Fourier difference map and its coordinates and isotropic thermal parameter were allowed refine. Otherwise, all H -atoms were added at calculated positions and refined by using a riding model employing isotropic displacement parameters based on the isotropic displacement parameter of the attached atom. Additional crystallographic information is provided in the deposited CIFs: $\left(\kappa^{2}-P, O-1-\right.$ diisopropylphosphino-2-indanone) $\mathrm{Cp} * \mathrm{RuCl} \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{CCDC} 654073)$ and $\mathbf{1 a}_{2} \cdot\left(\mu-\mathbf{N}_{\mathbf{2}}\right)(\mathrm{CCDC} 654074)$. ORTEP diagrams featured in the manuscript were prepared by use of ORTEP-3 for Windows version $1.074 .{ }^{\text {S9 }}$

Crystallographic Characterization of 2b. Crystallographic data for $\mathbf{2 b}$ were obtained at 193(土2) K on a Bruker PLATFORM/SMART 1000 CCD diffractometer using a graphite-monochromated Mo $\mathrm{K} \alpha(\lambda$ $=0.71073 \AA$) radiation, employing a sample that was mounted in inert oil and transferred to a cold gas stream on the diffractometer. Programs for diffractometer operation, data collection, data reduction, and absorption correction (including SAINT and SADABS) were supplied by Bruker. The structure was solved by use of direct methods, and refined by use of full-matrix least-squares procedures (on F^{2}) with R_{1} based on $F_{\mathrm{o}}{ }^{2} \geq 2 \sigma\left(F_{\mathrm{o}}{ }^{2}\right)$ and $w R_{2}$ based on $F_{\mathrm{o}}{ }^{2} \geq-3 \sigma\left(F_{\mathrm{o}}{ }^{2}\right)$. Anisotropic displacement parameters were employed throughout for the non- H atoms. The positions of the $\mathrm{Ru}-\mathrm{Hs}(\mathrm{H} 1$ and H 2$)$ were located in the Fourier difference map and refined, with the Ru-H distances fixed at $1.55 \AA$. All other H -atoms were added at calculated positions and refined by use of a riding model employing isotropic displacement parameters based on the isotropic displacement parameter of the attached atom. The final refined value of the absolute structure parameter ($-0.024(19)$) supported that the absolute structure had been chosen correctly. ${ }^{\text {S10 }}$ Additional crystallographic information is provided in the deposited CIF
(CCDC 654072). The ORTEP diagram featured in the manuscript was prepared by use of ORTEP-3 for
Windows version 1.074. ${ }^{\text {S9 }}$

References

S1. P. J. Fagan, M. D. Ward and J. C. Calabrese, J. Am. Chem. Soc. 1989, 111, 1698.
S2. K. D. Hesp, D. Wechsler, J. Cipot, A. Myers, R. McDonald, M. J. Ferguson, G. Schatte and M. Stradiotto, Organometallics 2007, 26, 5430.

S3. J-HMBC: A. Meissner and O. W. Sørensen, Magn. Reson. Chem. 2001, 39, 49.
S4. H. Aneetha, M. Jiménez-Tenorio, M. C. Puerta, P. Valerga and K. Mereiter, Organometallics 2002, 21, 628.

S5. For a related system featuring temperature-dependent dinitrogen coordination to Os, see: P. B. Glaser and T. D. Tilley, Eur. J. Inorg. Chem. 2001, 2747.

S6. R. H. Crabtree, M. Lavin and L. Bonneviot, J. Am. Chem. Soc. 1986, 108, 4032, and references cited therein. Also see: (a) D. M. Heinekey and Warren J. Oldham, Jr., Chem. Rev. 1993, 93, 913. (b) P. G. Jessop and R. H. Morris, Coord. Chem. Rev. 1992, 121, 155.

S7. (a) HKL DENZO and SCALEPACK v1.96: Z. Otwinowski, W. Minor, Processing of X-ray Diffraction Data Collected in Oscillation Mode, Methods in Enzymology, Volume 276: Macromolecular Crystallography, Part A, Carter, C. W., Jr., Sweet, R. M., Eds.; Academic Press: San Diego, CA, 1997; pp. 307-326. (b) A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, M. C. Burla, G. Polidori, M. Camalli and R. Spagna, SIR-97, A package for crystal structure solution by direct methods and refinement; J. Appl. Crystallogr. 1999, 32.

S8. G. M. Sheldrick, SHELXL97-2, Program for the Solution of Crystal Structures; University of Göttingen, Göttingen, Germany 1997.

S9. ORTEP-3 for Windows version 1.074: L. J. Farrugia, J. Appl. Crystallogr. 1997, 30, 565.
S10. (a) H. D. Flack and G. Bernardinelli, J. Appl. Cryst. 2000, 33, 1143. (b) H. D. Flack and G. Bernardinelli, Acta Crystallogr. Sect. A 1999, A55, 908. (c) H. D. Flack, Acta Crystallogr. Sect. A 1983, A39, 876.

