Chemical Communications

Electronic Supplementary Information

A Novel Reaction of 7,7,8,8-Tetracyanoquinodimethane (TCNQ): Charge-Transfer Chromophores by [2+2] Cycloaddition with Alkynes

Milan Kivala,^{*a*} Corinne Boudon,^{*b*} Jean-Paul Gisselbrecht,^{*b*} Paul Seiler,^{*a*} Maurice Gross^{*b*} and François Diederich^{**a*}

Experimental Materials and general methods. ESI 3 _ Synthetic protocols and characterisation data for new compounds. ESI 4 _ Figure 1(ESI): Crystal data of 1. ESI 12 Figure 2(ESI): Crystal data of 3. ESI 13 Figure 3(ESI): UV/Vis spectra of chromophores 1–7 in CH₂Cl₂ at 298 K. ESI 14 Figure 4(ESI): UV/Vis spectra of oligomeric chromophores 8 and 9 compared to 3 in CH₂Cl₂ at 298 K. **ESI 15** Table 1(ESI): UV/Vis spectroscopic data for chromophores 1–9 in CH₂Cl₂ at 298 K. ESI 16 Table 2(ESI): Solvent effects on chromophores 1–9 in CH₂Cl₂/hexane mixtures at 298 K. **ESI 17** Figure 5(ESI): UV/Vis spectra of chromophores 2 in CH₂Cl₂/hexane mixtures at 298 K. ESI 18 Figure 6(ESI): Solvatochromism of 2 in CH₂Cl₂/hexane mixtures at 298 K. **ESI 18 Table 3(ESI):** Electrochemical data of CT chromophores 1–9 observed by

References

Table of Contents

ESI 20

ESI 19

Page

cyclic voltammetry (CV) and rotating disk voltammetry (RDV)

Experimental Section

Materials and general methods: Reagents and solvents were purchased at reagent grade from Acros, Aldrich and Fluka, and used as received. Tetrahydrofuran (THF) was freshly distilled from Na/benzophenone and CH₂Cl₂ from CaH₂ under N₂. Hay catalyst refers to a freshly prepared solution of CuCl (100 mg, 1.0 mmol) and N,N,N',N'tetramethylethylenediamine (TMEDA; 0.15 cm³, 1.0 mmol) in acetone (25 cm³). All reactions, except Hay couplings, were performed under an inert atmosphere by applying a positive presure of N_2 or Ar. (4-Ethynylphenyl)dimethylamine (10) was prepared from (4iodophenyl)dimethylamine and ethynyltrimethylsilane by Sonogashira cross-coupling reaction, followed by desilvlation of Me₃Si protected **11** (K₂CO₃, MeOH/THF 1:1) in 90% overall yield. Compounds 13,¹ 14,² 15, 17, as well as oligoalkynes³ for the synthesis of 8 and 9 were prepared according to literature procedures. Column chromatography (CC) and plug filtrations were carried out with SiO₂ 60 (particle size 0.040–0.063 mm, 230–400 mesh; Fluka) and distilled technical solvents. Thin-layer chromatography (TLC) was conducted on aluminum sheets coated with SiO₂ 60 F₂₅₄ obtained from Macherey-Nagel; visualisation with a UV lamp (254 or 366 nm). Melting points (mp) were measured on a Büchi B-540 meltingpoint apparatus in open capillaries and are uncorrected. "Decomp" refers to decomposition. ¹H NMR and ¹³C NMR spectra were measured on a Varian Gemini 300 or on a Bruker DRX500 spectrometer at 298 K unless otherwise stated. Chemical shifts (δ) are reported in ppm relative to the signal of tetramethylsilane (TMS). Residual solvent signals in the ¹H and 13 C NMR spectra were used as an internal reference. Coupling constants (J) are given in Hz. The apparent resonance multiplicity is described as s (singlet), br s (broad singlet), d (doublet), t (triplet), q (quartet), sept (septuplet), and m (multiplet). Infrared spectra (IR) were recorded on a Perkin-Elmer FT1600; signal designations: s (strong), m (medium), w (weak). UV/Vis spectra were recorded on a Varian Cary-5 spectrophotometer. The spectra were measured in CH₂Cl₂ in a quartz cuvette (1 cm) at 298 K. The absorption maxima (λ_{max}) are reported in nm with the extinction coefficient (ε) M^{-1} cm⁻¹ in brackets; shoulders are indicated as sh. High-resolution (HR) EI-MS spectra were measured on a Hitachi-Perkin-Elmer VG-Tribrid spectrometer. HR FT-ICR-MALDI spectra were measured on an IonSpec Ultima Fourier transform (FT) instrument with [(2E)-3-(4-tert-butylphenyl)-2-methylprop-2enylidene]malononitrile (DCTB), or 3-hydroxypicolinic acid (3-HPA) as matrix. The most

important peaks are reported in m/z units with M as the molecular ion. MALDI-TOF spectra were recorded on a Bruker Daltonics Ultraflex mass spectrometer using DCTB as matrix. Elemental analyses were performed by the Mikrolabor at the Laboratorium für Organische Chemie, ETH Zürich, with a LECO CHN/900 instrument.

Electrochemistry: The electrochemical measurements were carried out at 20 °C in CH₂Cl₂, containing 0.1 M *n*Bu₄NPF₆ in a classical three-electrode cell. CH₂Cl₂ was purchased in spectroscopic grade from Merck, dried over molecular sieves (4 Å) and stored under Ar prior to use. *n*Bu₄NPF₆ was purchased in electrochemical grade from Fluka and used as received. The working electrode was a glassy carbon disk electrode (3 mm in diameter) used either motionless for cyclic voltammetry (0.1 to 10 V s⁻¹) or as rotating-disk electrode for rotating disk voltammetry (RDV). The auxiliary electrode was a Pt wire, and a Pt wire was used as the pseudo-reference electrode. All potentials are referenced to the ferricinium/ferrocene (Fc⁺/Fc) couple, used as an internal standard, and are uncorrected from ohmic drop. The cell was connected to Autolab PGSTAT20 potentiostat (Eco Chemie BV, Utrecht, The Netherlands) controlled by the GPSE software running on a personal computer.

Synthetic Protocols:

(4-{3,3-Dicyano-1-[4-(dimethylamino)phenyl]prop-2-en-1-ylidene}cyclohexa-2,5-dien-1-ylidene)malononitrile (1)

TCNQ (35 mg, 0.172 mmol) was added to a solution of **10** (25 mg, 0.172 mmol) in CH₂Cl₂ (10 cm³). The mixture was stirred for 6 h at 20 °C. Evaporation of the solvent *in vacuo* and CC (SiO₂; CH₂Cl₂/EtOAc 97:3) afforded **1** (49 mg, 81%). Black metallic solid. $R_f = 0.65$ (SiO₂; CH₂Cl₂/EtOAc 97:3); mp 211 °C; λ_{max} (CH₂Cl₂)/nm 276 (13400), 369 (sh, 19000), 418 (39400), 526 (13700), 759 (27800); v_{max} (neat)/cm⁻¹ 3024, 2910, 2232, 2194, 2170, 1614,

1568, 1523, 1480, 1393, 1367, 1346, 1229, 1207, 1153, 1087, 1062, 922, 839, 821; $\delta_{\rm H}(300 \text{ MHz}; {\rm CDCl}_3)$ 3.15 (6 H, s), 6.78 (2 H, d, *J* 9.0), 7.15 (2 H, d, *J* 9.0), 7.30 (4 H, br s), 8.18 (1 H, s); $\delta_{\rm C}(125 \text{ MHz}; {\rm CDCl}_3)$ 40.17, 76.46, 92.58, 110.53, 112.31, 113.78, 114.08, 122.72, 126.39 br s, 134.22, 135.74, 146.45, 152.89, 152.95, 156.63; HR-FT-ICR-MALDI-MS (DCTB) calcd for C₂₂H₁₅N₅⁻ ([*M*]⁻): 349.1333; found 349.1341.

(4-{2-Butyl-3,3-dicyano-1-[4-(dimethylamino)phenyl]prop-2-en-1-ylidene}cyclohexa-2,5dien-1-ylidene)malononitrile (2)

TCNQ (41 mg, 0.199 mmol) was added to a solution of **12** (40 mg, 0.199 mmol) in CH₂Cl₂ (20 cm³). The mixture was stirred for 13 h at 20 °C. Evaporation of the solvent *in vacuo* and CC (SiO₂; CH₂Cl₂/EtOAc 98:2) afforded **2** (86 mg, 100%). Copper-like metallic solid. R_f = 0.55 (SiO₂; CH₂Cl₂/EtOAc 98:2); mp 163–164 °C; λ_{max} (CH₂Cl₂)/nm 259 (17000), 281 (sh, 14600), 339 (20000), 417 (22300), 655 (50300); ν_{max} (neat)/cm⁻¹ 2921, 2859, 2635, 2196, 1611, 1573, 1519, 1480, 1339, 1204, 1151, 939, 899, 827, 800; δ_{H} (300 MHz; CDCl₃) 0.87 (3 H, t, *J* 7.1), 1.23–1.47 (4 H, m), 2.61 (1 H, br s), 2.87 (1 H, br s), 3.16 (6 H, s), 6.76 (2 H, d, *J* 9.0), 6.98 (1 H, dd, *J* 9.8 and 2.2), 7.18 (2 H, d, *J* 9.0), 7.24 (2 H, m), 7.37 (1 H, dd, *J* 9.7 and 2.2); δ_{C} (125 MHz; CDCl₃) 13.46, 22.67, 29.74, 38.03, 40.16, 72.36, 90.82, 111.13, 111.33, 112.32, 114.47, 114.52, 121.40, 125.16, 125.37, 131.35, 133.76, 133.79, 135.80, 151.82, 152.87, 154.33, 179.76; HR-FT-ICR-MALDI-MS (DCTB) calcd for C₂₆H₂₃N₅⁻ ([*M*]⁻): 405.1953; found 405.1950.

(4-{3,3-Dicyano-1-[4-(dimethylamino)phenyl]-2-phenylprop-2-en-1-ylidene}cyclohexa-2,5-dien-1-ylidene)malononitrile (3)

TCNQ (41 mg, 0.200 mmol) was added to a solution of **13** (45 mg, 0.200 mmol) in CH₂Cl₂ (15 cm³). The mixture was stirred for 14 h at 20 °C. Evaporation of the solvent *in vacuo* and CC (SiO₂; CH₂Cl₂ \rightarrow CH₂Cl₂/EtOAc 98:2) afforded **3** (79 mg, 93%). Copper-like metallic solid. R_f = 0.38 (SiO₂; CH₂Cl₂); mp 244–245 °C; λ_{max} (CH₂Cl₂)/nm 268 (18500), 291 (sh, 19000), 330 (22000), 459 (16200), 676 (36300); v_{max} (neat)/cm⁻¹ 2917, 2850, 2638, 2228, 2195, 1613, 1573, 1524, 1484, 1393, 1341, 1154, 1072, 939, 906, 877, 837, 823; δ_{H} (300 MHz; CDCl₃) 3.13 (6 H, s), 6.71 (2 H, d, *J* 9.3), 6.99 (1 H, dd, *J* 9.5 and 1.9), 7.14 (1 H, dd, *J* 9.5 and 2.0), 7.24–7.29 (3 H, m), 7.43–7.55 (4 H, m), 7.63–7.66 (2 H, m); δ_{C} (75 MHz; CDCl₃) 40.37, 71.48, 87.71, 112.46, 112.72, 113.17, 114.99, 115.06, 123.65, 125.02, 125.42, 129.77, 129.83, 131.87, 133.78, 134.58, 134.76, 134.97, 136.11, 152.28, 153.14, 154.31, 173.01; HR-FT-ICR-MALDI-MS (DCTB) calcd for C₂₈H₁₉N₅⁻ ([*M*]⁻): 425.1640; found 425.1639.

(4-{3,3-Dicyano-1,2-bis[4-(dimethylamino)phenyl]prop-2-en-1-ylidene}cyclohexa-2,5dien-1-ylidene)malononitrile (4)

TCNQ (39 mg, 0.189 mmol) was added to a solution of **14** (50 mg, 0.189 mmol) in CH₂Cl₂ (10 cm³). The mixture was stirred for 17 h at 20 °C. Evaporation of the solvent *in vacuo* and CC (SiO₂; CH₂Cl₂ \rightarrow CH₂Cl₂/EtOAc 98:2) afforded **4** (89 mg, 100%). Deep purple metallic solid. R_f = 0.50 (SiO₂; CH₂Cl₂/EtOAc 98:2); mp 259–262 °C; λ_{max} (CH₂Cl₂)/nm 333 (18000), 424 (49400), 662 (51900); ν_{max} (neat)/cm⁻¹ 2918, 2850, 2627, 2193, 1600, 1571, 1478, 1437, 1402, 1327, 1287, 1212, 1149, 1116, 939, 880, 820; δ_{H} (300 MHz; CDCl₃) 3.10 (6 H, s), 3.13 (6 H, s), 6.64 (2 H, d, *J* 9.3), 6.72 (2 H, d, *J* 9.0), 6.96 (1 H, dd, *J* 9.7 and 1.8),

7.07 (1 H, dd, *J* 9.3 and 1.8), 7.22 (1 H, dd, *J* 9.7 and 1.8), 7.34 (2 H, d, *J* 9.3), 7.55 (1 H, dd, *J* 9.3 and 1.8), 7.72 (2 H, d, *J* 9.0); $\delta_{\rm C}$ (75 MHz; CDCl₃) 40.27, 40.37, 69.53, 76.36, 111.96, 112.63, 114.51, 115.40, 115.51, 121.46, 124.26, 124.80, 130.89, 132.99, 134.87, 135.26, 136.16, 153.15, 154.00, 154.80, 155.09, 169.47; HR-FT-ICR-MALDI-MS (DCTB) calcd for C₃₀H₂₄N₆⁻ ([*M*]⁻): 468.2068; found 468.2062.

[1-{[4-(Dicyanomethylene)cyclohexa-2,5-dien-1-ylidene][4-(dimethylamino)phenyl]methyl}-3-(trimethylsilyl)prop-2-yn-1-ylidene]malononitrile (5)

TCNQ (34 mg, 0.165 mmol) was added to a solution of diyne **15** (40 mg, 0.165 mmol) in toluene (25 cm³). The mixture was stirred for 12 h at 80 °C. Evaporation of the solvent *in vacuo* and CC (SiO₂; CH₂Cl₂ \rightarrow CH₂Cl₂/EtOAc 98:2) afforded **3** (24 mg, 33%). Black metallic solid. R_f = 0.55 (SiO₂; CH₂Cl₂/EtOAc 98:2); mp 209–211 °C; λ_{max} (CH₂Cl₂)/nm 270 (26300), 307 (26200), 368 (sh, 12000), 480 (26400), 709 (36000); ν_{max} (neat)/cm⁻¹ 2918, 2853, 2806, 2635, 2202, 1608, 1582, 1528, 1504, 1439, 1408, 1367, 1344, 1323, 1296, 1249, 1203, 1171, 1125, 1063, 1031, 999, 973, 942, 902, 843, 809; δ_{H} (300 MHz; CDCl₃) 0.24 (9 H, s), 3.17 (6 H, s), 6.76 (2 H, d, *J* 9.3), 7.25–7.34 (6 H, m); δ_{C} (75 MHz; CDCl₃) –0.74, 40.41, 72.45, 96.99, 100.78, 110.94, 112.34, 112.48, 114.92, 123.59, 124.76, 124.96, 125.54, 131.62, 134.46, 135.04, 136.28, 148.60, 153.33, 154.26, 154.43; HR-FT-ICR-MALDI-MS (DCTB) calcd for C₂₇H₂₃N₅Si⁻ ([*M*]⁻): 445.1723; found 445.1726.

(1-{[4-(Dicyanomethylene)cyclohexa-2,5-dien-1-ylidene][4-(dimethylamino)phenyl]methyl}-3-phenylprop-2-yn-1-ylidene)malononitrile (6)

TCNQ (42 mg, 0.204 mmol) was added to a solution of diyne **16** (50 mg, 0.204 mmol) in 1,2dichloroethane (30 cm³). The mixture was stirred for 5 h at 80 °C. Evaporation of the solvent *in vacuo* and CC (SiO₂; CH₂Cl₂ \rightarrow CH₂Cl₂/EtOAc 98:2) afforded **6** (66 mg, 72%). Deeppurple metallic solid. R_f = 0.57 (SiO₂; CH₂Cl₂/EtOAc 98:2); mp 229–232 °C; λ_{max} (CH₂Cl₂)/nm 272 (19300), 320 (26400), 340 (sh, 24000), 361 (sh, 21000), 488 (20300), 708 (27300); v_{max} (neat)/cm⁻¹ 3391, 2914, 2852, 2640, 2196, 2171, 1608, 1573, 1519, 1482, 1443, 1394, 1343, 1266, 1205, 1154, 1116, 940, 902, 824; δ_{H} (300 MHz; CDCl₃) 3.18 (6 H, s), 6.78 (2 H, d, *J* 9.0), 7.26–7.43 (8 H, m), 7.49–7.54 (3 H, m); δ_{C} (75 MHz; CDCl₃) 40.33, 72.26, 88.35, 94.49, 111.05, 112.33, 112.56, 114.67, 114.72, 115.35, 119.71, 123.32, 124.66, 125.32, 128.86, 131.28, 132.12, 133.17, 134.15, 134.76, 136.01, 148.60, 153.01, 153.99, 154.43; HR-FT-ICR-MALDI-MS (DCTB) calcd for C₃₀H₁₉N₅⁻ ([*M*]⁻): 449.1640; found 449.1639.

(4-{2-(Dicyanomethylene)-1,4-bis[4-(dimethylamino)phenyl]but-3-yn-1-ylidene}cyclohexa-2,5-dien-1-ylidene)malononitrile (7)

TCNQ (38 mg, 0.184 mmol) was added to a solution of **17** (53 mg, 0.184 mmol) in CH₂Cl₂ (30 cm³). The mixture was stirred for 18 h at 20 °C. Evaporation of the solvent *in vacuo* and CC (SiO₂; CH₂Cl₂ \rightarrow CH₂Cl₂/EtOAc 98:2) afforded **7** (71 mg, 78%). Black metallic solid. R_f = 0.38 (SiO₂; CH₂Cl₂); mp >300°C (decomp.); λ_{max} (CH₂Cl₂)/nm 270 (36000), 326 (sh, 29400), 446 (57700), 480 (sh, 50000), 677 (64700); ν_{max} (neat)/cm⁻¹ 2906, 2858, 2806, 2628, 2196, 2113, 1597, 1573, 1531, 1439, 1338, 1269, 1230, 1156, 1105, 1015, 939, 901, 806; $\delta_{\rm H}$ (300 MHz; CDCl₃) 3.08 (6 H, s), 3.17 (6 H, s), 6.62 (2 H, d, *J* 9.0), 6.76 (2 H, d, *J* 9.0),

7.19–7.26 (2 H, m), 7.35–7.40 (6 H, m); $\delta_{\rm C}$ (75 MHz; CDCl₃) 40.27, 40.41, 70.75, 88.66, 92.74, 105.78, 111.94, 112.47, 113.85, 115.27, 123.49, 123.87, 124.36, 125.06, 130.89, 135.00, 135.19, 135.92, 136.57, 150.91, 152.97, 153.32, 154.20, 154.68; HR-FT-ICR-MALDI-MS (DCTB) calcd for C₃₂H₂₄N₆⁻ ([*M*]⁻): 492.2068; found 492.2062; EA calcd for C₃₂H₂₄N₆ (492.58): C 78.03, H 4.91, N 17.06; found: C 77.80, H 4.79, N 16.54%.

2,2'-[1,4-Phenylenebis({1,1-dicyano-3-[4-(dihexylamino)phenyl]prop-1-en-2-yl-3-ylidene}cyclohexa-2,5-diene-4,1-diylidene)]dimalononitrile (8)

TCNQ (38 mg, 0.186 mmol) was added to a solution of the corresponding dialkyne (60 mg, 0.093 mmol) in 1,2-dichloroethane (30 cm³). The mixture was stirred for 14 h at 20 °C and 3 h at 80 °C to complete the reaction. Evaporation of the solvent *in vacuo* and CC (SiO₂; CH₂Cl₂ \rightarrow CH₂Cl₂/EtOAc 98:2) afforded **8** (91 mg, 93%). Black metallic solid. R_f = 0.48 (SiO₂; CH₂Cl₂/EtOAc 98:2); mp 255 °C; λ_{max} (CH₂Cl₂)/nm 275 (sh, 28600), 346 (54800), 685 (68200); ν_{max} (neat)/cm⁻¹ 3378, 3062, 2923, 2854, 2650, 2195, 1611, 1573, 1520, 1465, 1383, 1339, 1292, 1210, 1161, 976, 906, 883, 821; $\delta_{\rm H}$ (300 MHz; C₂D₂Cl₄) 0.82 (12 H, t, *J* 6.4), 1.21 (24 H, br s), 1.56 (8 H, m), 3.29 (8 H, t, *J* 7.8), 6.62 (4 H, d, *J* 9.3), 6.77 (2 H, d, *J* 9.0), 7.02 (2 H, d, *J* 9.0), 7.18 (6 H, m), 7.44 (2 H, d, *J* 9.0), 7.70 (4 H, s); $\delta_{\rm C}$ (125 MHz; C₂D₂Cl₄) 14.42, 22.96, 26.97, 27.68, 31.82, 51.85, 70.09, 89.92, 111.99, 112.67, 113.25, 115.60, 120.60, 122.86, 124.94, 125.35, 130.59, 130.62, 134.00, 135.20, 136.02, 138.66, 150.47, 152.31, 154.15, 171.04; HR-FT-ICR-MALDI-MS (3-HPA) calcd for C₇₀H₇₂N₁₀⁻ ([*M*]⁻): 1052.5947; found 1052.5966.

2,2',2''-[Benzene-1,3,5-triyltris({1,1-dicyano-3-[4-(dihexylamino)phenyl]prop-1-en-2-yl-3-ylidene}cyclohexa-2,5-diene-4,1-diylidene)]trimalononitrile (9)

TCNQ (38 mg, 0.186 mmol) was added to a solution of the corresponding trialkyne (57 mg, 0.061 mmol) in 1,2-dichloroethane (30 cm³). The mixture was stirred for 14 h at 20 °C. Subsequently TCNQ (19 mg, 0.093 mmol) was added, and the mixture was stirred for 2 h at 80 °C to complete the reaction. Evaporation of the solvent *in vacuo* and CC (SiO₂; CH₂Cl₂ \rightarrow CH₂Cl₂/EtOAc 98:2) afforded **9** (62 mg, 66%). Black metallic solid. R_f = 0.63 (SiO₂; CH₂Cl₂/EtOAc 98:2); mp 229–230 °C; λ_{max} (CH₂Cl₂)/nm 274 (63000), 319 (sh, 63200), 567 (sh, 61000), 709 (87000); ν_{max} (neat)/cm⁻¹ 2925, 2855, 2645, 2197, 1609, 1576, 1522, 1388, 1341, 1289, 1261, 1167, 978, 904, 891, 836; $\delta_{\rm H}$ (500 MHz; C₂D₂Cl₄) 0.84 (18 H, t, *J* 6.7), 1.27 (36 H, br s), 1.55 (12 H, br s), 3.31 (12 H, br s), 6.59 (6 H, d, *J* 9.1), 6.73 (3 H, br s), 6.91 (3 H, br d, *J* 8.2), 7.06–7.19 (9 H, m), 7.30 (3 H, br d, *J* 8.2), 7.79 (3 H, br s); $\delta_{\rm C}$ (125 MHz; C₂D₂Cl₄) 14.42, 22.94, 26.96, 27.64, 31.80, 52.02, 91.95, 111.25, 112.52, 113.57, 115.49, 115.59, 120.60, 123.15 br s, 124.69, 125.19, 130.12 br s, 132.77 br s, 134.06 br s, 135.39, 136.19, 138.10, 149.49 br s, 152.47, 153.57, 170.01; HR-FT-ICR-MALDI-MS (3-HPA) calcd for C₁₀₂H₁₀₅N₁₅⁻ ([*M*]⁻): 1540.8750; found 1540.8718; EA calcd. for C₁₀₂H₁₀₅N₁₅ (1541.05): C 79.50, H 6.87, N 13.63; found: C 79.23, H 6.83, N 13.37%.

4-Hex-1-yn-1-yl-N,N-dimethylaniline (12)

To a degassed solution of (4-iodophenyl)dimethylamine (200 mg, 0.809 mmol) in iPr_2NH (15 cm³), hex-1-yne (100 mg, 0.14 cm³, 1.21 mmol), [PdCl₂(PPh₃)₂] (28 mg, 0.040 mmol) and CuI (15 mg, 0.081 mmol) were added and the mixture was stirred for 5 h at 20 °C. Removal

of the solvent *in vacuo* and CC (SiO₂; CH₂Cl₂/hexanes 1:1) afforded **12** (158 mg, 97%). Brown oil. $R_f = 0.69$ (SiO₂; CH₂Cl₂/hexanes 1:1); λ_{max} (CH₂Cl₂)/nm 289 (51900); v_{max} (neat)/cm⁻¹ 2955, 2929, 2859, 2806, 1608, 1518, 1444, 1352, 1224, 1188, 1166, 1128, 1061, 947, 815; δ_H (300 MHz; CDCl₃) 0.97 (3 H, t, *J* 7.1), 1.48–1.61 (4 H, m), 2.42 (2 H, t, *J* 7.0), 2.96 (6 H, s), 6.63 (2 H, dd, *J* 6.9 and 2.2), 7.30 (2 H, dd, *J* 6.9 and 2.2); δ_C (75 MHz; CDCl₃) 13.91, 19.42, 22.25, 31.37, 40.50, 81.22, 87.85, 111.46, 112.14, 132.67, 149.84; HR-EI-MS calcd for C₁₄H₁₉N⁺ ([*M*]⁺): 201.1517; found 201.1506; EA calcd. for C₁₄H₁₉N (301.21): C 83.53, H 9.51, N 6.96; found: C 83.09, H 9.49, N 6.84%.

N,N-Dimethyl-4-(4-phenylbuta-1,3-diyn-1-yl)aniline (16)

To a mixture of (4-ethynylphenyl)dimethylamine (**10**) (500 mg, 3.44 mmol) and phenylacetylene (1.76 g, 17.2 mmol), Hay catalyst (50 cm³) was added. The mixture was stirred while exposed to air for 3 h at 20 °C. The solvents were removed *in vacuo*, and the product was purified by CC (SiO₂; CH₂Cl₂/hexanes 1:1) to give **16** (61 mg, 72%). Yellowish solid. $R_f = 0.54$ (SiO₂; CH₂Cl₂/hexanes 1:1); mp 113–114 °C; λ_{max} (CH₂Cl₂)/nm 265 (24000), 284 (24100), 341 (63800), 367 (52600); ν_{max} (neat)/cm⁻¹ 2902, 2821, 2620, 2205, 2141, 2122, 1881, 1594, 1522, 1487, 1439, 1369, 1233, 1182, 1168, 1063, 998, 979, 940, 810; δ_{H} (300 MHz; CDCl₃) 3.00 (6 H, s), 6.63 (2 H, d, *J* 9.0), 7.35 (3 H, m), 7.43 (2 H, d, *J* 9.0), 7.54 (2 H, m); δ_{C} (75 MHz; CDCl₃) 40.26, 72.33, 75.00, 81.00, 83.80, 107.95, 111.86, 122.59, 128.62, 128.97, 132.53, 134.04, 150.80; HR-EI-MS calcd for C₁₈H₁₅N⁺ ([*M*]⁺): 245.1197; found 245.1204; EA calcd. for C₁₈H₁₅N (245.32): C 88.13, H 6.16, N 5.71; found: C 87.98, H 6.06, N 5.72%.

Figure 1(ESI): ORTEP plot of **1**, arbitrary numbering, H-atoms are omitted for clarity. Atomic displacement parameters at 220 K are drawn at the 30% probability level. Selected bond lengths [Å] and bond angles [°]: C1–C2 1.4678(18), C2–C3 1.3409(19), C3–C4 1.438(2), N5–C4 1.145(2), C1–C8 1.4457(18), C8–C9 1.4140(18), C9–C10 1.3697(19), C10–C11 1.4168(19), N14–C11 1.3550(17), C11–C12 1.4158(19), C12–C13 1.3683(18), C8–C13 1.4136(18), C1–C17 1.4021(18), C17–C18 1.4313(18), C18–C19 1.3518(8), C19–C20 1.4307(17), C20–C23 1.3971(18), C23–C24 1.4184(19), N25–C24 1.1448(18), C17-C1-C8 124.05(12), C8-C1-C2 118.07(11), C24-C23-C26 116.06(12), C3-C2-C1 124.56(13). Selected torsion angles [°]: C2-C1-C8-C13 = 33.28(18), C2-C1-C17-C22 = 15.44(19). Quinoid character: $\delta r = (((a+a')/2-(b+b')/2)+((c+c')/2-(b+b')/2))/2.^4 \quad \delta r = 0.046.$

Figure 2(ESI): ORTEP plot of the three independent molecules in the crystal structure of **3**. Atomic displacement parameters obtained at 173 K are shown at the 30 % probability level. Arbitrary numbering, H-atoms are omitted for clarity. Selected bond lengths [Å] and bond angles [°] for **3a**: N1–C1 1.144(8), C1–C2 1.440(10), C2–C4 1.358(9), C4–C5 1.469(8), C5–C6 1.447(8), C6–C7 1.405(8), C7–C8 1.385(8), C8–C9 1.397(9), N3–C9 1.380(8), N3–C11 1.455(9), C9–C12 1.414(9), C12–C13 1.372(8), C6–C13 1.408(8), C4–C23 1.482(9), C23–C24 1.404(9), C24–C25 1.382(9), C25–C26 1.383(10), C14–C15 1.445(8), C15–C16 1.335(8), C16–C17 1.418(9), C17–C18 1.412(9), C18–C19 1.400(10), N4–C19 1.143(9), C6-C5-C4 116.5(5), C14-C5-C6 123.5(5), C3-C2-C1 114.9(6), C2-C4-C23 122.4(5), C19-C18-C20 118.1(6). Selected

torsion angles [°]: Molecule **3a**: C4-C5-C6-C13 = -40.2(8), C4-C5-C14-C22 = -12.9(9), C4-C5-C14-C15 = 166.3(5), C2-C4-C5-C14 = -55.7(8), C23-C4-C5-C14 = 125.7(6); Molecule **3b**: C4'-C5'-C6'-C13' = -27.9(9), C4'-C5'-C14'-C22' = -13.1(8), C4'-C5'-C14'-C15' = 166.0(5), C2'-C4'-C5'-C14' = 108.2(7), C23'-C4'-C5'-C14' = -72.1(7);.Molecule **3c**: C4"-C5"-C6"-C13'' = -30.3(8), C4''-C5''-C14''-C22'' = -13.3(8), C4''-C5''-C14''-C15'' = 167.5(5), C2''-C4''-C5''-C14'' = -69.5(7), C23'-C4'-C5'-C14' = 109.8(6). Molecules 3a and 3c have approximately the same conformation, while in molecule 3b the subunit N(1)-C(1)-C(2)-C(3)-N(2) is rotated by ca. 164° with respect to **3a**, and ca. 178° with respect to 3c.

The crystal structures of **1** and **3** were solved by direct methods $(SIRS-97)^5$ and refined by full-matrix least-squares analysis (SHELXL-97),⁶ using an isotropic extinction correction. All non H-atoms were refined anisotropically; H-atoms were refined isotropically, whereby H-positions are based on stereochemical considerations.

Figure 3(ESI): UV/Vis spectra of chromophores 1–7 in CH₂Cl₂ at 298 K.

Figure 4(ESI): UV/Vis spectra of oligomeric chromophores 8 and 9 compared to 3 in CH_2Cl_2 at 298 K.

No deviations from the Lambert-Beer law were observed within the studied concentration range $(4 \times 10^{-6}-9 \times 10^{-5} \text{ M})$, indicating that chromophores 2 and 7 are unable to undergo any kind of self-aggregation in CH₂Cl₂ solution. It is reasonable to assume the same behaviour of chromophores 1, 3–6, and 8–9. Reduced aggregation tendency and enhanced solubility are some of the distinct advantages of our non-planar CT chromophores.

Compound	$\lambda_{\max} [nm (eV)]$	$\varepsilon_{\max} [M^{-1}cm^{-1}]$
	276 (4.50)	13400
	418 (2.97)	39400
	526 (2.36)	13700
NMe ₂	759 (1.63)	27800
	259 (4.79)	17000
	339 (3.66)	20000
	417 (2.98)	22300
- \NMe2	655 (1.89)	50300
	268 (4.63)	18500
	330 (3.76)	22000
NC 3	459 (2.70)	16200
NMe ₂	676 (1.84)	36300
	333 (3.73)	18000
	424 (2.93)	49400
4	662 (1.87)	51900
NMe ₂ CN		26200
	2/0 (4.60)	26300
	307 (4.04)	26200
5	480 (2.58)	26400
NMe ₂	709 (1.75)	36000
	272 (4.56)	19300
	320 (3.88)	26400
NC 6	488 (2.54)	20300
NMe ₂	708 (1.75)	27300
	270 (4 60)	36000
	446 (2.78)	57700
7	677 (1.83)	64700
	0// (100)	01100
	346 (3 59)	54800
	685(1.81)	68200
	005 (1.01)	08200
8 N(C ₆ H ₁₃) ₂		
	271 (1 53)	63000
(C ₆ H ₁₃) ₂ N-(274 (4.33) 709 (1.75)	87000
	109 (1.73)	07000
9 (C ₆ H ₁₃) ₂		

Table 1(ESI): UV/Vis spectroscopic data for chromophores **1–9** in CH₂Cl₂ at 298 K.

		$\lambda_{\max} [\operatorname{nm} (eV)]^a$ in solvent						
Compound	CH ₂ Cl ₂	CH ₂ Cl ₂ /hexane 1:1	CH ₂ Cl ₂ /hexane 1:3	CH ₂ Cl ₂ /hexane 1:9	CH ₂ Cl ₂ /hexane 1:19	hexane		
1	759 (1.63)	746 (1.66)	727 (1.71)	b	b	b		
2	655 (1.89)	625 (1.99)	604 (2.05)	581 (2.14)	574 (2.16)	559 (2.22)		
3	676 (1.84)	646 (1.92)	626 (1.98)	600 (2.07)	b	b		
4	665 (1.87)	638 (1.94)	616 (2.01)	596 (2.08)	b	b		
5	709 (1.75)	680 (1.82)	659 (1.88)	635 (1.95)	b	b		
6	708 (1.75)	680 (1.82)	661 (1.88)	630 (1.97)	b	b		
7	677 (1.83)	649 (1.91)	631 (1.97)	607 (2.04)	b	b		
8	685 (1.81)	652 (1.90)	631 (1.97)	b	b	b		
9	709 (1.75)	694 (1.79)	677 (1.83)	b	b	b		

Table 2(ESI): Solvent effects of chromophores 1–9 in CH₂Cl₂/hexane mixtures at 298 K.

^{*a*}The charge-transfer (CT) bands were used to observe the solvent effects. ^{*b*}Could not be estimated due to low solubility.

Figure 5(ESI): UV/Vis spectra of 2 in CH₂Cl₂/hexane mixtures at 298 K.

Figure 6(ESI): Solvatochromism of 2 in CH₂Cl₂/hexane mixtures.

		CV		RDV		
	$E^{\circ}\left[\mathrm{V} ight]^{a}$	$\Delta E_{\rm p} \left[{ m mV} \right]^b$	$E_{\rm p}\left[{ m V} ight]^c$	$E_{1/2}\left[\mathrm{V} ight]^d$	Slope [mV] ^e	
1			+0.42	+0.44 (1e ⁻)	60	
	-0.50	80		-0.55 (1e ⁻)	70	
	-0.76	80		-0.86 (1e ⁻)	70	
2			+0.42	+0.42 (1e ⁻)	55	
	-0.72	90		-0.71 (1e ⁻)	60	
	-0.81	80		-0.84 (1e ⁻)	75	
3			+0.42	+0.42 (1e ⁻)	50	
	-0.68	70		-0.67 (1e ⁻)	60	
	-0.82	70		-0.81 (1e ⁻)	60	
4			+0.86			
			+0.39	+0.39 (1e ⁻)	60	
	-0.81	60		-0.82 (1e ⁻)	60	
	-0.90	60		-0.92 (1e ⁻)	60	
5	+0.42	80		+0.43 (1e ⁻)	40	
	-0.59	65		-0.58 (1e ⁻)	65	
	-0.74	65		-0.75 (1e ⁻)	65	
6			+0.45	+0.44 (1e ⁻)	60	
	-0.55	90		-0.58 (1e ⁻)	70	
	-0.70	90		-0.77 (1e ⁻)	75	
7			+0.74	+0.69	f	
			+0.40	+0.39 (1e ⁻)	55	
	-0.64	65		-0.65 (1e ⁻)	60	
	-0.75	65		-0.77 (1e ⁻)	60	
8			+0.40	+0.39 (1e ⁻)	60	
	-0.62	65		-0.63 (1e ⁻)	g	
	-0.74	70		-0.74 (1e ⁻)		
	-0.85	60		-0.86 (1e ⁻)		
	-0.95	60		-0.97 (1e ⁻)		
9			+0.38	+0.40 (1e ⁻)	g	
	-0.51	60		-0.50 (1e ⁻)		
	-0.64	55		-0.64 (1e ⁻)		
	-0.76	60		-0.76 (1e ⁻)		
	-0.86	60		-0.84 (1e ⁻)		
	-0.98	60		-0.98 (1e ⁻)		
	-1.14	55		-1.16 (1e ⁻)		

Table 3(ESI): Electrochemical data of CT chromophores 1–9 observed by cyclic voltammetry (CV) (scan rate $v = 0.1 \text{ V s}^{-1}$) and rotating disk voltammetry (RDV) in CH₂Cl₂ (+ 0.1 M *n*Bu₄NPF₆). All potentials are given *vs*. ferricinium/ferrocene (Fc⁺/Fc) couple used as internal standard.

 ${}^{a}E^{\circ} = (E_{pc}+E_{pa})/2$, where E_{pc} and E_{pa} correspond to the cathodic and anodic peak potentials, respectively. ${}^{b}\Delta E_{p} = E_{pa}-E_{pc}$. ${}^{c}E_{p}$ = Irreversible peak potential. ${}^{d}E_{1/2}$ = Half-wave potential. e Slope = Slope of the linearized plot of *E* versus log[*I*/(*I*_{lim}-*I*)], where *I*_{lim} is the limiting current and *I* the current. f Bad resolved second oxidation due to strong electrode inhibition. g Due to overlapping waves, the slopes for each step could not be determined.

References

- 1 M. Rubin, A. Trofimov and V. Gevorgyan, J. Am. Chem. Soc., 2005, **127**, 10243–10249.
- 2 H. Umezawa, S. Okada, H. Oikawa, H. Matsuda and H. Nakanishi, J. Phys. Org. Chem., 2005, 18, 468–472.
- T. Michinobu, C. Boudon, J.-P. Gisselbrecht, P. Seiler, B. Frank, N. N. P. Moonen, M.
 Gross and F. Diederich, *Chem. Eur. J.*, 2006, 12, 1889–1905.
- 4 C. Dehu, F. Meyers and J. L. Brédas, J. Am. Chem. Soc., 1993, **115**, 6198–6206.
- A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori and R. Spagna, *J. Appl. Crystallogr.*, 1999, 32, 115–119.
- 6 G. M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1997.