Sonication-assisted supramolecular nanorods of *meso*diaryl-substituted porphyrins

Taku Hasobe^{*,*a,b*}, Hideaki Oki^{*a*}, Atula S. D. Sandanayaka^{*a*}, and Hideyuki Murata^{*,*a*}

^aSchool of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), Nomi, Ishikawa, 923-1292, Japan
^bPRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, 332-0012, Saitama, Japan

Experimental Section

Preparation of porphyrin nanoassembly. The synthesis of H₂DBuPP, H₂TBuPP and H₂DPP has been performed in accordance with the reported literatures.⁹ H₂TPP was The porphyrin nanorod was prepared by the following purchased from Aldrich. procedure. First, 3.5 mmol dm⁻³ porphyrin solution was prepared in toluene. Then, the toluene solution is simply mixed with 9 times volume of acetonitrile. The final concentration is 0.35 mmol dm⁻³ in a poor/good solvent (acetonitrile/toluene) = 9/1, v/v. With regard to the sonication system for preparation of self-assembled porphyrins, we set up an original system composed of an ultrasonic generator (AS-ONE VS-100 III) and a temperature control circulator for external open system (Yamato Scientific Co., Ltd. Cool-Line CLS 300). The solution was sonicated (45 or 28 kHz) for 30 min at 15 °C to form macroscopic self-assembled porphyrins such as rod-like structures. In all experiments, we maintained the final concentration $(0.35 \text{ mmol dm}^{-3})$ and temperature (15°C). It should be noted that no formation of rod-like structure is observed without sonication, and all measurements for analysis of the structures were performed quickly before occurrence of the precipitation.

Fig S1. Pictures of 0.35 mmol dm⁻³ H₂DBuPP solutions (acetonitrile/toluene = 9/1, v/v) before and after sonication.

Steady-state absorption & fluorescence and microscope measurements. The UVvisible spectra were recorded on a Perkin Elmer LAMDA 750 spectrophotometer equipped with an integrating sphere. Fluorescence spectra were measured on Perkin Elmer LS 55 fluorescence spectrometer. TEM images were recorded using a Hitachi H-7100 transmission electron microscope. SEM images of porphyrin assemblies were also recorded using a Hitachi S-4100 scanning electron microscope. Optical and fluorescence images were recorded using KEYENCE BZ-8000.

Fluorescence lifetime measurement. The time-resolved fluorescence spectra were measured by single photon counting method using a streakscope (Hamamatsu Photonics, C5680) as a detector and the laser light (Hamamatsu Photonics M10306, laser diode head, 408 nm) as an excitation source. Lifetimes were evaluated with a software attached to the equipments.

X-ray diffraction measurement. X-ray diffraction (XRD) measurement was carried out with a BRUKER-axs M18XHF-SRA using filtered Cu K_{α} radiation. The sample for XRD analysis was prepared by drying suspension liquid over a glass substrate in air.

Preparation of porphyrin-deposited films. Porphyrin films were simply prepared by drop-cast method. $\sim 1 \text{ mL of } 0.35 \text{ mmol dm}^{-3}$ porphyrin nanorod in acetonitrile/toluene = 9/1, v/v or 0.35 mmol dm⁻³ porphyrin in toluene were dropped onto substrates (ITO, quartz plate etc, surface area: 10 mm x 35 mm), and then dried in air.

Measurement of photoelectrochemical solar cells. An optically transparent electrode (OTE) was prepared by casting SnO₂ colloidal solution (Alfa Chemicals) onto an ITO film (Sanyo Vacuum Industires Co., Ltd.) The detail procedure was reported.^{4,18} Photoelectrochemical measurements were carried out in a standard two-compartment cell consisting of a working electrode and a Pt wire gauze counter electrode in the electrolyte. The electrolyte is 0.5 M LiI and 0.01 M I₂ in acetonitrile. μ Autolab III was used for recording photocurrent generation response and IPCE action spectrum. A collimated light beam from a 500 W Xenon lamp with a AM 1.5 filter was used for excitation of porphyrin assembly film deposited on optically transparent electrode. In the case of measurement of IPCE spectra, a monochromator (JASCO CT-25C) was introduced into the path of the excitation beam for the selected wavelength. The schematic illustration is shown in Fig. 3A for clarify.

Fig. S2 Length-distributions of (A) H₂DBuPP nanorods ($5.02 \pm 1.94 \mu m$), (b) H₂DPP nanorods ($3.77 \pm 1.63 \mu m$) and (c) H₂DBuPP fibers ($27.2 \pm 6.9 \mu m$).

Fig. S3 H_2DBuPP nanorod structures. (A) SEM image on an ITO plate and (B) optical microscope image on a quartz plate.

Fig. S4 Sonication time-dependent formation of H_2DBuPP assemblies by TEM analyses. (A) 3 min, (B) 10 min and (C) 20 min.

Fig. S5 (A) XRD patterns of (a) H_2DPP nanorod, (b) H_2DPP starting material, and (c) simulated pattern from the crystal structure of H_2DPP . (B) XRD patterns of (a) H_2TPP assembly, (b) H_2TPP starting material, and (c) simulated pattern from the crystal structure of H_2TPP . * x 200 magnification for clarification. The patterns *c* were analyzed by supporting materials of ref. 14 papers.

Fig. S6 MULDI/TOF MASS analysis of H_2DPP moiety after diluting H_2DPP nanorods with toluene.

Fig. S7 Crystal structures of H_2DPP . These figures were analyzed by supporting materials of the following papers. H_2DPP : A. D. Bond, N. Feeder, J. E. Redman, S. J. Teat, and J. K. M. Sanders, *Crystal Growth & Design*, 2002, **2**, 27.

Fig. S8 Optical microscope image of H_2 TBuPP assemblies after 6 days of standing.

Fig. S9 (A) Fluorescence lifetime decay profiles of (a) H_2DBuPP nanorod film, (b) H_2DBuPP drop-cast film on quartz plates and (c) H_2DBuPP in toluene. Excitation wavelength is 408 nm and collected from 600-750 nm. (B) Time-dependent fluorescence spectra of H_2DBuPP nanorod film.

Comparison of Fluorescence Lifetimes of (a) H ₂ DBuPP nanorod film, (b) H ₂ DBu	ıPP
drop-cast film on quartz plates and (c) H ₂ DBuPP in toluene.	

	$ au_1$	$ au_2$
(a) H ₂ DBuPP Nanorod film	421 ps (94%)	1854 ps (6%)
(b) H ₂ DBuPP drop-cast film	750 ps (45%)	6023 ps (55%)
(c) H_2DBuPP in toluene	9700 ps (100%)	

Fig. S10 (a) Photocurrent (IPCE) action spectrum of H_2DBuPP drop-cast film on an OTE. Electrolyte: 0.5 mol dm⁻³ LiI and 0.01 mol dm⁻³ I₂ in acetonitrile. (b) Excitation spectrum of H_2DBuPP drop-cast film on an OTE; Observed at 680 nm.