Supporting Information for

A novel chiral porous metal-organic framework: asymmetric ring opening reaction of epoxide with amine in the chiral open space

Koichi Tanaka, ${ }^{*}{ }^{a}$ Shinji Oda ${ }^{a}$ and Motoo Shiro ${ }^{b}$

${ }^{a}$ Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan.. Fax: +81-06-6368-0861; Tel: +81-06-6368-0861; E-mail: ktanaka@ ipcku.kansai-u.ac.jp ${ }^{b}$ Rigaku X-ray Laboratory, 3-9-12 Matsubara-cho, Akishima, Tokyo 196-8666, Japan; E-mail: shiro@ rigaku.co.jp

Optical resolution of $\mathbf{r a c} \mathbf{- 1 :} \mathbf{r a c} \mathbf{- 1}(0.81 \mathrm{~g}, 2.16 \mathrm{mmol})$ and cinchonidine (2) (1.27 g, $4.32 \mathrm{mmol})$ were dissolved in $\mathrm{MeOH}(120 \mathrm{ml})$ and the solution was allowed to stand at room temperature for 24 h . The precipitate was filtered to give a 1:2 complex of $(R)-(+)-\mathbf{1}$ of 91% ee and $\mathbf{2}$ as colorless prisms (0.59 g). Recrystallization of the complex from MeOH gave almost pure $1: 2$ complex crystals $\left(0.35 \mathrm{~g}, \mathrm{mp} 195-196^{\circ} \mathrm{C}\right)$, which were acidified by using dil. HCl and the mixture was extracted with AcOEt. The organic layer was washed with brine and dried over MgSO_{4}. Evaporation of the solvent gave almost optically pure $(R)-(+)-\mathbf{1}\left(0.14 \mathrm{~g}, \mathrm{mp} 316-318{ }^{\circ} \mathrm{C}\right)$ of $>99 \%$ ee in 35% yield. From the MeOH solution left after separation of the complex of $(R)-(+)-\mathbf{1}$ of 91% ee and $\mathbf{2},(S)-(-)-\mathbf{1}(0.57 \mathrm{~g})$ of 74% ee was obtained. Treatment of $(S)-(-)-\mathbf{1}(0.57 \mathrm{~g}, 1.52 \mathrm{mmol})$ of 74% ee with 1,4 -diazabicyclo[3.3.3]octane (DABCO) $(0.34 \mathrm{~g}, 3.04 \mathrm{mmol})$ in MeOH gave $1: 1$ complex $\left(0.058 \mathrm{~g}, \mathrm{mp} 290-291^{\circ} \mathrm{C}\right)$ of $\mathrm{rac}-\mathbf{1}$ and DABCO. From the filtrate, $(S)-(-)-1\left(0.13 \mathrm{~g}, \mathrm{mp} 316-318^{\circ} \mathrm{C}\right)$ of $>99 \%$ ee was obtained in 32% yield. The optical purity was determined by HPLC analysis using a Chiralpak AD-H (Daicel) column, (hexane/EtOH/TFA: 75/25/0.01, flow rate $1.0 \mathrm{ml} / \mathrm{min}, t_{\mathrm{R}} 14 \mathrm{~min}(\mathrm{~S}), 17 \mathrm{~min}(\mathrm{R})$).

Synthesis of $(\boldsymbol{R})-\mathbf{3},\left[\mathrm{Cu}_{\mathbf{2}}\left(\mathbf{5}, \mathbf{5}^{\prime} \mathbf{B D A}\right)_{\mathbf{2}}\left(\mathbf{H}_{\mathbf{2}} \mathbf{O}\right)_{2}\right] \cdot \mathbf{M e O H} \cdot \mathbf{2 H}_{2} \mathbf{O}: N, N$-dimethylaniline was slowly diffused into a mixture solution of $\mathrm{MeOH}(50 \mathrm{ml})$ and water $(10 \mathrm{ml})$ containing $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O},(2.67 \mathrm{mmol})$ and $(R)-(+)-\mathbf{1}(2.67 \mathrm{mmol})$ at room temperature. After several days, $(R)-\mathbf{3},\left[\mathrm{Cu}_{2}\left(5,5^{\prime} \mathrm{BDA}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{MeOH} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.94 \mathrm{~g}, 33 \%$ yield) were obtained as green needles.

General procedure for the asymmetric ring-opening reaction: A mixture of cyclohexene oxide ($\mathbf{4 a}, 1 \mathrm{mmol}$), aniline ($\mathbf{5 a}, 1 \mathrm{mmol}$) and the evacuated $(R) \mathbf{- 3}(0.1$ mmol) was stirred at $25^{\circ} \mathrm{C}$ for 24 h under solvent-free conditions. Then, the solid catalyst was collected by filtration, washed with EtOH , and the solvent of the filtrate were removed in vacuo to give (1S, 2S)-(+)-2-phenylaminocyclohexanol (6a) of 51\%ee in 51% yield. ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 7.2-7.12 (m, 2H), 6.76-6.68 (m, 3 H), 3.37-3.27 (m, 1H), 3.18-3.06 (m, 1H), 2.80 (bs, 1H), 2.15-2.04 (m, 2H), 1.76-1.60 (m, $2 \mathrm{H}), 1.41-1.29(\mathrm{~m}, 3 \mathrm{H}), 1.1-0.9(\mathrm{~m}, 1 \mathrm{H})$. The optical purity was determined by HPLC using Chiralpak AD-H (Daicel) column. (hexane/EtOH/DEA: 80/20/0.01, flow rate 0.5 $\left.\mathrm{ml} / \mathrm{min}, t_{\mathrm{R}} 15 \mathrm{~min}(-), 20 \mathrm{~min}(+)\right)$.

Figure $\mathrm{S} 1 . \mathrm{CD}$ spectra for $(R)-(+)-$ and $(S)-(-)-\mathbf{1}$ in CHCl_{3}.

Figure S2. ORTEP structure of 1:2 complex of $(R)-(+)-\mathbf{1}$ and $\mathbf{2}$.

Figure S3. TGA curves for $(R)-(+)-\mathbf{3}$.

Figure S4. ORTEP structure of (R)-3.

