Electronic Supplementary Information (ESI) for Chemical Communications

Unprecedented Carbon-Carbon Bond Formation Induced by Photoactivation of a Platinum(IV)-Diazido Complex

Luca Ronconi^{*a*} and Peter J. Sadler^{**a,b*}

^a School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, United Kingdom.
^b Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom. Fax: (+44)-24-7652-3819; Tel: (+44)-24-7652-3818; E-mail: P.J.Sadler@warwick.ac.uk

Table of Contents

- Experimental
- Methods and Instrumentation
- Tables S1-S3
- Figures S1-S4

Experimental

Materials. $K_2[PtCl_4]$ was purchased from Precious Metals Online; KI, NaN₃, KOH, NaCl, and HCl from Fisher Scientific; AgNO₃, ¹⁵NH₄Cl, Na(¹⁵NN₂) (mono-¹⁵N-labelled at one *N*-terminus), dimethyl sulfide, and D₂O from Sigma-Aldrich; H₂O₂ (30%) from Polabo; and HClO₄ from Fisons.

Complexes *cis,trans,cis*-[Pt(N₃)₂(OH)₂(¹⁵NH₃)₂] (¹⁵N₂-1) and the corresponding ¹⁵N-azido (monolabelled at the N-terminus) labelled analogue *cis,trans,cis*-[Pt(¹⁵NN₂)₂(OH)₂(¹⁵NH₃)₂] (¹⁵N₄-1, see below) were synthesized as previously described (P. Müller, B. Schröder, J. A. Parkinson, N. A. Kratochwil, R. A. Coxall, A. Parkin, S. Parsons and P. J. Sadler, *Angew. Chem. Int. Ed.*, 2003, **42**, 335–339). For ¹⁵N₂-1 ¹⁵NH₄Cl was used as the source of ¹⁵N; for ¹⁵N₄-1 ¹⁵NH₄Cl and Na(¹⁵NN₂) (mono-¹⁵N-labelled at one *N*terminus) were used as the sources of ¹⁵N. Yield: 78-80%. ¹H NMR (500.1 MHz, 90% H₂O/10% D₂O, pH 5.4, TSP): $\delta = 5.12$ ppm (¹*J*(¹⁵N-H) = 73 Hz, ²*J*(¹⁹⁵Pt-H) = 46 Hz; Pt^{IV}-¹⁵NH₃); 2D [¹H,¹⁵N] HSQC NMR (500.1/50.7 MHz, 90% H₂O/10% D₂O, pH 5.4, ¹⁵NH₄Cl): $\delta = -40.8$ ppm (¹*J*(¹⁹⁵Pt-¹⁵N) = 261 Hz; Pt^{IV}-¹⁵*N*H₃); ¹⁴N{¹H} NMR (36.1 MHz, 90% PBS/10% D₂O, pH 7.4, NH₄Cl): $\delta = 353.3$ (Pt^{IV}-NNN), 227.4 (Pt^{IV}-NNN), 160.5 (Pt^{IV}-NNN), -40.8 ppm (¹*J*(¹⁹⁵Pt-¹⁴N) = 180 Hz; Pt^{IV}-*N*H₃).

Warning! Heavy metal azido complexes are known to be shock-sensitive detonators. We encountered no problems in this study, but these materials should be handled with extreme caution, especially not to put pressure on them in the crystalline form.

Methods and Instrumentation

NMR Spectroscopy. All NMR spectra were acquired in 90% H₂O/10% D₂O at 298 K on a Bruker DMX500 spectrometer using a TBI [¹H,¹³C,X] probe-head equipped with *z*-field gradients, and on a Bruker Avance 600 spectrometer using a TXI [¹H,¹³C,¹⁵N] cryoprobe-head equipped with *z*-field gradients. Data processing was carried out using XWIN-NMR version 2.0 (Bruker U.K. Ltd.) and MestReC version 4.9.9.9 (Mestrelab Research S.L.).

Typical acquisition parameters for 1D ¹H NMR spectra (¹H: 500.13 MHz): 16 transients, spectral width 7.5 kHz, using 32k data points and a delay time of 2.0 s. Water suppression was achieved using a 55.0 dB power level presaturation. Spectra were processed using exponential weighting with a resolution of 0.5 Hz and a line-broadening threshold of 0.1 Hz. ¹H chemical shifts were referenced to TSP (sodium 3-(trimethylsilyl)-[2,2,3,3-D₄]-propionate) *via* internal 1,4-dioxane at 3.764 ppm.

Typical acquisition parameters for 1D ¹⁴N{¹H} NMR spectra (¹⁴N: 36.13 MHz): 64k transients, spectral width 20 kHz, using 32k data points and a delay time of 0.25 s. Sequences were optimized for ¹J(¹⁴N-H) = 60 Hz, and ¹H decoupling was achieved using WALTZ16 pulse sequence. Spectra were processed using exponential weighting with a resolution of 0.6 Hz and a line-broadening threshold of 10 Hz. ¹⁴N chemical shifts were referenced to external NH₄Cl 1.5 M in 1 M HCl at 0.00 ppm.

Typical acquisition parameters for 2D [1 H, 13 C] HMBC NMR spectra (1 H: 599.92/ 13 C: 150.87 MHz): 1k transients of 32 scans/block, spectral width 6.0/37.7 kHz, using 2k/2k data points and a delay time of 1.5 s. Sequences were optimized for ${}^{1}J({}^{13}$ C-H) = 145 Hz/ ${}^{n}J({}^{13}$ C-H) = 8 Hz, and 1 H decoupling was achieved using WALTZ16 pulse sequence. Water suppression was achieved using a 47.0 dB power level presaturation. Spectra were processed using cosine-squared weighting with a resolution of 5.9/36.8 Hz and a line-broadening threshold of 0.7/1.0 Hz. 1 H chemical shifts were referenced to TSP (sodium 3(trimethylsilyl)-[2,2,3,3-D₄]-propionate) *via* internal 1,4-dioxane at 3.764 ppm. ¹³C chemical shifts were referenced to TMS (tetramethylsilane) *via* internal 1,4-dioxane at 67.19 ppm.

Typical acquisition parameters for 2D [1 H, 15 N] HSQC NMR spectra (1 H: 500.13/ 15 N: 50.70 MHz): 512 transients of 16 scans/block, spectral width 7.5/4.6 kHz, using 2k/2k data points and a delay time of 1.5 s. Sequences were optimized for 1 *J*(15 N-H) = 76 Hz, and 1 H decoupling was achieved using WALTZ16 pulse sequence. Spectra were processed using cosine-squared weighting with a resolution of 2.2/3.7 Hz and a line-broadening threshold of 0.7/1.0 Hz. 1 H chemical shifts were referenced to TSP (sodium 3-(trimethylsilyl)-[2,2,3,3-D_4]-propionate) *via* internal 1,4-dioxane at 3.764 ppm. 15 N chemical shifts were referenced to external 15 NH₄Cl 1.5 M in 1 M HCl at 0.00 ppm.

Typical acquisition parameters for 2D [1 H, 15 N] HMBC NMR spectra (1 H: 599.92/ 15 N: 60.79 MHz): 512 transients of 32 scans/block, spectral width 6.0/6.1 kHz, using 2k/2k data points and a delay time of 1.5 s. Sequences were optimized for ${}^{1}J({}^{15}$ N-H) = 76 Hz/ ${}^{n}J({}^{15}$ N-H) = 4 Hz, and 1 H decoupling was achieved using WALTZ16 pulse sequence. Water suppression was achieved using a 47.0 dB power level presaturation. Spectra were processed using cosine-squared weighting with a resolution of 2.9/6.2 Hz and a line-broadening threshold of 0.7/1.0 Hz. 1 H chemical shifts were referenced to TSP (sodium 3-(trimethylsilyl)-[2,2,3,3-D_4]-propionate) *via* internal 1,4-dioxane at 3.764 ppm. 15 N chemical shifts were referenced to external 15 NH₄Cl 1.5 M in 1 M HCl at 0.00 ppm.

pH Measurement. pH values were measured at room temperature directly in the NMR tube with a Corning 145 pH-meter equipped with an Aldrich microcombination electrode, calibrated with standard Aldrich buffer solutions at pH 4, 7 and 10.

Mass Spectrometry (ESI-MS). Positive ion electrospray mass spectra were obtained on a Micromass Platform II mass spectrometer. Samples (100 μ L) were injected directly into the source by a syringe pump at a flow rate of 0.5 mL h⁻¹, and the ions were produced in an atmospheric pressure ionization (API) ESI ion source. The source temperature was 383 K, and the drying gas (N₂) flow rate was 300 L h⁻¹. A potential of 3.5 kV (capillary voltage) was applied to the probe tip (HV lens voltage: 0.5 kV; multiplier: 650 V), and the cone voltage was + 15 V. Mass spectra were recorded over the scan range 200-800 Da at a scan time rate of 2 s and a resolution of 15 *m/z*. Data acquisition and processing were carried out using MassLynx Software version 3.5 (Waters Corp.).

Photoreactions. Samples for the photochemical studies were 10-13 mM solutions of the investigated Pt^{IV} complexes in 0.6 mL 90% H₂O/10% D₂O; pH values were adjusted before irradiation using dilute HClO₄ solutions. Before irradiation, the samples were transferred into 5 mm screw-cap NMR tubes (Wilmad) provided with a teflon/silicone septum, and Ar was bubbled into the solutions for 30 min. Soon after Ar saturation, NMR samples were irradiated at for 2 h at 310 K using a LZC-ICH2 photoreactor

(Luzchem) equipped with a temperature controller and 14 LZC-UVA lamps (Hitachi, $\lambda_{max} = 365.0$ nm) with no other sources of light filtration. The power levels (P = 6.4-7.2 mW cm⁻²) were monitored and assessed using the appropriate probe window, calibrated against an OAI-306 UV power meter from Optical Associates, Inc.; the delivered radiation dose (J cm⁻²) is defined as irradiance (P, W cm⁻²) × time (s). NMR spectra were then recorded soon after irradiation.

Po₂ Measurement. Po₂ values were measured with a Corning 240 pH-meter (switched to read millivolts) equipped with a Lazar DO-166-NP dissolved oxygen needle probe. Calibration was carried out at 295 K at a barometric pressure of 761 mm Hg using a 0.1 g L⁻¹ NaCl solution in double-distilled water (made freshly) reading, in equilibrium with atmospheric dioxygen, a Po₂ value of 161 mm Hg (expected: 163 mm Hg). The pH-meter was then set up to read Po₂ directly in mm of Hg partial pressure.

 SO_4^{2-} Qualitative Detection. A sample containing ${}^{15}N_4-1$ (10.9 mM) in presence of DMS (68.2 mM; mol ratio = 1:6.2) in 90% H₂O/10% D₂O (Ar-saturated, initial pH 4.9) was irradiated for 2 h (λ_{max} = 365.0 nm, P = 6.4 mW cm⁻², dose = 49.5 J cm⁻², 310 K; final pH 10.4, re-adjusted to 3.2). An aliquot of this solution (100 µL) was acidified with concentrated HClO₄ to a final pH < 1, and treated with two drops of a saturated solution of BaCl₂. A white precipitate (BaSO₄) formed immediately.

Tables

Table S1. ¹H/¹⁵N chemical shifts, coupling constants and assignments of the peaks produced after 2 h of irradiation ($\lambda_{max} = 365.0 \text{ nm}$, P = 7.2 mW cm⁻², dose = 52.0 J cm⁻², 310 K) of complex ¹⁵N₂-1 (12.9 mM in 90% H₂O/10% D₂O, Ar-saturated, pH 5.1 (initial)/10.7 (final; re-adjusted to 3.1)) (see Figure S2). Yields of Pt-ammino species in solution are based on the integrals of the corresponding NMR peaks.

Peak	Chemical shifts (ppm)		Coupling constants (Hz)			
	δ(¹ H)	δ(¹⁵ N)	$^{1}J(^{15}\text{N-H})$	$^{1}J(^{195}\text{Pt-}^{15}\text{N})$	$^{2}J(^{195}\text{Pt-H})$	Assignment / Yield (%
2	4.06	-73.0	72	n.d.	n.d.	$t-(^{15}NH_3-Pt^{II}-N/O) / 1.9$
3	4.04	-69.0	72	280	55	$t-(^{15}NH_3-Pt^{II}-N) / 56.4$
4	3.90	-67.3	73	n.d.	n.d.	$t-(^{15}NH_3-Pt^{II}-N) / 2.6$
5	4.09	-65.8	72	n.d.	n.d.	t-(¹⁵ NH ₃ -Pt ^{II} -N) / 14.7
6	5.80	-53.7	73	258	48	$t-(^{15}NH_3-Pt^{IV}-O) / 1.9$
7	5.30	-51.4	74	261	48	$t-(^{15}\text{NH}_3-\text{Pt}^{\text{IV}}-\text{O}) / 16.0$
8	5.51	-50.9	73	260	48	$t-(^{15}\text{NH}_3-\text{Pt}^{IV}-\text{O})/3.9$
9	5.46	-42.4	73	265	48	$t-(^{15}NH_3-Pt^{IV}-N)/2.6$
10	7.11	-2.2	73	-	-	$^{15}\mathrm{NH_4}^+$

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2007

Table S2. ¹H/¹³C chemical shifts, coupling constants and assignments of the peaks produced after 2 h of irradiation ($\lambda_{max} = 365.0 \text{ nm}$, P = 6.4 mW cm⁻², dose = 49.5 J cm⁻², 310 K) of complex ¹⁵N₄-1 (10.9 mM) in presence of DMS (68.2 mM; molar ratio 1:6.2) in 90% H₂O/10% D₂O (Ar-saturated, pH 4.9 (initial)/10.4 (final)) (see Figure 1 and Figure S3).

D 1	Chemical s	shifts (ppm)	Coupling co	• • •	
Реак	δ(¹ H)	δ(¹³ C)	${}^{3}J({}^{1}\mathrm{H}{}^{-1}\mathrm{H})$	${}^{1}J({}^{13}\text{C-H})$	Assignment
α	1.19	17.4	7	129	CH ₃ -C-
β	3.66	58.2	7	147	C-CH ₂ -
γ	3.36	44.7	-	139	DMSO ₂
δ	2.73	39.4	-	141	DMSO
3	2.11	17.2	-	141	DMS
ζ	1.92	6.5	-	140	n.a.

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2007

Table S3. ¹H/¹⁵N chemical shifts, coupling constants and assignments of the peaks produced after 2 h of irradiation ($\lambda_{max} = 365.0 \text{ nm}$, P = 6.4 mW cm⁻², dose = 49.5 J cm⁻², 310 K) of complex ¹⁵N₄-1 (10.9 mM) in presence of DMS (68.2 mM; molar ratio 1:6.2) in 90% H₂O/10% D₂O (Ar-saturated, pH 4.9 (initial)/10.4 (final; re-adjusted to 3.2)). Yields of Pt-ammino species in solution are based on the integrals of the corresponding NMR peaks.

Chemical s	shifts (ppm)	Cou	pling constants	A · · · / X7· 11 (0/)		
δ (¹ H)	δ(¹⁵ N)	$^{1}J(^{15}\text{N-H})$	$^{1}J(^{195}\text{Pt-}^{15}\text{N})$	² <i>J</i> (¹⁹⁵ Pt-H)	Assignment / Yield (%)	
4.02	-69.0	72	284	55	<i>t</i> -(¹⁵ NH ₃ -Pt ^{II} -N) / 12.6	
3.81	-68.1	70	282	55	$t-(^{15}NH_3-Pt^{II}-N) / 4.4$	
4.07	-65.6	72	289	53	$t - ({}^{15}\text{NH}_3 - \text{Pt}^{II} - \text{N}) / 8.9$	
3.65	-64.5	91	n.d.	n.d.	$CH_{3}CH_{2}$ - ¹⁵ NH-Pt ^{II} / 63.3	
5.69	-54.4	73	261	48	$t - (^{15}\text{NH}_3 - \text{Pt}^{\text{IV}} - \text{O}) / 1.9$	
5.24	-51.2	70	259	47	$t - ({}^{15}\text{NH}_3 - \text{Pt}^{\text{IV}} - \text{O}) / 7.6$	
5.39	-42.6	73	267	48	$t-(^{15}NH_3-Pt^{IV}-N) / 1.3$	
7.11	-2.2	73	-	-	$^{15}\mathrm{NH_4}^+$	

Figure S1. 1D ¹⁴N{¹H} NMR spectrum of ¹⁵N₂-1 (12.9 mM in 90% H₂O/10% D₂O, Ar-saturated, initial pH 5.1) after 2 h of irradiation ($\lambda_{max} = 365.0$ nm, P = 7.2 mW cm⁻², dose = 52.0 J cm⁻², 310 K; final pH 10.7).

Figure S2. 2D [¹H,¹⁵N] HSQC NMR spectrum of ¹⁵N₂-1 (12.9 mM in 90% H₂O/10% D₂O, Ar-saturated, initial pH 5.1) after 2 h of irradiation ($\lambda_{max} = 365.0$ nm, P = 7.2 mW cm⁻², dose = 52.0 J cm⁻², 310 K; final pH 10.7), and pH adjustment to 3.1: (A) NH₄⁺, (B) Pt^{IV}-NH₃, and (C) Pt^{II}-NH₃ spectral regions (see Table S1).

Figure S3. 2D [¹H,¹³C] HMBC NMR spectrum of complex ¹⁵N₄-1 (10.9 mM) in presence of DMS (68.2 mM; mol ratio 1:6.2) in 90% H₂O/10% D₂O (Ar-saturated, initial pH 4.9) after 2 h of irradiation (λ_{max} = 365.0 nm, P = 6.4 mW cm⁻², dose = 49.5 J cm⁻², 310 K; final pH 10.4) (see Figure 1 and Table S2).

Figure S4. (A) Part of the ESI mass spectrum in positive ion mode (cone voltage: +15 V) of a sample containing ¹⁵N₄-1 (10.9 mM) in presence of DMS (68.2 mM; mol ratio = 1:6.2) in 90% H₂O/10% D₂O (Ar-saturated, initial pH 4.9) after 2 h of irradiation (λ_{max} = 365.0 nm, P = 6.4 mW cm⁻², dose = 49.5 J cm⁻², 310 K; final pH 10.4, re-adjusted to 3.2), and isotope models for (B) C₄H₁₅N₂O₃PtS, (C) C₄H₁₅¹⁵NNO₃PtS, and (D) C₄H₁₅¹⁵N₂O₃PtS.