Chemo- and Enantioselective Sulfoxidation of Bis(ethylenedithio)-Tetrathiafulvalene (BEDT-TTF) into Chiral BEDT-TTF-Sulfoxide

Marcos Chas,^a Margareth Lemarié,^b Mihaela Gulea,^b and Narcis Avarvari^{*,a}

SUPPORTING INFORMATION

Experimental section

General comments. Dry CH₂Cl₂ and CH₃CN were obtained by distillation over P₂O₅ and THF was distilled over sodium and benzophenone. Nuclear magnetic resonance spectra were recorded on a Bruker Avance DRX 500 spectrometer operating at 500.04 MHz for ¹H, 125.75 MHz for ¹³C. Chemical shifts are expressed in parts per million (ppm) downfield from external TMS. The following abbreviations are used: m, multiplet. EI MS spectra were recorded on Thermo Electron Corporation TRACE-DSQ apparatus, with direct introduction probe at 70 eV. Elemental analyses were performed by the "Service d'Analyse du CNRS" at Gif/Yvette, France.

Synthesis of BEDT-TTF S-Oxide 2a-c: To a BEDT-TTF (1.00 g, 2.60 mmol) solution in THF (700 ml), (+), (-) or (rac)-(8,8-Dichlorocamphorylsulfonyl)-oxaziridine 1 (0.70 g, 2.37 mmol) in THF (10 ml) was added. The resulting solution was stirred at room temperature for 12 hours. The solvent was then evaporated under reduced pressure and the solid residue chromatographed through silica gel with CH₂Cl₂, and then CH₂Cl₂/AcOEt 20:1 as eluents to obtain the product as a yellow solid. Further purification may be achieved by recrystallization from hot toluene, affording 797 mg (84% yield) of the pure product. Single crystals suitable for X-ray diffraction were obtained by evaporation of a dilute solution of the product in CH₂Cl₂ or toluene. ¹H NMR (CDCl₃) δ 3.20-3.44 (m, 8H, S(CH₂)₂S); ¹³C NMR (CDCl₃) δ 28.7 (CH₂), 29.6 (CH₂), 29.7 (CH₂), 30.7 (CH₂); IR (KBr, cm⁻¹) 1034 (SO); MS (EI) *m/z* 400 (M⁺), 384 (BEDT-TTF⁺); Anal. Calc. for C₁₀H₈O₁S₈: C 29.98, H 2.01, O 3.99. Found: C 29.72, H 2.03, O 4.50%.

Synthesis of the CT complex (BEDT-TTF-bis(sulfoxide)][TCNQF₄] **3**: To a solution of **2** (10 mg, 0.025 mmol) in CH₂Cl₂ (15 ml), a solution of TCNQF₄ (6.9 mg, 0.025 mmol) in 5 ml of CH₂Cl₂ was added The resulting mixture was left standing at room temperature in an open flask and after solvent evaporation, black single crystals were obtained. IR (KBr, cm⁻¹) 2192 (CN), 2165 (CN), 1583 (C=C TCNQF4), 1038 (SO); MS (EI) *m/z* 416 (BEDT-TTF-(SO)₂⁺), 384 (BEDT-TTF⁺); Anal. Calc. for C₂₂H₈F₄N₄O₂S₈: C 38.14, H 1.16, N 8.09 Found: C 38.82, H 1.25, N 7.76%.

Chiral HPLC analyses: The measurements have been performed with a Daicel Chiralpak column, AD-H 5 μ m, 4.6x250 mm, 1 mL/min, 90% MeCN, 10% *iso*-propanol, 20 °C. Retention times 13.5-15 min. (enantiomer *S*) and 25.2-27.5 min (enantiomer *R*).

Fig. S1 Chiral HPLC chromatogram for 2c (racemic).

Fig. S2 Chiral HPLC chromatogram for 2a (enantio-enriched). Solid after chromatography purification.

Fig. S3 Chiral HPLC chromatogram for 2a (enantio-enriched). Solid after recrystallization in toluene.

Fig. S4 Chiral HPLC chromatogram for 2a (enantio-enriched). Mother liquors after recrystallization in toluene.

X-Ray Structure Determinations. X-ray diffraction measurements were performed on a Bruker Kappa CCD diffractometer for, operating with a Mo-K α ($\lambda = 0.71073$ Å) X-ray tube with a graphite monochromator. The structures were solved (SHELXS-97) by direct methods and refined (SHELXL-97) by full-matrix least-square procedures on F².¹ All non-H atoms were refined anisotropically, and hydrogen atoms were introduced at calculated positions (riding model), included in structure factor calculations but not refined.

X-ray structure of 2.

Fig. S5 Molecular structure of **2** along with the numbering scheme (left). The site occupational factors (s.o.f.) have been refined to 0.8 for O1 and 0.2 for O2. Side view of the molecule (right).

Fig. S6 Packing diagram of 2 along the *a* axis.

Bond Lengths (Å)

S1 C2 1.736(4)	S1 C1 1.807(5)	S2 O2 1.445(15)	S2 C3 1.755(4)
S2 C2 1.763(4)	S3 C4 1.733(4)	S3 C5 1.745(4)	S4 C6 1.716(6)
S4 C5 1.737(4)	S5 C7 1.703(6)	S5 C8 1.736(4)	S6 C4 1.739(4)

¹ G. M. Sheldrick, *Programs for the Refinement of Crystal Structures*, University of Göttingen, Göttingen, Germany, 1996.

S6 C8 1.746(4)	S7 O1 1.492(4)	S7 C3 1.765(4)	S7 C9 1.776(4)
S8 C9 1.750(4)	S8 C10 1.804(5)	C1 C10 1.494(7)	C2 C9 1.342(6)
C3 C4 1.353(5)	C5 C8 1.340(6)	C6 C7 1.373(8)	

Bond Angles (°)

C2 S1 C1 104.7(2)	O2 S2 C3 109.1(6)	O2 S2 C2 105.8(6)	C3 S2 C2 91.86(19)
C4 S3 C5 95.9(2)	C6 S4 C5 102.7(3)	C7 S5 C8 104.0(3)	C4 S6 C8 95.68(19)
O1 S7 C3 109.3(2)	O1 S7 C9 108.2(2)	C3 S7 C9 90.97(19)	C9 S8 C10 98.1(2)
C10 C1 S1 117.4(3)	C9 C2 S1 128.5(3)	C9 C2 S2 117.4(3)	S1 C2 S2 114.1(2)
C4 C3 S2 122.6(3)	C4 C3 S7 122.2(3)	S2 C3 S7 115.2(2)	C3 C4 S3 122.2(3)
C3 C4 S6 123.3(3)	S3 C4 S6 114.5(2)	C8 C5 S4 126.5(3)	C8 C5 S3 116.9(3)
S4 C5 S3 116.6(3)	C7 C6 S4 126.1(5)	C6 C7 S5 127.0(5)	C5 C8 S5 127.5(3)
C5 C8 S6 116.9(3)	S5 C8 S6 115.6(3)	C2 C9 S8 125.4(3)	C2 C9 S7 117.4(3)
S8 C9 S7 116.9(2)	C1 C10 S8 115.8(4)		

X-ray structure of 3.

BEDT-TTF-bis(sulfoxide)

Fig. S7 Molecular structure of 3 along with the numbering scheme.

Fig. S8 Packing diagram of **3** along the *a* axis. Intermolecular S…O distances (Å): O2A…S4 2.97, O2A…S2 3.04, O1B…S4 3.08, O1B…S6 3.26. Short O…C contacts of 2.72-2.90 Å are also observed between adjacent BEDT-TTF-SO and TCNQF₄ molecules.

Bond Lengths (Å)

S1 C3 1.761(5)	S1 C1 1.780(7)	S2 C4 1.745(5)	S2 C2 1.785(5)
S3 O2A 1.406(7)	S3 O2B 1.455(8)	S3 C3 1.728(5)	S3 C5 1.746(4)
S4 C4 1.734(4)	S4 C5 1.740(4)	S5 O1B 1.357(6)	S5 O1A 1.479(5)
S5 C7 1.739(4)	S5 C6 1.750(4)	S6 C6 1.754(4)	S6 C8 1.768(5)
S7 C7 1.741(4)	S7 C9 1.780(5)	S8 C8 1.745(4)	S8 C10 1.801(6)
C1 C2 1.504(9)	C3 C4 1.358(6)	C5 C6 1.346(5)	C7 C8 1.339(6)
C9 C10 1.469(8)	F1 C12 1.329(5)	F2 C13 1.322(5)	F3 C16 1.334(5)
F4 C15 1.332(5)	N1 C18 1.136(6)	N2 C19 1.137(6)	N3 C21 1.141(6)
N4 C22 1.123(6)	C11 C17 1.388(6)	C11 C12 1.423(6)	C11 C16 1.432(6)
C12 C13 1.339(6)	C13 C14 1.440(6)	C14 C20 1.384(6)	C14 C15 1.421(6)
C15 C16 1.343(5)	C17 C19 1.425(7)	C17 C18 1.433(7)	C20 C22 1.404(7)
C20 C21 1.431(7)			

Powder X-ray diffraction.

Powder X-ray diffraction measurements were carried out on a D8 Brucker diffractometer using CuK $\alpha_{1,2}$ radiation, equipped with the linear Vantec super speed detector. 45 minutes diffractograms were collected in the range 4-30° (2 θ).

Fig. S9 Combined powder X-ray diffractogram of 2, emphasizing the differences between the single crystals obtained by evaporation and the polycrystalline solid resulted from recrystallization in toluene.

Theoretical Calculations

The optimized geometries have been obtained with the Gaussian03² package at the DFT level of theory. The B3LYP functional³ with the 6-31+G* basis set has been used. Vibrations frequency calculations performed on the optimized structures at the same level of theory yielded only positive values.

Theoretical calculations on BEDT-TTF-sulfoxide 2.

Fig. S10 Optimized geometry for 2.

Fig. S11 HOMO of 2. E = -5.556 eV.

Orientation for 2.

Center	Atomic	Atomic	Coord	linates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	0.728450	0.037542	0.352336
2	6	0	3.174535	-0.633183	-0.270481
3	6	0	3.202157	0.715051	-0.181831
4	6	0	-0.625221	0.061674	0.433090
5	16	0	-1.572909	1.525959	0.701510
6	16	0	-1.577646	-1.484928	0.297784
7	16	0	1.724115	1.507348	0.412875
8	16	0	1.688891	-1.452527	0.257696

 ² J. A. Pople et al., *Gaussian03*, Revision B.03; Gaussian, Inc.: Wallingford CT, 2004.
³ (a) C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785; (b) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 5648.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2007

9	6		0	-3.07313	35 0.787557	0.094917	
10	6		0	-3.08364	40 -0.545789	-0.122894	
11	16		0	-4.39510	1.942598	-0.124715	
12	16		0	-4.40949	93 -1.582108	-0.682973	
13	16		0	4.54624	1.789144	-0.566436	
14	16		0	4.58665	58 -1.613822	-0.661526	
15	6		0	-5.66259	99 -0.332419	-1.165799	
16	6		0	6.05449	0.746991	-0.225442	
17	6		0	5.78628	-0.638175	0.344137	
18	1		0	6.66847	1.320344	0.478233	
19	1		0	6.58602	28 0.670386	-1.176812	
20	1		0	6.71949	90 -1.211782	0.343787	
21	1		0	5.40839	94 -0.592346	1.369163	
22	6		0	-5.82480	0.793906	-0.145275	
23	1		0	-6.67510	1.427895	-0.419016	
24	1		0	-5.99466	52 0.399202	0.859817	
25	1		0	-6.59351	-0.905416	-1.240669	
26	1		0	-5.42597	0.071643	-2.153531	
27	8		0	-1.77555	51 -2.155682	1.639378	
Mode		1		2	3	4	5
Symmetry		A		A	А	А	A
Frequencies		18.9212		26.8293	34.7346	40.4526	51.4588

Theoretical calculations on BEDT-TTF.

Fig. S12 Optimized geometry for BEDT-TTF.

Fig. S13 HOMO of **BEDT-TTF**. E = -4.827 eV.

Orientation for BEDT-TTF.

Center	Atomic	Atomic	Coord	linates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-0.671035	0.035051	0.074811
2	6	0	-3.185787	0.703433	-0.156796
3	6	0	-3.187127	-0.647700	-0.152909
4	6	0	0.671174	0.035024	-0.077642
5	16	0	1.643471	-1.457173	-0.212689
6	16	0	1.648445	1.522227	-0.208715
7	16	0	-1.643174	-1.457242	0.209883
8	16	0	-1.648181	1.522239	0.206265
9	6	0	3.186856	-0.647677	0.152715
10	6	0	3.185509	0.703423	0.156792
11	16	0	4.561228	-1.715237	0.443971
12	16	0	4.649073	1.675936	0.305339
13	16	0	-4.561736	-1.715494	-0.441933
14	16	0	-4.649441	1.676213	-0.303458
15	6	0	5.697045	0.619748	-0.784133
16	6	0	-6.022882	-0.732518	0.169557
17	6	0	-5.696284	0.619627	0.786761
18	1	0	-6.528845	-1.361312	0.911060
19	1	0	-6.680879	-0.606348	-0.693533
20	1	0	-6.627222	1.174048	0.948319

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2007

21	1		0	-5.18349	5 0.515095	1.746759	
22	6		0	6.02296	2 -0.732761	-0.167319	
23	1		0	6.52867	8 -1.361512	-0.908972	
24	1		0	6.68081	9 -0.607248	0.695962	
25	1		0	6.62812	1 1.174254	-0.944524	
26	1		0	5.18528	7 0.515602	-1.744724	
Mode		1		2	3	4	5
Symmetry		A		A	A	A	A
Frequencies		6.4364		35.8582	47.2007	47.3264	50.2707

Theoretical calculations on the radical cation of BEDT-TTF-sulfoxide 2^{+*} .

Fig. S14 Optimized geometry for 2⁺⁺.

Fig. S15 SOMO of **2**^{+•}.

Orientation for 2^{+•}.

Center	Atomic	Atomic	Coord	dinates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-0.718612	-0.110005	-0.233157
2	6	0	-3.215638	0.616461	-0.047377
3	6	0	-3.244698	-0.761166	-0.001024
4	6	0	0.645494	-0.158269	-0.389843
5	16	0	1.606616	-1.604792	-0.448994
6	16	0	1.625967	1.362960	-0.600014
7	16	0	-1.685458	-1.563970	-0.075969
8	16	0	-1.640943	1.382481	-0.130979
9	6	0	3.136979	-0.791899	0.013959
10	6	0	3.129153	0.563454	0.059758
11	16	0	4.457243	-1.910147	0.296868
12	16	0	4.483023	1.627802	0.374212
13	16	0	-4.621954	-1.838049	0.137003
14	16	0	-4.580985	1.720641	-0.000968
15	6	0	5.835145	0.530081	-0.222926
16	6	0	-6.039547	-0.675474	-0.031031
17	6	0	-5.859647	0.627610	0.736218
18	1	0	-6.880171	-1.242147	0.383224
19	1	0	-6.230966	-0.495756	-1.091453
20	1	0	-6.777484	1.221287	0.673535
21	1	0	-5.630711	0.456211	1.791104

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2007

22	6		0		5.90700	6	-0.786177		0.540341	
23	1		0		6.75610	1	-1.379667		0.184513	
24	1		0		6.026253	1	-0.613065		1.611656	
25	1		0		6.753323	3	1.098622	-	0.043674	
26	1		0		5.726490	6	0.377203	-	1.299896	
27	8		0		1.063402	2	2.427351		0.302866	
Mode		1		2		3		4		5
Symmetry		A		А		A		A		A
Frequencies		20.4720		31.24	82	37.	1278	43.	3038	54.8976

Electrochemical studies. Cyclic voltammetry measurements were performed using a threeelectrode cell equipped with a platinum millielectrode of 0.126 cm² area, an Ag/Ag⁺ pseudoreference and a platinum wire counter-electrode. The potential values were then re-adjusted with respect to the saturated calomel electrode (SCE). The electrolytic media involved a 0.1 mol.L⁻¹ solution of (*n*-Bu₄N)PF₆ in MeCN. All experiments have been performed at room temperature at 0.1 V.s⁻¹. Experiments have been carried out with an EGG PAR 273A potentiostat with positive feedback compensation.