Supporting Information for

m-Benziporphodimethene-a New Porphyrin Analogue Fluorescence Zinc(II) Sensor

Chen-Hsiung Hung ${ }^{\mathbf{a}^{*}}$, Gao-Fong Chang ${ }^{\text {a }}$, Anil Kumar ${ }^{\text {a }}$, Geng-Fong Lin ${ }^{\text {b }}$, Li-Yang Luo ${ }^{\text {a,c }, ~}$ Wei-Min Ching ${ }^{\mathrm{a}}$, and Eric Wei-Guang Diau ${ }^{\text {c }}$

${ }^{a}$ Institute of Chemistry, Academia Sinica, Nankang, Taipei 105 Taiwan. Fax: 886-2-27831237. E-mail:
chhung@chem.sinica.edu.tw
${ }^{\frac{b}{b}}$ Department of Chemistry, Tamkang University, Tamsui, Taipei 251 Taiwan
${ }^{c}$ The Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 300 Taiwan

Synthesis of 1: A solution of α, α '-dihydroxy-1, 3-diisopropylbenzene ($98 \mathrm{mg}, 0.50$ $\mathrm{mmol})$, benzaldehyde ($102 \mu \mathrm{~L}, 1.01 \mathrm{mmol}$) and pyrrole ($104 \mu \mathrm{~L}, 1.51 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ was treated with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(13 \mu \mathrm{~L}, 0.10 \mathrm{mmol})$ and stirred at $27^{\circ} \mathrm{C}$. Two hours later, DDQ ($374 \mathrm{mg}, 1.65 \mathrm{mmol}$) was added into the reaction mixture, and stirring was continued for two hours under $27^{\circ} \mathrm{C}$. The reaction was quenched with triethylamine (10 drops) and then the solvent was removed in vacuum. The crude mixture was dissolved in minimum amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and was purified by chromatography [$\mathrm{SiO}_{2}(400 \mathrm{~mL})$, eluted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$] to give $\mathbf{1}(72 \mathrm{mg}, 0.136 \mathrm{mmole})$ [$R_{f}=0.11, \mathrm{CH}_{2} \mathrm{Cl}_{2}$] in 27% yield as a red powder.
${ }^{1} \mathrm{H}$ NMR (400MHz, $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta=1.75\left(\mathrm{~s}, 12 \mathrm{H}\right.$; meso- $\left.\mathrm{CH}_{3}\right), 6.19(\mathrm{~s}, 2 \mathrm{H}$; 13,14-H), $6.83\left(a b\right.$ quartet, $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=4.54,4 \mathrm{H} ; 8,9,18,19-\mathrm{H}\right), 7.29-7.48(\mathrm{~m}, 13 \mathrm{H}$; 2,3,4-H and meso-phenyl), $8.00(\mathrm{~s}, 1 \mathrm{H} ; 22-\mathrm{H}), 12.46(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta=29.17,42.33,121.50,123.32,125.12,127.45,127.78$, 128.54, 129.06, 131.94, 136.83, 138.27, 138.46, 139.05, 147.38, 152.15, 182.20; UV-Vis $\left(\mathrm{CH}_{3} \mathrm{CN}\right)\left[\lambda_{\max } / \mathrm{nm}(\log \varepsilon)\right]: 349$ (4.56), 514 (4.28), 542 (4.31); Anal. Found (calc for $\mathrm{C}_{38} \mathrm{H}_{33} \mathrm{~N}_{3} \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{14}$): C 84.08 (85.67); H 7.32 (7.01); N 7.31 (7.31); HR-FAB-MS (m/z): calcd. $[\mathrm{MH}]^{+}=532.2752$ obs. $[\mathrm{MH}]^{+}=532.2745$

Synthesis of $\mathbf{Z n} \bullet \mathbf{1}$:Anhydrous zinc chloride ($51.3 \mathrm{mg}, 0.376 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}$, added into a solution of $\mathbf{1}(10 \mathrm{mg}, 0.0188 \mathrm{mmol})$ in $30 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{CN}$ (1:2), and added 1 drop of 2,6-lutidine into the solution. After two minutes of stirring, the solvent was removed under reduced pressure. Dried residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and excess zinc salt was extracted using distilled water. The organic layer was collected and solvent was removed in vacuo, and the dried product was dissolved in hexane. Slow evaporation of hexane yielded crystalline form of $\mathbf{Z n} \cdot \mathbf{1}(9.1 \mathrm{mg}, 77 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone- $d_{6}, 298 \mathrm{~K}$) $: \delta=1.97(\mathrm{~s}, 6 \mathrm{H}$; meso- CH_{3}), $2.14\left(\mathrm{~s}, 6 \mathrm{H} ;\right.$ meso- $\left.\mathrm{CH}_{3}\right), 6.05(\mathrm{~s}, 2 \mathrm{H} ; 13,14-\mathrm{H}), 6.76\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=4.70\right.$, $2 \mathrm{H} ; 9,18-\mathrm{H}), 6.98\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=4.70,2 \mathrm{H} ; 8,19-\mathrm{H}\right), 7.31-7.53(\mathrm{~m}, 13 \mathrm{H} ; 2,3,4-\mathrm{H}$, meso-phenyl), $8.69(\mathrm{~s}, 1 \mathrm{H} ; 22-\mathrm{H})$; UV-Vis $\left(\mathrm{CH}_{3} \mathrm{CN}\right)\left[\lambda_{\max } / \mathrm{nm}(\log \varepsilon)\right]: 350(4.58), 593$ (4.29), 639 (4.56); Anal. Found (calc for $\mathrm{C}_{38} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{ZnCl}$): C 71.38 (72.48); H 5.57 (5.13); N 5.85 (6.68); HR-FAB-MS (m/z): calcd. $[\mathrm{M}-\mathrm{Cl}]^{+}=594.1888$; obs. 594.1880.

Supporting Figure 1. The ORTEP diagram of 1 in 30% probabilities of ellipsoids.

Supporting Figure 2. Job plot for the reaction of 1 with Zn^{2+} ion. Equimolar solutions ($3.75 \times 10^{-5} \mathrm{M}$) of $\mathbf{1}$ and Zn^{2+} (from ZnCl_{2}) in $\mathrm{CH}_{3} \mathrm{CN}$ were prepared. To obtain the plot, $\mathbf{1}$ and Zn^{2+} solutions were mixed in various volume ratios (1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2, and 9:1). Neat 2,6-lutidine was added to each volume ratio to give a 0.014 M final concentration of 2,6-lutidine.

Supporting Figure 3. The fluorescence intensity changes when $1\left(2 \times 10^{-5} \mathrm{M}\right)$ was treated with 0.1 equiv. of Zn^{2+} and then 0.1 equiv. of HCl .

Supporting Figure 4. The fluorescence intensity changes when $1\left(1 \times 10^{-5} \mathrm{M}\right)$ was treated with 5 equiv. of Zn^{2+} and increasing amount of HCl .

