SUPPORTING INFORMATION

Reactivity of the Ni \rightarrow B Dative σ -Bond in the Nickel Boratrane Compounds [\mathbf{k}^4 -B(mim^{But})₃]NiX (X = Cl, OAc, NCS, N₃): Synthesis of a Series of *B*-Functionalized *Tris*(2-mercapto-1-t-butylimidazolyl)borato Complexes, [YTm^{But}]NiZ

Keliang Pang,[‡] Joseph M. Tanski,[§] and Gerard Parkin^{*‡}

 Department of Chemistry, Columbia University, New York, New York 10027, USA.
 § Department of Chemistry, Vassar College, 124 Raymond Avenue, Box 601, Poughkeepsie, New York 12604, USA.

Received xxxx xx, 2007

EXPERIMENTAL SECTION

General Considerations

All manipulations were performed using a combination of dry glovebox, high vacuum, and Schlenk techniques under a nitrogen or argon atmosphere unless otherwise specified.¹ Solvents were purified and degassed by standard procedures. ¹H NMR spectra were measured on Bruker 300 DRX and Bruker 400 DRX spectrometers. ¹H chemical shifts are reported in ppm relative to SiMe₄ ($\delta = 0$) and were referenced internally with respect to the protio solvent impurity (δ 7.16 for C₆D₅H; 1.94 for CD₂HN; 7.26 for CHCl₃).² ¹⁹F NMR spectra are reported in ppm relative to CFCl₃ ($\delta = 0$) and were referenced using external PhCF₃ in CDCl₃ ($\delta = -63.7$).³ ¹¹B NMR spectra are reported with reference to BF₃(OEt₂) ($\delta = 0.0$).⁴ Coupling constants are given in hertz. Infrared spectra were recorded on Nicolet Avatar 370 DTGS spectrometer and are reported in cm⁻¹. Mass spectra were obtained on a Micromass Quadrupole-Time-of-Flight mass spectrometer using fast atom bombardment (FAB). [Tm^{But}]K was prepared by the literature method.⁵

Synthesis of [**k**⁴–B(mim^{But})₃]NiCl

A solution of $[Tm^{But}]K$ (3.0 g, 5.8 mmol) in CH₃OH (30 mL) was treated with a solution of NiCl₂•6H₂O (1.4 g, 5.9 mmol) in CH₃OH (30 mL), resulting in a green solution with a green precipitate. The mixture was stirred for 15 minutes and then exposed to air and stirred for an additional 2 hours. The mixture was concentrated to ca. 10 mL and treated with Et₂O (30 mL), thereby depositing more material. The resulting precipitate was isolated by filtration and washed with acetone /H₂O (1:1, 30 mL), acetone (2 × 30 mL) and Et₂O (2 × 30 mL) and dried *in vacuo*, giving [κ^4 -B(mim^{But})₃]NiCl as a green powder (1.9 g, 57%). Crystals suitable for X-ray diffraction were grown by slow evaporation of an acetonitrile solution. Anal. calcd. for C₂₁H₃₃BClN₆NiS₃: C, 44.2%; H, 5.8%; N, 14.7%. Found: C, 44.2%; H, 5.9%; N, 14.6%. ¹H NMR (CD₃CN): -0.15 [s, 27H, 3 Bu^t], 12.95 [s, 3H, 3 C<u>H</u>mim^{But}], 17.64 [s, 3H, 3 C<u>H</u>mim^{But}]. ¹H NMR (CD₃OD): 0.04 [s,

2

27H, 3 Bu^t], 11.86 [s, 3H, 3 C<u>H</u>mim^{But}], 17.64 [s, 3H, 3 C<u>H</u>mim^{But}]. IR Data (KBr pellet, cm⁻¹): 3178 (m), 3111 (m), 3070 (m), 2992 (m), 2971 (m), 2932 (w), 1561 (w), 1426 (s), 1392 (s), 1378 (s), 1369 (s), 1308 (m), 1262 (w), 1229 (w), 1189 (s), 1163 (s), 1138 (w), 1067 (m), 1028 (m), 820 (m), 803 (m), 784 (s), 735 (s), 696 (m). Mass spectrum: *m*/*z* = 534.4 {M–Cl}⁺.

Molecular structure of $[\kappa^4 - B(\min^{But})_3]$ NiCl (20% thermal parameters)

Synthesis of [**≰**⁴–B(mim^{But})₃]NiNCS

A mixture of $[\kappa^4-B(\min^{But})_3]$ NiCl (0.200 g, 0.35 mmol) and KSCN (0.034 g, 0.35 mmol) in CH₃CN (8 mL) was stirred at 70°C for 1 day after which period the resulting green mixture was filtered. The green precipitate was extracted into CH₃CN (20 mL) and the two filtrates were combined. The volatile components were removed *in vacuo* to give $[\kappa^4-B(\min^{But})_3]$ NiNCS as a green solid (0.046 g, 22%). Crystals suitable for X-ray diffraction were grown by slow evaporation of an acetonitrile solution. Anal. calcd. for C₂₂H₃₃BN₇NiS₄: C, 44.5%; H, 5.6%; N, 16.5%. Found: C, 43.6%; H, 5.5%; N, 15.7%. ¹H NMR (CD₃CN): 0.01 [s, 27H, 3 Bu^t], 12.75 [s, 3H, 3 C<u>H</u>mim^{But}], 17.31 [s, 3H, 3 C<u>H</u>mim^{But}]. IR Data (KBr pellet, cm⁻¹): 3166 (w), 3130 (w), 3076 (w), 2977 (m), 2935 (w), 2093 (s), 1559 (w), 1427 (m), 1393 (s), 1381 (m), 1370 (m), 1309 (w), 1231 (w), 1191 (s), 1159 (m), 1132 (w), 1067 (w), 1033 (w), 820 (w), 786 (m), 725 (m), 690 (m).

Molecular structure of $[\kappa^4 - B(\min^{But})_3]$ NiNCS (20% thermal parameters)

Synthesis of [**k**⁴–B(mim^{But})₃]NiN₃

A mixture of $[\kappa^4-B(mim^{But})_3]$ NiCl (0.200 g, 0.35 mmol) and NaN₃ (0.023 g, 0.35 mmol) in CH₃CN (25 mL) was stirred at 70°C for 1 day. After this period, the mixture was filtered, giving a green filtrate. The volatile components were removed from the filtrate

4

to give $[\kappa^4 - B(\min^{Bu^t})_3]NiN_3$ as a green solid (0.055 g, 27%). Crystals of composition $[\kappa^4 - B(\min^{Bu^t})_3]NiN_3 \cdot 2CH_3CN$ suitable for X-ray diffraction were grown by slow evaporation of an acetonitrile solution. Anal. calcd. for $C_{21}H_{33}BN_9NiS_3$: C, 43.7%; H, 5.8%; N, 21.8%. Found: C, 41.9%; H, 5.3%; N, 20.2%. ¹H NMR (CD₃CN): -0.01 [s, 27H, 3 Bu^t], 12.64 [s, 3H, 3 C<u>H</u>mim^{Bu^t}], 17.44 [s, 3H, 3 C<u>H</u>mim^{Bu^t}]. IR Data (KBr pellet, cm⁻¹): 3167 (w), 3119 (w), 3076 (w), 2976 (m), 2918 (w), 2145 (w), 2111 (w), 2038 (s), 1560 (w), 1427 (m), 1393 (s), 1370 (m), 1310 (w), 1232 (w), 1193 (s), 1162 (m), 1134 (w), 1070 (m), 1033 (w), 820 (w), 785 (m), 735 (w), 685 (w). Mass spectrum: $m/z = 534.5 \{M-N_3\}^+$.

Molecular structure of $[\kappa^4 - B(mim^{But})_3]$ NiN₃ (20% thermal parameters)

Synthesis of [**≰**⁴–B(mim^{But})₃]NiOAc

A mixture of $[\kappa^4$ -B(mim^{But})₃]NiCl (0.200 g, 0.35 mmol) and TlOAc (0.100 g, 0.38 mmol) in CH₃OH (20 mL) was stirred at room temperature for 12 hours. After this period, the mixture was filtered to give a green filtrate. The volatile components were removed *in vacuo* from the filtrate to give a green residue, which was extracted with CH₂Cl₂ (20 mL). The volatile components were removed *in vacuo* from the CH₂Cl₂ extract to give $[\kappa^4$ -B(mim^{But})₃]NiOAc as a green powder (0.019 g, 9%). Crystals of composition $[\kappa^4$ -B(mim^{But})₃]NiOAc•CH₃CN suitable for X-ray diffraction were grown by slow evaporation of an acetonitrile/methanol (10:1) solution. ¹H NMR (CDCl₃): -0.03 [s, 27H, 3 Bu^t], 12.56 [s, 3H], 16.1 [s, br, 3H], 17.8 [s, 3H].

Molecular structure of $[\kappa^4 - B(\min^{But})_3]$ NiOAc (40% thermal parameters)

Synthesis of [FTm^{But}]NiCl

A suspension of $[\kappa^4-B(\min^{But})_3]$ NiCl (0.100 g, 0.18 mmol) in benzene (3 mL) in an ampoule was treated with a solution of XeF₂ (0.040 g, 0.24 mmol) in benzene (7 mL). The resulting mixture was stirred for 12 hours at 100°C and then filtered. The volatile components were removed from the filtrate by lyophilization to give $[FTm^{But}]$ NiCl as green powder, which was washed with pentane (2 × 10 mL) and dried *in vacuo* (0.056 g, 54%). Crystals of composition $[FTm^{But}]$ NiCl•C₆H₆ suitable for X-ray diffraction were grown by slow evaporation of a benzene solution. Anal. calcd. for C₂₁H₃₃BClFN₆NiS₃•(C₆H₆)_{0.2}: C, 44.0%; H, 5.7%; N, 13.9%. Found: C, 44.0%; H, 5.7%; N, 12.7%. ¹H NMR (C₆D₆): -7.64 [s, 3H, 3 C<u>H</u>mim^{But}], 5.66 [s, 27H, 3 But], 9.60 [s, 3H, 3 C<u>H</u> mim^{But}]. ¹¹B NMR (C₆D₆): -64.0 [d, J_{B-F} = 36 Hz]. ¹⁹F NMR (C₆D₆): -140 ~ -200 [br]. Mass spectrum: *m*/*z* = 553.2 {M-Cl}⁺, 569.1 {M-F}⁺, 588.1 {M}⁺.

Molecular structure of [FTm^{But}]NiCl (40% thermal parameters)

Synthesis of [ClTm^{But}]NiCl

A mixture of $[\kappa^4-B(\min^{But})_3]$ NiCl (0.100 g, 0.18 mmol) and CHCl₃ (0.10 mL, 1.2 mmol) in toluene (10 mL) was stirred in a glass ampoule at 120°C for 10 hours. After this period, the volatile components were removed *in vacuo* and the residue obtained was extracted into benzene (20 mL). The volatile components were removed from the extract by lyophilization to give [ClTm^{But}]NiCl as green powder (0.040 g, 37%). Crystals of

composition [CITm^{But}]NiCl •C₆H₆ suitable for X-ray diffraction were grown by slow evaporation of a benzene solution. Anal. calcd. for C₂₁H₃₃BCl₂N₆NiS₃•(C₆H₆)_{0.8}: C, 46.3%; H, 5.7%; N, 12.6%. Found: C, 46.3%; H, 6.7%; N, 11.7%. ¹H NMR (C₆D₆): -8.91 [s, 3H, 3 C<u>H</u>mim^{But}], 5.93 [s, 27H, 3 Bu^t], 8.02 [s, 3H, 3 C<u>H</u>mim^{But}]. IR Data (KBr pellet, cm⁻¹): 3185 (w), 3156 (w), 2981 (m), 2921 (w), 1409 (m), 1368 (m), 1355 (s), 1294 (w), 1232 (w), 1186 (s), 1170 (s), 1075 (m), 1030 (w), 821 (w), 797 (m), 770 (m), 744 (w), 731 (w), 685 (w), 497 (m), 483 (m), 473 (m). Mass spectrum: m/z = 568.8 {M–Cl}⁺, 605.7 {M}⁺.

Molecular structure of [ClTm^{But}]NiCl (40% thermal parameters)

Synthesis of [ClTm^{But}]NiBr

A mixture of $[\kappa^4$ -B(mim^{But})₃]NiCl (0.040 g, 0.07 mmol) and CHBr₃ (6 µL, 0.07 mmol) in benzene-d₆ (0.7 mL) was placed in a J-Young NMR tube and heated at 120°C for 2 days. The resulting mixture was filtered and the volatile components were removed from the filtrate by lyophilization to give [ClTm^{But}]NiBr as green powder (0.005 g, 10%). Crystals of composition [ClTm^{But}]NiBr •C₆H₆ suitable for X-ray diffraction were grown by slow evaporation of a benzene solution. Anal. calcd. for C₂₁H₃₃BBrClN₆NiS₃•(C₆H₆)_{0.5}: C, 41.8%; H, 5.2%; N, 12.2%. Found: C, 41.4%; H, 5.5%; N, 11.2%. ¹H NMR (C₆D₆): -7.27 [s, 3H, 3 C<u>H</u>mim^{But}], 4.08 [s, 27H, 3 Bu^t], 8.65 [s, 3H, 3 C<u>H</u>mim^{But}]. IR Data (KBr pellet, cm⁻¹): 3187 (w), 3160 (w), 2971 (m), 2928 (w), 1410 (w), 1356 (s), 1295 (w), 1188 (s), 1170 (s), 1077 (m), 820 (w), 798 (m), 768 (m), 732 (w), 685 (w), 669 (w), 481 (m), 474 (m). Mass

spectrum: $m/z = 569.0 \{M-Br\}^+, 650.0 \{M\}^+$.

Molecular structure of [ClTm^{But}]NiBr (20% thermal parameters)

Synthesis of [ClTm^{But}]NiI

A suspension of $[\kappa^4-B(\min^{But})_3]$ NiCl (0.140 g, 0.25 mmol) in benzene (5 mL) was treated with a solution of I₂ (0.031 g, 0.12 mmol) in benzene (5 mL). The mixture was stirred for 30 minutes and then filtered. The volatile components were removed from the filtrate by lyophilization to give [CITm^{But}]NiI as an orange powder, which was washed with Et₂O (10 mL) and dried *in vacuo* (0.055 g, 33%). Crystals suitable for X-ray diffraction were grown by slow evaporation of a benzene solution. Anal. calcd. for C₂₁H₃₃BCIIN₆NiS₃: C, 36.2%; H, 4.8%; N, 12.1%. Found: C, 35.7%; H, 4.6%; N, 11.1%. ¹H NMR (C₆D₆): -4.76 [s, 3H, 3 C<u>H</u>mim^{But}], 1.50 [s, 27H, 3 Bu^t], 9.46 [s, 3H, 3 C<u>H</u>mim^{But}]. IR Data (KBr pellet, cm⁻¹): 3192 (w), 3182 (w), 3155 (w), 2976 (m), 2920 (m), 1571 (m), 1481 (w), 1410 (m), 1371 (m), 1355 (s), 1297 (m), 1229 (w), 1187 (s), 1169 (s), 1076 (m), 1031 (w), 980 (w), 821 (m), 796 (m), 768 (m), 731 (m), 727 (m), 684 (m). Mass spectrum: *m*/*z* = 569.1 {M–I}⁺, 696.0 {M}⁺.

Molecular structure of [ClTm^{But}]NiI (20% thermal parameters)

Synthesis of [SCNTm^{But}]NiI

A suspension of $[\kappa^4-B(mim^{But})_3]$ NiNCS (0.040 g, 0.067 mmol) in benzene (0.5 mL) was treated with a solution of I₂ (0.009 g, 0.035 mmol) in benzene (1 mL). The resulting mixture was stirred for 30 minutes at room temperature and then filtered. The volatile

components were removed from the filtrate by lyophilization to give [CITm^{But}]NiI as yellow powder, which was washed with pentane (2 × 0.5 mL) and dried *in vacuo* (0.018 g, 37%). Crystals of composition [SCNTm^{But}]NiI •C₆H₆ suitable for X-ray diffraction were grown by slow evaporation of a benzene solution. Anal. calcd. for C₂₂H₃₃BIN₇NiS₄: C, 36.7%; H, 4.6%; N, 13.6%. Found: C, 37.4%; H, 4.0%; N, 13.7%. ¹H NMR (C₆D₆): -4.96 [s, 3H, 3 C<u>H</u>mim^{But}], 1.45 [s, 27H, 3 Bu^t], 10.40 [s, 3H, 3 C<u>H</u>mim^{But}]. IR Data (KBr pellet, cm⁻¹): 2978 (m), 2924 (w), 2088 (s), 1570 (w), 1481 (w), 1412 (m), 1357 (vs), 1298 (m), 1187 (s), 1169 (s), 1078 (m), 1032 (w), 821 (w), 806 (w), 773 (m), 730 (w), 686 (w). Mass spectrum: m/z = 592.5 {M–I}⁺.

Molecular structure of [SCNTm^{But}]NiI (20% thermal parameters)

Synthesis of [N₃Tm^{Bu^t}]NiI

A suspension of $[\kappa^4-B(\min^{Bu^t})_3]NiN_3$ (0.040 g, 0.069 mmol) in benzene (0.5 mL) was treated with a solution of I₂ (0.010 g, 0.039 mmol) in benzene (1 mL). The resulting mixture was stirred for 30 minutes at room temperature and then filtered. The volatile components were removed from the filtrate by lyophilization to give $[N_3Tm^{Bu^t}]NiI$ as an orange powder, which was washed with pentane (2 × 0.5 mL) and dried *in vacuo* (0.017 g, 35%). Crystals suitable for X-ray diffraction were grown by slow evaporation of a benzene solution. ¹H NMR (C₆D₆): -4.85 [s, 3H, 3 C<u>H</u>mim^{But}], 1.45 [s, 27H, 3 Bu^t], 10.01 [s, 3H, 3 C<u>H</u>mim^{But}]. IR Data (KBr pellet, cm⁻¹): 2976 (m), 2920 (m), 2851 (w), 2128 (vs), 1568 (w), 1481 (w), 1457 (w), 1413 (m), 1398 (w), 1367 (s), 1356 (vs), 1295 (m), 1261 (w), 1230 (w), 1187 (s), 1168 (s), 1077 (m), 1032 (w), 984 (w), 872 (w), 829 (m), 797 (m), 723 (w), 689 (w). Mass spectrum: $m/z = 576.6 \text{ {M-I}}^+$.

Molecular structure of [N₃Tm^{But}]NiI (20% thermal parameters)

X-ray structure determinations

X-ray diffraction data were collected on either a Bruker Apex II diffractometer or a Bruker P4 diffractometer equipped with a SMART CCD detector and crystal data, data collection and refinement parameters are summarized in Table 1. The structures were solved using direct methods and standard difference map techniques, and were refined by full-matrix least-squares procedures on F^2 with SHELXTL (Versions 5.10 and 6.1).⁶

Computational Details

All calculations were carried out using DFT as implemented in the Jaguar 7.0 suite of *ab initio* quantum chemistry programs.⁷ Geometry optimizations were performed with the B3LYP density functional⁸ and LACVP** basis sets, *i.e.* 6-31G** (C, H, N, B, F, S and Cl) and LACVP (Ni) and LAV3P (Br and I) basis sets.⁹ Cartesian coordinates for geometry optimized structures are listed in Table 2. The energies of the optimized structures

were reevaluated by additional single point calculations on each optimized geometry using cc-pVTZ(-f) correlation consistent triple- ζ (C, H, N, B, F, S and Cl), LACV3P (Ni) and LAV3P (Br and I) basis sets.

	[ĸ ⁴ -B(mim ^{But}) ₃]NiCl	[≰ ⁴ -B(mim ^{But})₃]NiN₃• 2CH₃CN
lattice	rhombohedral	monoclinic
formula	$C_{21}H_{33}BClN_6NiS_3$	$C_{25}H_{39}BN_{11}NiS_3$
formula weight	570.68	659.37
space group	R3c	$P2_1/n$
a/Å	15.8290(6)	14.081(2)
b/Å	15.8290(6)	15.395(2)
c/Å	18.450(1)	16.195(2)
α/°	90	90
β/°	90	108.294(3)
γ/°	120	90
$V/\text{\AA}^3$	4003.3(4)	3333.3(7)
Ζ	6	4
temperature (K)	243	243
radiation (λ, Å)	0.71073	0.71073
ho (calcd.), g cm ⁻³	1.420	1.314
μ (Mo Kα), mm ⁻¹	1.084	0.804
θ max, deg.	28.28	26.37
no. of data	1568	6814
no. of parameters	101	382
R_1	0.0340	0.0561
wR_2	0.0765	0.1559
GOF	1.068	1.013

Table 1.	Crystal, intensit	y collection	and refinement	data.

	[ҝ ⁴ -B(mim ^{But}) ₃]NiNCS	[K ⁴ -B(mim ^{But}) ₃]NiOAc•
		CH ₃ CN
lattice	orthorhombic	monoclinic
formula	$C_{22}H_{33}BN_7NiS_4$	$C_{25}H_{39}BN_7NiO_2S_3$
formula weight	593.31	635.33
space group	Pna21	$P2_{1}/c$
a/Å	14.582(2)	10.4645(4)
b/Å	13.815(2)	14.1609(5)
c/Å	15.049(2)	20.7525(7)
$\alpha/^{\circ}$	90	90
β/°	90	91.7673(4)
γ/°	90	90
$V/\text{\AA}^3$	3031.4(7)	3073.8(2)
Ζ	4	4
temperature (K)	243	115
radiation (λ, Å)	0.71073	0.71073
ho (calcd.), g cm ⁻³	1.300	1.373
μ (Mo Kα), mm ⁻¹	0.939	0.870
θ max, deg.	28.31	28.22
no. of data	5421	7181
no. of parameters	327	348
R_1	0.0741	0.0448
wR_2	0.1564	0.1216
GOF	1.046	1.034

	[FTm ^{But}]NiCl·	[ClTm ^{But}]NiCl·
	C_6H_6	C_6H_6
lattice	hexagonal	hexagonal
formula	$C_{27}H_{39}BClFN_6NiS_3$	$C_{27}H_{39}BCl_2N_6NiS_3$
formula weight	667.79	684.24
space group	$P6_3$	$P6_3$
a/Å	11.3970(3)	11.4569(3)
b/Å	11.3970(3)	11.4569(3)
c/Å	14.7256(8)	14.8181(8)
$\alpha/^{\circ}$	90	90
β/°	90	90
γ/°	120	120
$V/\text{\AA}^3$	1656.5(1)	1684.5(1)
Ζ	2	2
temperature (K)	125	115
radiation (λ, Å)	0.71073	0.71073
ρ (calcd.), g cm ⁻³	1.339	1.349
μ (Mo Kα), mm ⁻¹	0.888	0.948
θ max, deg.	32.55	28.32
no. of data	3894	2683
no. of parameters	122	125
R_1	0.0294	0.0519
wR_2	0.0705	0.1353
GOF	1.028	1.052

	[ClTm ^{But}]NiBr•	[ClTm ^{But}]NiI
	C_6H_6	
lattice	hexagonal	monoclinic
formula	C27H39BBrClN6NiS3	$C_{21}H_{33}BClIN_6NiS_3$
formula weight	728.70	697.58
space group	$P6_3$	$P2_1/c$
a/Å	11.5255(3)	14.165(1)
b/Å	11.5255(3)	20.585(2)
c/Å	15.193(1)	20.539(2)
$\alpha/°$	90	90
β/°	90	92.282(2)
γ/°	120	90
$V/\text{\AA}^3$	1747.8(1)	5984(1)
Ζ	2	8
temperature (K)	243	243
radiation (λ, Å)	0.71073	0.71073
ho (calcd.), g cm ⁻³	1.385	1.549
μ (Mo K α), mm ⁻¹	1.980	2.000
θ max, deg.	28.29	28.36
no. of data	2791	13803
no. of parameters	111	614
R_1	0.0572	0.0692
wR_2	0.1611	0.1858
GOF	1.046	1.011

	[SCNTm ^{But}]NiI·	[N ₃ Tm ^{But}]NiI
	C_6H_6	
lattice	triclinic	monoclinic
formula	$C_{28}H_{39}BIN_7NiS_4$	$C_{21}H_{33}BIN_9NiS_3$
formula weight	798.32	704.16
space group	P-1	$P2_1/c$
a/Å	10.5227(4)	14.042(1)
b/Å	11.0009(5)	20.687(1)
c/Å	16.8869(7)	21.084(1)
$\alpha/^{\circ}$	77.080(1)	90
β/°	89.159(1)	92.870(2)
γ/°	70.941(1)	90
$V/\text{\AA}^3$	1797.3(1)	6116.9(8)
Ζ	2	8
temperature (K)	243	243
radiation (λ, Å)	0.71073	0.71073
ρ (calcd.), g cm ⁻³	1.475	1.529
μ (Mo Kα), mm ⁻¹	1.660	1.876
θ max, deg.	28.31	24.18
no. of data	8122	9775
no. of parameters	379	650
R_1	0.0557	0.0628
wR_2	0.1451	0.0974
GOF	1.035	1.004

Table 2. Cartesian Coordinated for Geometry Optimized Structures (energies in

parentheses are for the higher basis set)

FTmNiCl -2743.87644399768 Hartrees (-2744.31487778504 Hartrees)

atom	x	у	Z
Ni	0.0000000000	0.0000000000	1.8904189756
S	-1.7540053093	-1.2518366490	0.8307794547
Cl	0.0000000000	0.0000000000	4.1366351441
F	0.0000000000	0.0000000000	-3.3663623957
В	0.0000000000	0.0000000000	-1.9668190840
Ν	-1.4783414297	0.2279615436	-1.5342004970
Ν	-3.4481658556	0.3292069144	-0.5846107985
С	-2.2019514761	-0.2080663430	-0.4676161104
С	-2.2910508285	1.0447929358	-2.3116793175
Н	-1.9230212345	1.4947879529	-3.2179076704
С	-3.5119177040	1.1073242226	-1.7291358730
Н	-4.4124027402	1.6243463498	-2.0188942937
С	-4.5321367059	0.1391940892	0.3709252496
Н	-4.1400184552	0.2325296192	1.3845564228
Н	-5.2871972455	0.9054117983	0.1895901667
Н	-4.9806597692	-0.8515018459	0.2586153314
S	1.9611249941	-0.8930948317	0.8307794547
Ν	0.5417502270	-1.3942620054	-1.5342004970

Supplementary Material (ESI) for Chemical Communications	
This journal is (c) The Royal Society of Chemistry 2007	

Ν	1.4389813769	-3.1508026846	-0.5846107985
С	1.2811664767	-1.8029127447	-0.4676161104
С	0.2407081901	-2.5065046868	-2.3116793175
Н	-0.3330137233	-2.4127792175	-3.2179076704
С	0.7969879450	-3.5950720590	-1.7291358730
Н	0.7994761667	-4.6334260396	-2.0188942937
С	2.1455227356	-3.9945425653	0.3709252496
Н	1.8686326702	-3.7016259640	1.3845564228
Н	1.8594890045	-5.0315530286	0.1895901667
Н	3.2277521145	-3.8876269648	0.2586153314
S	-0.2071196848	2.1449314807	0.8307794547
Ν	0.9365912027	1.1663004618	-1.5342004970
Ν	2.0091844788	2.8215957702	-0.5846107985
С	0.9207849994	2.0109790877	-0.4676161104
С	2.0503426384	1.4617117509	-2.3116793175
Н	2.2560349577	0.9179912646	-3.2179076704
С	2.7149297590	2.4877478364	-1.7291358730
Н	3.6129265735	3.0090796899	-2.0188942937
С	2.3866139703	3.8553484761	0.3709252496
Н	2.2713857850	3.4690963448	1.3845564228
Н	3.4277082410	4.1261412303	0.1895901667
Н	1.7529076547	4.7391288107	0.2586153314

ClTmNiF -2743.81853746678 Hartrees (-2744.26958648035 Hartrees)

atom	x	У	Z
Ni	0.000000036	0.0000000012	1.9067271993
S	-1.7016923913	-1.3183297752	0.7663729476
F	-0.000000038	-0.0000000024	3.7013520617
Cl	-0.0000000044	-0.0000000047	-3.9090305897
В	0.000000047	0.0000000059	-1.9901329604
Ν	-1.4700956199	0.2466315079	-1.5612208921
Ν	-3.4102879926	0.3250046011	-0.5427034205
С	-2.1723963347	-0.2381279954	-0.4925431751
С	-2.2889698612	1.1393161810	-2.2481563129
Н	-1.9457802318	1.6473949659	-3.1323235444
С	-3.4887351688	1.1831957293	-1.6261501696
Н	-4.3854533566	1.7358637104	-1.8555334796
С	-4.4708067518	0.0959645650	0.4297815188
Н	-4.0605968431	0.1674966506	1.4381873854
Н	-5.2389499055	0.8565488383	0.2824755362
Н	-4.9080572591	-0.8973117315	0.2991997570
S	1.9922134708	-0.8125560925	0.7695055417
Ν	0.5233375679	-1.3967048613	-1.5602454329
Ν	1.4263153464	-3.1145554419	-0.5395501595
С	1.2931440537	-1.7611095193	-0.4901464550
С	0.1627758428	-2.5530725592	-2.2474358388

Supplementary Material (ESI) for Chemical Communications	
This journal is (c) The Royal Society of Chemistry 2007	

Н	-0.4473861519	-2.5109816384	-3.1326902516
С	0.7252413332	-3.6131015473	-1.6241127772
Н	0.6971938057	-4.6661239283	-1.8532532007
С	2.1547293794	-3.9172728440	0.4341379661
Н	1.8859912633	-3.5978209520	1.4421007836
Н	1.8816089904	-4.9631819667	0.2867977908
Н	3.2335560222	-3.7979754585	0.3048734740
S	-0.2923683929	2.1324973876	0.7704758338
Ν	0.9473547331	1.1509057525	-1.5593556223
Ν	1.9827979342	2.7933662847	-0.5403021513
С	0.8777145819	2.0007223675	-0.4898270245
С	2.1292157198	1.4165821518	-2.2464708050
Н	2.3981819706	0.8663094205	-3.1310703203
С	2.7651793340	2.4348589010	-1.6244940933
Н	3.6907525683	2.9375372834	-1.8542482013
С	2.3133935042	3.8267781682	0.4322006218
Н	2.1712317506	3.4353861679	1.4405858968
Η	3.3556355345	4.1133926695	0.2844978027
Н	1.6703443843	4.7010304435	0.3019283441

BrTmNiCl -2657.16793734626 Hartrees (-2657.57721243469 Hartrees)

atom	X	У	Ζ
Ni	-0.0000000004	-0.0000000001	2.3439103774
S	-1.6670964560	-1.3637870274	1.2482262526
Cl	0.000000002	0.0000000001	4.5829299985
Br	-0.000000002	0.0000000000	-3.6448134556
В	0.000000003	0.0000000001	-1.4715765327
Ν	-1.4697843200	0.2288141699	-1.0629944274
Ν	-3.3946469162	0.3057585671	-0.0118492958
С	-2.1623434883	-0.2688769781	0.0088388165
С	-2.2900650105	1.1454006424	-1.7175155366
Н	-1.9549999623	1.6666131887	-2.5970874718
С	-3.4797185021	1.1859560109	-1.0772831542
Н	-4.3745636100	1.7511408067	-1.2819995143
С	-4.4502552071	0.0752388147	0.9672451971
Н	-3.9955110271	-0.1042305187	1.9417293568
Н	-5.0851865169	0.9617669386	1.0066763275
Н	-5.0522759907	-0.7953711810	0.6912538220
S	2.0137517809	-0.7613636608	1.2462949520
Ν	0.5375726922	-1.3878547297	-1.0642910797
Ν	1.4350357281	-3.0930920549	-0.0142949562
С	1.3146631655	-1.7387388121	0.0074379754

Supplementary Material (ESI) f This journal is (c) The Royal So	or Chemical Communications 24 points of Chemistry 2007		
С	0.1557885365	-2.5564378377	-1.7201775842
Н	-0.4629665357	-2.5267416856	-2.5998348277
С	0.7167074928	-3.6068027326	-1.0807716044
Н	0.6763931915	-4.6642214424	-1.2864908537
С	2.1637790730	-3.8927372076	0.9631872348
Н	2.1069668958	-3.4007401512	1.9343854160
Н	1.7031791317	-4.8806006033	1.0152628918
Н	3.2148213161	-3.9925753841	0.6768104716
S	-0.3484536774	2.1238963271	1.2479659389
Ν	0.9325701613	1.1592228413	-1.0635113858
Ν	1.9611177842	2.7875665122	-0.0114861379
С	0.8479064303	2.0067792014	0.0090866512
С	2.1355640657	1.4132863338	-1.7189404034
Н	2.4190952537	0.8635810598	-2.5992665204
С	2.7650803158	2.4232150447	-1.0782321813
Н	3.7011960982	2.9169172121	-1.2832862609
С	2.2899671656	3.8171793433	0.9671727321
Н	1.8879888001	3.5231798578	1.9369417667
Н	3.3759549414	3.9082754848	1.0229462648
Н	1.8553280473	4.7789623005	0.6795094625

ClTmNiBr -2657.18379752059 Hartrees (-2657.58917118896 Hartrees)

atom	x	у	Z
Ni	0.000000014	0.0000000022	2.3522718957
S	-1.6860818935	-1.3322696995	1.2590924145
Br	-0.0000000010	-0.0000000005	4.7709839800
Cl	-0.0000000005	0.000000028	-3.4212078677
В	0.000000001	-0.0000000045	-1.5072986690
Ν	-1.4706070219	0.2371376019	-1.0714436069
Ν	-3.3959474604	0.3250910413	-0.0250007465
С	-2.1618058653	-0.2449893756	0.0048934700
С	-2.2939478032	1.1359659393	-1.7447608244
Н	-1.9604449207	1.6437736691	-2.6328546006
С	-3.4844232926	1.1863411035	-1.1045994050
Н	-4.3805976192	1.7456749181	-1.3193447297
С	-4.4361577419	0.1116661296	0.9746486773
Н	-4.0302050267	0.2908514052	1.9718264646
Н	-5.2501776730	0.8088897428	0.7716326231
Н	-4.8100741705	-0.9135767826	0.9279185861
S	1.9951032600	-0.7970906326	1.2579110160
Ν	0.5311563019	-1.3930166565	-1.0742579946
Ν	1.4258503612	-3.1042749289	-0.0347998812
С	1.2957103771	-1.7511237177	0.0006269047

Supplementary Material (ESI) for Chemical Communications	
This journal is (c) The Royal Society of Chemistry 2007	

С	0.1701209435	-2.5544359084	-1.7524673503
Н	-0.4365146881	-2.5187160958	-2.6404316004
С	0.7266866687	-3.6105561589	-1.1165754717
Н	0.6953557829	-4.6656554778	-1.3353233239
С	2.1349300602	-3.8990358482	0.9613226603
Н	1.7774775457	-3.6411850212	1.9598395999
Н	1.9413251117	-4.9526600657	0.7555126470
Н	3.2091229972	-3.7066109737	0.9135576682
S	-0.3093114231	2.1253218513	1.2602028507
Ν	0.9405018707	1.1557942653	-1.0721528926
Ν	1.9779823938	2.7807423118	-0.0270128577
С	0.8686737984	1.9948766504	0.0045179015
С	2.1285571138	1.4219281930	-1.7477620130
Н	2.4004845284	0.8797827044	-2.6365607715
С	2.7666344125	2.4288318807	-1.1084623488
Н	3.6978841798	2.9270454076	-1.3244727268
С	2.3127838266	3.7894596869	0.9716069837
Н	2.2669693026	3.3488296440	1.9691230834
Н	3.3227420937	4.1474094717	0.7671232974
Н	1.6103806847	4.6247018122	0.9253082599

ITmNiCl -2655.37540490418 Hartrees (-2655.78355641257 Hartrees)

atom	x	у	Z
Ni	0.0000000000	0.0000000000	2.6969781577
S	-1.6567010280	-1.3740963140	1.5905184486
Cl	0.0000000000	0.0000000000	4.9364811414
Ι	0.0000000000	0.0000000000	-3.5484162705
В	0.0000000000	0.0000000000	-1.1243614696
Ν	-1.4657619717	0.2334537140	-0.7173619147
Ν	-3.3754535780	0.3118098866	0.3628748682
С	-2.1497009842	-0.2732753282	0.3572478736
С	-2.2845711334	1.1736477402	-1.3398433885
Н	-1.9588173698	1.7092582770	-2.2142820164
С	-3.4644012337	1.2158643122	-0.6814628552
Н	-4.3555002522	1.7941537310	-0.8643513426
С	-4.3968045887	0.0923153086	1.3812886410
Н	-3.9819494821	0.2971836020	2.3702952970
Н	-5.2288558150	0.7676889395	1.1778464173
Н	-4.7472695723	-0.9414762040	1.3561746309
S	2.0193251637	-0.7457089214	1.5956654744
Ν	0.5322383339	-1.3851421768	-0.7150570807
Ν	1.4207009018	-3.0767375984	0.3667882834
С	1.3128547861	-1.7227549854	0.3607591035

Supplementary Material (ESI) for Chemical Communications	
This journal is (c) The Royal Society of Chemistry 2007	

С	0.1297573577	-2.5652407737	-1.3371234012
Н	-0.4961346114	-2.5523375055	-2.2121971266
С	0.6840395225	-3.6071637736	-0.6778849222
Н	0.6305395481	-4.6681762558	-0.8604358213
С	2.1216513950	-3.8503835904	1.3859959369
Н	1.7357626353	-3.5936678577	2.3746215417
Н	1.9541428376	-4.9088984746	1.1827058814
Н	3.1919238588	-3.6357305910	1.3615782681
S	-0.3616610427	2.1219844494	1.5953436515
Ν	0.9341092641	1.1534988696	-0.7157045004
Ν	1.9561418684	2.7680098297	0.3658370712
С	0.8370715969	1.9982675454	0.3601854823
С	2.1573498931	1.3941125387	-1.3380965663
Н	2.4585317103	0.8452429743	-2.2131489542
С	2.7832602986	2.3948389018	-0.6791283948
Н	3.7290521226	2.8785410301	-0.8620255332
С	2.2764768346	3.7616395784	1.3850269323
Н	2.2472559497	3.2989721999	2.3735975013
Н	3.2770059618	4.1454659045	1.1814146842
Н	1.5557604274	4.5814699875	1.3609891312

ClTmNiI -2655.40192077623 Hartrees (-2655.80693194184 Hartrees)

atom	x	у	Z
Ni	0.000000017	0.000000026	2.7092580964
S	-1.6799568193	-1.3340535949	1.6160409039
Ι	-0.000000013	-0.0000000013	5.3012968836
Cl	-0.0000000011	0.0000000007	-3.0685082290
В	0.000000008	-0.0000000019	-1.1555738221
Ν	-1.4719634510	0.2316576214	-0.7189239450
Ν	-3.3922955210	0.3230936950	0.3360423179
С	-2.1587731753	-0.2484999519	0.3610696926
С	-2.2964326547	1.1316088767	-1.3887899861
Н	-1.9665435134	1.6365884826	-2.2799294891
С	-3.4837047217	1.1851461243	-0.7426643173
Н	-4.3803206478	1.7448955163	-0.9545001273
С	-4.4250512906	0.1186792383	1.3455290661
Н	-4.0263511291	0.3524120618	2.3345904400
Н	-5.2609484358	0.7802490081	1.1139208291
Н	-4.7651920365	-0.9189322460	1.3415342589
S	1.9950461766	-0.7887724579	1.6141521601
Ν	0.5345207097	-1.3904706728	-0.7196537795
Ν	1.4176635824	-3.0997331717	0.3327552916
С	1.2947949970	-1.7458484500	0.3593225563

Supplementary Material (ESI) for Chemical Communications	
This journal is (c) The Royal Society of Chemistry 2007	

С	0.1683551327	-2.5540880074	-1.3910498613
Н	-0.4342081625	-2.5203344259	-2.2819575338
С	0.7168177387	-3.6092673614	-0.7464059948
Н	0.6813249344	-4.6654247433	-0.9594195745
С	2.1125895440	-3.8922824197	1.3408283711
Н	1.7115026868	-3.6652135710	2.3304906575
Н	1.9582933761	-4.9468849337	1.1083377804
Н	3.1810901994	-3.6671602698	1.3361111069
S	-0.3175985331	2.1208891553	1.6162662623
Ν	0.9352182077	1.1592288694	-0.7187830489
Ν	1.9717414863	2.7792538937	0.3349523080
С	0.8616963596	1.9944323699	0.3610053659
С	2.1259184411	1.4257210881	-1.3895868642
Н	2.3988490497	0.8878318946	-2.2807342958
С	2.7640957120	2.4287001062	-0.7441985505
Н	3.6958431091	2.9274690936	-0.9567959931
С	2.3095096632	3.7769007373	1.3439148215
Н	2.3147126032	3.3149798702	2.3330876205
Н	3.2991640648	4.1725081461	1.1112852584
Н	1.5789151959	4.5884277228	1.3404536530

ITmNiNCS -2686.20142772115 Hartrees (-2686.63664906656 Hartrees)

atom	x	У	Z
Ni	-0.1760734516	-0.1299257870	2.6975532459
S	-1.8249642414	-1.4528332226	1.5169437523
Ν	0.2574140424	0.1926180130	4.5411038455
С	0.7254446684	0.5465925139	5.5792742497
S	1.3365257785	1.0056252099	6.9972817555
Ι	0.0923238840	0.0474310220	-3.5140897304
В	-0.0462408426	-0.0293108333	-1.0950188922
Ν	-1.5336625834	0.1897879287	-0.7566284100
Ν	-3.4985801816	0.2307915079	0.2230438416
С	-2.2664497905	-0.3366634168	0.2758282754
С	-2.3329617192	1.1259545284	-1.4112162351
Н	-1.9692911003	1.6764850390	-2.2609466439
С	-3.5455758883	1.1457146213	-0.8151236526
Н	-4.4336712349	1.7147013283	-1.0375255524
С	-4.5727476746	-0.0220144128	1.1765270795
Н	-4.2336393516	0.2104871513	2.1882548163
Н	-5.4179992527	0.6147265143	0.9122335594
Н	-4.8762354747	-1.0701883083	1.1414126304
S	1.8630796323	-0.8899725734	1.6773287208
Ν	0.4606069610	-1.4326687957	-0.7092064345

Supplementary Material (ESI) for Chemical Communications	
This journal is (c) The Royal Society of Chemistry 2007	

Ν	1.3225580936	-3.1674030570	0.3245591942
С	1.2073651464	-1.8146270824	0.3748093495
С	0.0788476054	-2.5858695015	-1.3917566091
Н	-0.5208135182	-2.5367783919	-2.2837399954
С	0.6190419857	-3.6540395220	-0.7633027451
Н	0.5768573693	-4.7060702576	-0.9944178015
С	2.0079897791	-3.9828995666	1.3211469126
Η	1.5991577083	-3.7773546034	2.3124743779
Н	1.8551026192	-5.0319431593	1.0644680579
Η	3.0765754770	-3.7586984287	1.3308576904
S	-0.5615296738	2.0290584230	1.6447177162
Ν	0.8690592053	1.1034308155	-0.6003765226
Ν	1.8453921539	2.6672543663	0.5931327994
С	0.7162671175	1.9197357495	0.4917667361
С	2.1335677384	1.3397293731	-1.1354198474
Н	2.4826133825	0.8107529509	-2.0050304921
С	2.7315787291	2.3095033304	-0.4071231494
Н	3.6955083563	2.7801342506	-0.5137225444
С	2.1168786360	3.6215543043	1.6643010630
Н	2.0143491723	3.1277271983	2.6325867938
Н	3.1358258374	3.9900101443	1.5391872366
Н	1.4149444856	4.4565436367	1.6197814169

SCNTmNiI -2686.24649431386 Hartrees (-2686.67601718693 Hartrees)

atom	X	У	Z
Ι	0.0277377839	-2.2468524347	5.7177066203
Ni	1.6499165626	-0.4007743467	4.9022930615
S	3.3551619968	-0.9644807350	3.2998281447
S	2.9495787766	0.7113522004	6.5866732158
S	0.5793688449	1.4497042838	3.8023502765
S	6.4875097733	5.7051401687	2.4429079267
Ν	3.5070097073	1.7057589810	2.4289001754
Ν	2.8495688282	0.2482826397	0.9304865493
Ν	4.8043413775	1.6016109148	4.6678516754
Ν	5.5905419390	0.2476051229	6.2009178373
Ν	2.7335145534	3.1413139158	4.4426830577
Ν	0.8059250508	3.6654913933	5.3435941741
Ν	4.8353705665	3.6132685806	3.2444770550
В	3.9452534435	2.4852470682	3.7086323624
С	3.2499605993	0.3811553471	2.2245975407
С	3.2396133277	2.3875793074	1.2457283263
Н	3.3662627486	3.4540723870	1.1682965348
С	2.8383530949	1.4887487175	0.3170596874
Н	2.5535497452	1.6150877548	-0.7150089156
С	2.4438199309	-1.0063427953	0.3073612803
Н	1.7429016925	-1.5275937198	0.9611499591

Supplementary Material (ESI) This journal is (c) The Royal S	for Chemical Communications 34 Society of Chemistry 2007		
Н	1.9652461993	-0.7745135193	-0.6451088874
Н	3.3097997733	-1.6505439086	0.1362390615
С	4.4641722818	0.8835782421	5.7772262020
С	6.1527773454	1.3814399641	4.4046169690
Н	6.6471639334	1.8440550290	3.5673346427
С	6.6420888434	0.5497565155	5.3535475892
Н	7.6327597122	0.1525952093	5.5053617312
С	5.6575151925	-0.6585489490	7.3417822981
Н	4.8391079418	-1.3779011646	7.2843201641
Н	6.6157394551	-1.1787575372	7.3077220052
Н	5.5728308564	-0.1052513681	8.2802235782
С	1.4226043793	2.7708665547	4.5238571206
С	2.9169464056	4.2663666466	5.2405712724
Н	3.8796533281	4.7386991514	5.3383554247
С	1.7262582781	4.5955432654	5.7935571745
Н	1.4507822483	5.4002885717	6.4559231663
С	-0.5996763710	3.6106063507	5.7294271830
Н	-0.8527375481	2.5949752779	6.0375441887
Н	-0.7526715150	4.3025499353	6.5587360978
Н	-1.2416149156	3.8932812031	4.8915120074
С	5.5403391972	4.5061733792	2.9036026649

Table 3. "Snap" bond enthalpies for $[YTm^{Me}]NiZ$ determined by DFT calculations on $[YTm^{Me}]NiZ$ (S = 1), $[YTm^{Me}]Ni$ (S = 1/2), $[B(mim^{Me})_3]NiZ$ (S = 3/2) performed with the B3LYP functional and cc-pVTZ(-f)/LACV3P/LAV3P basis sets.

[YTm ^{Me}]NiZ	D(B−Y)/kcal mol ⁻¹	$D(Ni-Z)/kcal mol^{-1}$
[FTm ^{Me}]NiCl	160.8 (Y = F)	76.5 (Z = Cl)
[ClTm ^{Me}]NiF	108.8 (Y = Cl)	102.5 (Z = F)
[ClTm ^{Me}]NiBr	112.8 (Y = Cl)	70.6 (Z = Br)
[ClTm ^{Me}]NiI	108.1 (Y = Cl)	61.6 (Z = I)
[BrTm ^{Me}]NiCl	93.0 (Y = Br)	83.0 (Z = Cl)
[ITm ^{Me}]NiCl	76.6 (Y = I)	82.9 (Z = Cl)

References

- (a) McNally, J. P.; Leong, V. S.; Cooper, N. J. in *Experimental Organometallic Chemistry*, Wayda, A. L.; Darensbourg, M. Y., Eds.; American Chemical Society: Washington, DC, 1987; Chapter 2, pp 6-23.
 (b) Burger, B.J.; Bercaw, J. E. in *Experimental Organometallic Chemistry*; Wayda, A. L.; Darensbourg, M. Y., Eds.; American Chemical Society: Washington, DC, 1987; Chapter 4, pp 79-98.
 (c) Shriver, D. F.; Drezdzon, M. A.; *The Manipulation of Air-Sensitive Compounds*, 2nd Edition; Wiley-Interscience: New York, 1986.
 (2) Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. **1997**, *62*, 7512-7515.
- (3) Claude H. Dungan and John R. Van Wazer, "Compilation of reported F NMR chemical shifts, 1951 to mid-1967", New York, Wiley-Interscience (1970).
- (4) Smith, W. L. J. Chem. Educ. **1977**, 54, 469-473.
- (5) (a) Tesmer, M.; Shu, M.; Vahrenkamp, H. *Inorg. Chem.* 2001, *40*, 4022-4029.
 (b) Singh, A. K.; Mehtab, S.; Singh, U. P.; Aggarwal, V. *Anal. Bioanal. Chem.* 2007, *388*, 1867-1876.
- Sheldrick, G. M. SHELXTL, An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data; University of Göttingen, Göttingen, Federal Republic of Germany, 1981.
- (7) Jaguar 6.5, Schrödinger, LLC, Portland, Oregon.
- (8) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
 (b) Becke, A. D. Phys. Rev. A 1988, 38, 3098-3100.
 (c) Lee, C. T.; Yang, W. T.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
 (d) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200-1211.
 (e) Slater, J. C. Quantum Theory of Molecules and Solids, Vol. 4: The Self-Consistent Field for Molecules and Solids; McGraw-Hill: New York, 1974.
- (9) (a) Hay, P. J.; Wadt, W. R. J. Chem. Phys. **1985**, *82*, 270-283.

(b) Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284-298.
(c) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299-310.

37