Tris-2-(3-methylindolyl)phosphine as an anion receptor

Joanne O. Yu, C. Scott Browning,* and David H. Farrar

Davenport Chemical Research Building, University of Toronto, Toronto, M5S 3H6, Canada

General Considerations. All reactions and manipulations were carried out under an atmosphere of dinitrogen using standard Schlenk techniques unless otherwise stated. Trichlorophosphine (PCl₃), 1.6 M *n*-BuLi, NaBH₄, tetraethylammonium and tetrabutylammonium salts (fluoride, chloride, bromide, iodide, acetate, sulfate, nitrate, tetrafluoroborate) were purchased from Aldrich and used as received. 1-[(N,N-Dimethylamino)methyl]-3-methylindole,¹ and [Cu(MeCN)₄]BF₄,² were synthesized according to literature procedures. Tetrahydrofuran (THF) was distilled from sodium benzophenone ketyl still under a dinitrogen atmosphere. ¹H, ¹³C, and ³¹P NMR spectra were recorded on Varian 400 MHz or 300 MHz NMR systems, and referenced to SiMe₄ (TMS) and 85% H₃PO₄, respectively. Splitting patterns are indicated as s, singlet; d, doublet; t, triplet; q, quartet;, m, multiplet; br, broad peak.

Tris-2-(3-methylindolyl)phosphine, $P(C_9H_8N)_3$, **1.** 1-[(*N*,*N*-Dimethylamino)methyl]-3-methylindole (4.25 g, 22.6 mmol) was dissolved in THF (60 mL) and cooled to -78°C. *n*-BuLi (17.0 mL, 27.2 mmol) was added dropwise over 10 minutes. The reaction was stirred at -78°C for 10 minutes, warmed to ambient temperature and

stirred for 3 hours. The resulting orange mixture was cooled to -78° C, and PCl₃ (0.66 mL, 7.56 mmol) was added dropwise over 5 minutes. The mixture was allowed to warm to ambient temperature over 5 hours and then quenched with MeOH. Solvents

were removed *in vacuo* to yield a yellow solid. Water (100 mL) was added to the solid, and the suspension extracted with DCM (3 x 100 mL). The organic layers were combined, dried over anhydrous MgSO₄, filtered, and concentrated *in vacuo* to afford dark orange oil. MeOH was added to triturate pure aminal-protected product as a white solid, which was isolated by filtration and dried *in vacuo* (2.09 g, 47%). Mp: 122°C; ³¹P NMR (CD₂Cl₂, 121 MHz): δ -71.3 (s); ¹H NMR (CD₂Cl₂, 300 MHz): δ 7.48 (d, *J* = 8.1 Hz, 6H, Ar-H), 7.20 (t, *J* = 7.4 Hz, 3H, Ar-H), 7.07 (t, *J* = 7.4 Hz, 3H, Ar-H), 4.78 (d, *J* = 12 Hz, 3H, amine NCH₂), 1.84 (s, 9H, indole CH₃); ¹³C NMR (CD₂Cl₂, 75 MHz):.139.54, 130.14, 126.86, 123.08, 121.39, 119.64, 119.08, 111.06, 67.92, 42.86, 9.11; HRMS EI for C₃₆H₄₅N₆P: calcd *m/z* 592.344334, found *m/z* 592.344809; Microanalysis for C₃₆H₄₅N₆P: calcd (%) C = 72.94, H = 7.65, N = 14.18, found (%) C = 72.56, H = 7.57, N = 13.78.

Figure S1. ¹H NMR spectrum of N, N', N''-(Me₂NCH₂)₃-1 recorded in CD₂Cl₂.

Figure S2. ³¹P NMR spectrum of N, N', N''-(Me₂NCH₂)₃-1 recorded in CD₂Cl₂.

Figure S3. ¹³C NMR spectrum of N, N', N''-(Me₂NCH₂)₃-1 recorded in CD₂Cl₂.

A solution of THF/EtOH (120 mL, 1:1 v/v) was added to a solid mixture of the aminalprotected product (3.75 g, 6.33 mmol) and NaBH₄ (1.50 g, 39.7 mmol). The mixture was refluxed for 5 hours. The solution was reduced to dryness in vacuo and acidified water was added to the resultant white solid, which was extracted with DCM (3 x 100 mL). The organic phases were combined and dried over anhydrous MgSO₄, filtered and taken to dryness to afford a dark yellow coloured oil. MeOH was added to triturate pure product as a white solid, which was isolated by filtration and dried *in vacuo* (1.84 g, 69 %). Mp: 166°C; ³¹P NMR (CD₂Cl₂, 121 MHz): δ -81.7 (s); ¹H NMR (CD₂Cl₂, 300 MHz): δ 7.90 (br s, 3H, indole NH), 7.60 (d, *J* = 7.2 Hz, 3H, Ar-H), 7.27 (d, *J* = 7.5 Hz, 3H, Ar-H), 7.21 – 7,12 (m, 6H, Ar-H), 2.41 (s, 9H, indole CH₃); ¹³C NMR (CD₂Cl₂, 75 MHz): 138.94, 130.29, 125.53, 123.69, 121.34, 120.17, 119.54, 111.80, 9.90; HRMS EI for C₂₇H₂₄N₃P: calcd *m*/z 421.170357, found *m*/z 421.170786; Microanalysis for $C_{27}H_{24}N_3P$: calcd (%) C = 76.94, H = 5.74, N = 9.97, found (%)C = 76.70, H = 5.78, N = 9.79.

Figure S4. ¹H NMR spectrum of 1 recorded in CD₂Cl₂.

Figure S5. ³¹P NMR spectrum of 1 recorded in CD₂Cl₂.

Figure S6. ¹³C NMR spectrum of 1 recorded in CD₂Cl₂.

 $[Cu(1)(1,10-phenanthroline)]BF_4.$ Dissolved $[Cu(MeCN)_4]BF_4 (0.168 g, 0.242 mmol), 1 (0.229 g, 0.543 mmol) and 1,10-phenanthroline (0.049 g, 0.272 mmol) in DCM (20 mL) to give a clear yellow$ solution. The resultant yellow solution was placed into a

vial containing Et₂O. X-ray quality single crystals were formed within one week (0.061 g, 34 %). ³¹P NMR (CD₂Cl₂, 161 MHz): δ -63.2 (br s); ¹H NMR (CD₂Cl₂, 400 MHz): δ 8.92 (br s, $J_{\text{NHF}} = 3.6$ Hz, 3H, indole NH), 8.65 (d, J = 8.4 Hz, 2H, Ar-H), 8.57 (s, 2H, Ar-H), 8.10 (s, 2H, Ar-H), 7.93 (dd, J = 4.4, 8.0 Hz, 2H, Ar-H), 7.64 (d, J = 8.0 Hz, 3H, Ar-H), 7.44 (d, J = 8.0 Hz, 3H, Ar-H), 7.29 (t, J = 7.6 Hz, 3H, Ar-H), 7.18 (t, J = 7.6 Hz, 3H, Ar-H), 2.49 (s, 9H, indole CH₃); ¹³C NMR (CD₂Cl₂, 100 MHz): 150.88, 143.85, 139.55, 138.77, 129, 630, 127.46, 126.00, 125.60, 124.54, 121.56, 120.34, 119.41, 112.25, 10.36; HRMS ESI⁺ for [M⁺] ion C₃₉N₃₂N₅PCu⁺: calcd *m*/*z* 664.1685.

Figure S7. ¹H NMR spectrum of 3 recorded in CD₂Cl₂.

Figure S8. ³¹P NMR spectrum of 3 recorded in CD₂Cl₂.

Figure S9. ¹³C NMR spectrum of 3 recorded in CD₂Cl₂.

Titration Methods

¹H NMR titration experiments were carried out by dissolving **1** (15.4 μ mol) in CD₂Cl₂ (0.65 mL) and adding sequential 10 μ L aliquots of a solution of the selected anions as their tetrabutylammonium (NBu₄) salts (154 μ mol) in CD₂Cl₂ (1 mL) (which corresponds to 0.1eq of anion) to **1** until saturation. Association constants, K_a, were determined by non-linear least-squares fit of the data using the program EQNMR.³

Figure S10. Fit plot for titration experiment of 1 with tetrabutylammonium chloride in CD_2Cl_2 .

Figure S11. Fit plot for titration experiment of 1 with tetrabutylammonium bromide in CD_2Cl_2 .

Figure S12. Fit plot for titration experiment of 1 with tetrabutylammonium iodide in CD_2Cl_2 .

Figure S13. Fit plot for titration experiment of 1 with tetrabutylammonium acetate in CD_2Cl_2 .

Figure S14. Fit plot for titration experiment of 1 with tetrabutylammonium hydrogensulfate in CD_2Cl_2 .

Figure S15. Fit plot for titration experiment of 1 with tetrabutylammonium nitrate in CD_2Cl_2 .

Figure S16. Fit plot for titration experiment of 1 with tetrabutylammonium tetrafluoroborate in CD_2Cl_2 .

X-ray Crystallography. X-ray data were collected on a Nonius Kappa CCD diffractometer using graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å). A combination of 1° ϕ and ω (with κ offsets) scans were used to collect sufficient data. The data frames were integrated and scaled using the Denzo-SMN package.⁴ The structures were solved and refined with the SHELXTL-PC v6.12 software package.⁵ Refinement was by full-matrix least squares on F^2 using data (including negative intensities) with hydrogen atoms bonded to carbon atoms included in calculated positions and treated as riding atoms. Absorption corrections were made for every structure. All the heavy atoms were refined anisotropically.

References

1 Katritzky J. Org. Chem. **1990**, 55, 3688.

- 2 Kubas, G. J. Inorg. Synth. **1979**, 19, 90.
- 3 Hynes, M.J. J. Chem. Soc. Dalton Trans. 1993, 311.
- 4 Otwinowski, Z.; Minor, W. *Methods Enzymol.* **1997**, *276*, 307.
- 5 Sheldrick, G. M. SHELXTL-Windows NT. V6.12, Bruker Analytical X-Ray Systems Inc., Madison, WI, 2001.