Supplementary Material for:

π -Conjugated Macrocycles From Thiophenes and Benzenes

J. Sreedhar Reddy^a and Venkataramanarao G. Anand^b

^aChemical Sciences & Technology Division, National Institute for Interdisciplinary Science & Technology, NIST (Formerly RRL Trivandrum) CSIR, Trivandrum-695019, India.

^bDepartment of Chemistry, Indian Institute of Science Education & Research, (IISER) 900, NCL Innovation Park, Dr. Homi Bhabha Road, Pune - 411 008. Fax: +91-20-25898022; Tel: +91-20-25898021; India. E-mail: vg.anand@iiserpune.ac.in

General notes and procedure:

¹H NMR spectra were recorded on a 300 MHz Bruker Advance DPX spectrometer. Chemical shifts (δ) are reported in parts per million (ppm) relative to residual solvent (CHCl₃, s, δ , 7.26). Mass spectroscopic analysis was carried out on JEOL JMS 600H spectrometer. Electronic spectra were recorded on a Perkin-Elmer Lambda 20 spectrophotometer. Chromatographic separations were performed on basic alumina and silica gel (100-200) in glass columns.

Single Crystal Structure Determination: The single crystal X-ray diffraction data were collected on a Bruker AXS Kappa Apex 2 CCD diffractometer at 173(2) K.

References: Altormare, A., Gascarano, G., Giacovazzo, C., Guagliardi, A. (1993). SIR92. J. Appl. Cryst. 26, 343-350. Blessing, R. (1995). Acta Cryst. A51, 33-38. Bruker-Nonius (2004). APEX-II and SAINT-Plus (Version 7.06a), Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (1999). SADABS, Bruker AXS Inc., Madison, Wisconsin, USA. Farrugia, L. J. (1999). WinGX. J. Appl. Cryst. 32, 837-838 Frrugia, L. J. (1997). ORTEP3 for windows. J. Appl. Cryst. 30, 565. Sheldrick, G. M. (1997). SHELXL97. University of G\"ottingen, Germany. Spek, A. L. (1990) Acta Cryst. 346, C34 Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Synthesis & Spectral data for 1,2,3 & 6

Thiophene and all aldehydes were purchased from Sigma-Aldrich and used as such. Synthesis was carried out under an inert atmosphere using standard Schlenk line techniques. Dry CH_2Cl_2 was used throughout. All other reagents were used as received unless otherwise specified.

Synthetic Procedure for 1:

A solution of 1,4 – bis(pentafluorophenylhydroxy methyl) benzene, **5**, (235 mg, 0.5 mmol) and 2,5-bis((pentafluorophenyl)(thiophen-2yl)methyl)thiophene, **3**, (304 mg, 0.5 mmol) in 100 ml of dry dichloromethane was placed in 250 ml flask under nitrogen. BF₃.OEt₂ (0.03 ml, 0.25 mmol) was added under dark, and the resulting solution was stirred for 2h. After adding excess FeCl₃, solution was opened to air and stirred for 2 more hrs. The reaction mixture was washed with water and passed through a short alumina column. This mixture was separated by silica gel column chromatography by using CH₂Cl₂/n-hexane as eluant. Light pink color fraction was obtained; it was repeatedly purified by silica gel column chromatography by using 5% CH₂Cl₂ in n-hexane as eluant. (Scheme – a)

¹**H** NMR (300MHz, CDCl₃, 298K): $\delta = 7.53$ (s, 4H), $\delta = 6.69$ (d, J= 6.0Hz, 2H), $\delta = 6.59$ (d, J= 6.0Hz, 2H), $\delta = 6.47$ (s, 2H); UV-Vis (CH₂Cl₂): $\lambda_{max}(\epsilon) = 398$ (4.3 x 10⁴), 543 (0.6 x 10⁴), 569(0.6 x 10⁴); FAB MS m/z: Calcd For C₄₆H₁₀F₂₀S₃ 1038.74; Observed 1040 (100.0%, M +1).

Synthetic Procedure for 2: (Scheme – a)

A solution of 5-pentafluorophenyldithienylmethane, **4**, (173 mg, 0.5 mmol) and 1,4–bis (pentafluorophenylhydroxy methyl)benzene, **5**, (235 mg, 0.5 mmol) in 100 ml of dry dichloromethane was placed in 250 ml flask under nitrogen. BF₃.OEt₂ (0.03 ml, 0.25 mmol) was added under dark, and the resulting solution was stirred for 2h. After adding excess FeCl₃, solution was opened to air and stirred for overnight (12 hrs). The reaction mixture was washed with water and passed through a short alumina column. This mixture was separated by silica gel column chromatography by using CH₂Cl₂/n-hexane as eluant. Pink color fraction was obtained; it was repeatedly purified by silica gel column chromatography by using 10% CH₂Cl₂ in n-hexane as eluant.

Synthetic Procedure for 2: (Scheme – b)

solution of (7**a**–**e**) (0.25)А aldehyde mmol) and 1.4bis((pentafluorophenyl)(thiophen-2-yl)methyl)benzene (150.5 mg, 0.25 mmol) in 100 ml of dry dichloromethane was placed in 250 ml flask under nitrogen. BF₃.OEt₂ (0.008 ml, 0.0625 mmol) was added under dark, and the resulting solution was stirred for 2h. After adding excess $FeCl_3$, solution was opened to air and stirred for overnight (12hrs). The reaction mixture was washed with water and passed through a short alumina column. This mixture was separated by silica gel column chromatography by using CH₂Cl₂/nhexane as eluant. Pink color fraction was obtained; it was repeatedly purified by silica gel column chromatography by using 10% CH₂Cl₂ in n-hexane as eluant.

2a: ¹**H** NMR (300MHz, CDCl₃, 298K): $\delta = 8.82$ (d, J=4.8Hz, 4H), $\delta = 8.76$ (d, J=5.4Hz, 4H), $\delta = 4.74$ (s,8H) ; UV-Vis (CH₂Cl₂): $\lambda_{max}(\epsilon) = 520(30.2 \times 10^4)$, 540(30.8 x 10⁴), 613(4.8 x 10⁴), 664(6.8 x 10⁴), 721(13.1 x 10⁴); FAB MS m/z: Calcd for C₇₀H₁₆F₃₀S₄ 1553.97; Observed 1555(100.0%, M+1).

2b: ¹**H NMR** (300MHz, CDCl₃, 298K): $\delta = 9.0$ (d, J=5.4Hz, 4H), $\delta = 8.9$ (d, J=4.8Hz, 4H), $\delta = 7.88$ (m, 2H), $\delta = 7.48$ (m, 4H), $\delta = 4.53$ (s,8H) ; **UV-Vis** (CH₂Cl₂): $\lambda_{max}(\epsilon) = 521(19.9 \times 10^4)$, 541(20.7 x 10⁴), 614(1.3 x 10⁴), 666(2 x 10⁴), 722(4.2 x 10⁴); **FAB MS** m/z: Calcd for C₇₀H₂₂F₂₄S₄ 1447.15; Observed 1448(100.0%, M+1).

2c: ¹**H** NMR (300MHz, CDCl₃, 298K): $\delta = 8.73$ (m, 12H), $\delta = 8.40$ (d, J=8.4Hz, 4H), $\delta = 4.72$ (s,8H) ; **UV-Vis** (CH₂Cl₂): $\lambda_{max}(\epsilon) = 529(17.7 \times 10^4)$, 543(19.2 x 10⁴), 727(3.9 x 10⁴); **FAB MS** m/z: Calcd for C₇₀H₂₄F₂₀N₂O₄S₄ 1465.18; Observed 1466 (100.0%, M+1).

2d: ¹**H NMR** (300MHz, CDCl₃, 298K): $\delta = 9.0$ (d, J=5.4Hz, 4H), $\delta = 8.9$ (d, J=4.8Hz, 4H), $\delta = 7.90$ (d, J= 8.4Hz, 4H), $\delta = 7.79$ (m, 2H), $\delta = 4.51$ (s, 8H) ; **UV-Vis** (CH₂Cl₂): $\lambda_{max}(\epsilon) = 524(17.6 \times 10^4)$, 543(20 x 10⁴), 725(4.1 x 10⁴); **FAB MS** m/z: Calcd for C₇₀H₂₂Cl₄F₂₀S₄ 1510.90; Observed 1512 (100.0%, M+1).

2e: ¹**H NMR** (300MHz, CDCl₃, 298K): $\delta = 9.0$ (d, J=4.5Hz, 4H), $\delta = 8.9$ (d, J=5.4Hz, 4H), $\delta = 7.81$ (m, 4H), $\delta = 7.60$ (m, 2H), $\delta = 4.50$ (s,8H) ; **UV-Vis** (CH₂Cl₂): $\lambda_{max}(\varepsilon) = 522(17.1 \times 10^4)$, 542(17.8 × 10⁴), 724(3.6 × 10⁴); **FAB MS** m/z: Calcd. for C₇₀H₂Cl₂F₂₂S₄ 1480.05; Observed 1481(100.0%, M+1).

Synthetic procedure for 3(2,5-bis((pentafluorophenyl)(thiophen-2yl)methyl)thiophene):

A mixture of 2, 5-(pentafluourophenylhydroxy methyl) thiophene (238 mg, 0.5 mmol) and thiophene (3.0 ml, 37 mmol) was degassed with argon for 10 min, then BF₃.O(Et)₂ (0.06 ml, 0.5 mmol) was added. The resulting solution was stirred at room temperature and the progress of the reaction was carefully monitored by TLC (~ 30 min), the mixture was poured in to CH_2Cl_2 (50 ml) and washed with aqueous NaOH (0.1 N).The organic layer was washed with water and dried (MgSO₄). The excess thiophene and solvent was removed in vacuum and resulting solid was chromatographed on silica (1%EtOAc in hexane) the desired product obtained as light yellow solid. Yield 216 mg (71%).

¹**H** NMR (300MHz, CDCl₃, 298K): $\delta = 7.23$ (m, 2H), $\delta = 6.94$ (m, 4H), $\delta = 6.78$ (s, 2H), $\delta = 6.15$ (s,2H). **FAB MS** m/z: Calcd for C₂₆H₁₀F₁₀S₃ 607.98; Observed 608.1(20.0%, M+1).

Synthetic procedure for 6 (1,4 -bis((pentafluorophenyl)(thiophen-2-yl)methyl)benzene):

A mixture of 1,4 – bis (perfluorophenylhydroxymethyl)benzene(235 mg, 0.5 mmol) and thiophene (3.0 ml, 37 mmol)was degassed with argon for 10min, then BF₃.O(Et)₂ (0.06 ml, 0.5 mmol) was added. The resulting solution was stirred at room temperature and the progress of the reaction was carefully monitored by TLC (~ 30 min), the mixture was poured in to CH₂Cl₂ (50 ml) and washed with aqueous NaOH (0.1N).The organic layer was washed with water and dried (MgSO₄). The excess thiophene and solvent was removed in vacuum and resulting solid was chromatographed on silica (1% EtOAc in hexane) the desired product obtained as white solid. Yield 185 mg (61%).

¹**H** NMR (300MHz, CDCl₃, 298K): $\delta = 7.23$ (m, Phenyl 4H and thiophene -2H), $\delta = 6.95$ (m, thiophene -2H), $\delta = 6.78$ (d, J=3Hz, thiophene α -2H) $\delta = 6.01$ (s, *meso* - 2H). **FAB MS** m/z: Calcd for C₂₈H₁₂F₁₀S₂ 602.02; Observed 601.04(20.0%, M-1⁺).

Variable temperature ¹H NMR Spectrum of 1 in CDCl₃

¹H NMR Spectrum of 2b in CDCl₃:

Variable temperature ¹H NMR Spectrum of 2a in CD₂Cl₂:

FAB Mass spectrum of 2a

FAB Mass spectrum of 2b

F...F Non –bonded interactions in 2b

F19...F12 (2.813Å); F17...F21 (2.697Å); F8...F5 (2.829Å).