# Stereoselective Synthesis of Spirocyclopentanones via

# N-Heterocyclic Carbene Catalyzed Reaction of Enals and Dienones

Vijay Nair,<sup>\*a,b</sup> Beneesh Pattoorpadi Babu,<sup>a</sup> Sreekumar Vellalath,<sup>a</sup> and Eringathodi Suresh<sup>c</sup>

 <sup>a</sup> National Institute for Interdisciplinary Science and Technology (CSIR) Trivandrum 695 019, India.
<sup>b</sup>Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India.
<sup>c</sup>Central Salt and Marine Chemicals Research Institute (CSIR), Bhavnagar 364 002, India.

#### Contents

- (1) General remarks S1
- (2) General experimental procedures S1
- (3) Characterization data for compounds S2
- (4) <sup>1</sup>H NOE Studies of compound **4** S8

(5) Molecular packing diagram of compound **5a S16** 

(1) General remarks: All reactions were carried out in oven-dried glassware. Progress of reactions was monitored by Thin Layer Chromatography while purification was effected by column chromatography, using silica gel (60-120 mesh). Melting points were recorded on a Buchi melting point apparatus and are uncorrected. NMR spectra were recorded at 300 (<sup>1</sup>H) and 75 (<sup>13</sup>C) MHz respectively on a Brucker Advance DPX-300 MHz. Chemical shifts are reported in  $\delta$  (ppm) relative to TMS (<sup>1</sup>H) or CDCl<sub>3</sub> (<sup>13</sup>C) as internal standards. IR spectra were recorded on Bomem MB series FT-IR spectrometer, absorbencies are reported in cm<sup>-1</sup>

#### (2) General experimental procedures:

(a) Synthesis of 1,3,4-trisubstituted cyclopentene 4a and 2,3,4-trisubstituted cyclopentanone 5a:- DBU (18 mg, 12 mol %) was added to a suspension of the 1,3-dimesityl imidazolium chloride<sup>1</sup> 3 (21 mg, 6 mol %) in 3 ml dry  $CH_2Cl_2$  under argon atmosphere. This was followed by the addition of 4-methoxycinnamaldehyde 1 (162 mg, 1 mmol) and dienone 2 (259 mg, 0.7 mmol) and the resulting solution was stirred for 8h at room temperature (30°C). Initial green colour of the reaction mixture gradually changed into wine red on completion of the reaction. The reaction mixture was then passed through a short pad of Celite®. After the removal of the solvent, the residue was subjected to chromatography on a silica gel (60-120 mesh) column using 95:5 hexane-ethyl acetate solvent mixture

<sup>&</sup>lt;sup>1</sup>Arduengo, A. J. III.; Krafczyk, R.; Schmutzler, R. Tetrahedron 1999, 55, 14523.

Supplementary Material (ESI) for Chemical Communications This journal is  ${\ensuremath{\mathbb C}}$  The Royal Society of Chemistry 2007

as eluent to afford **4a** (119 mg, 32% yield, 10:1 dr<sup>2</sup>) & **5a** (109 mg, 32%). **CCDC** file number for **5a**: 638979.

(b) Synthesis of spirocyclopentanone 8a:- DBU (18 mg, 12 mol %) was added to a suspension of the 1,3dimesityl imidazolium chloride 3 (21 mg, 6 mol %) in 3 ml dry CH<sub>2</sub>Cl<sub>2</sub> under argon atmosphere. This was followed by the addition of cinnamaldehyde 6 (132 mg, 1 mmol) and dienone 7 (224 mg, 0.7 mmol) and the resulting solution was stirred for 8h at room temperature (30°C). Initial green colour of the reaction mixture gradually changed into wine red on completion of the reaction. The reaction mixture was then passed through a short pad of Celite®. After the removal of the solvent, the residue was subjected to chromatography on a silica gel (60-120 mesh) column using 80:20 hexane-ethyl acetate solvent mixture as eluent to afford **8a** (189 mg, 60%). CCDC file number for **8a**: 653444.

#### (3) Characterization data for selected compounds

**Compound 4a** 



Colourless viscous liquid **IR** (Film)  $\nu_{max}$ : 3031, 2911, 2821, 1618, 1530, 1472, 1275, 1190, 1062 cm<sup>-1</sup>. <sup>1</sup>**H NMR**:  $\delta$  7.28-7.16 (m, 4H), 6.98-6.95 (m, 3H), 6.85 (d, 1H, J = 17.1 Hz), 6.77-6.67 (m, 4H), 6.56 (d, 2H), 5.99 (s, 1H), 4.12 (s, 1H), 3.73 (s, 3H), 3.34-3.26 (m, 1H), 3.06-2.94 (m, 1H), 2.72-2.69 (m, 1H) <sup>13</sup>**C NMR**:  $\delta$  158.5, 149.0, 142.1, 140.6, 135.9, 134.2, 133.4, 131.6, 129.6, 128.5, 128.4, 127.6, 127.3, 126.9, 125.5, 125.4, 124.5, 122.5, 114.0, 60.1, 55.9, 55.0, 54.9, 54.6, 49.9, 41.5 **HRMS (EI)** for C<sub>28</sub>H<sub>22</sub>F<sub>6</sub>O: Calcd.: 488.1575, found :488.1577

**Compound 5a** 



Supplementary Material (ESI) for Chemical Communications This journal is  $\ensuremath{\mathbb{C}}$  The Royal Society of Chemistry 2007

# **Compound 4b**

|     | Colourless viscous liquid                                                                   |
|-----|---------------------------------------------------------------------------------------------|
|     | <b>IR</b> (Film) v <sub>max</sub> : 3026, 2917, 2824, 1620, 1537, 1466, 1271, 1188, 1055    |
|     | cm <sup>-1</sup> .                                                                          |
|     | <sup>1</sup> <b>H NMR</b> : δ 7.43 (d, 2H, $J = 10.5$ Hz), 7.31-7.17 (m, 8H), 7.03-6.97 (m, |
|     | 3H), 6.76 (d, 2H, <i>J</i> = 8.7 Hz), 6.49 (d, 1H, <i>J</i> = 16.2 Hz), 5.87 (s, 1H),       |
|     | 3.99 (d, 1H, $J = 6.0$ Hz), $3.73$ (s, 3H), $3.35$ - $3.27$ (m, 1H), $3.21$ - $3.13$ (m,    |
|     | 1H), 2.83-2.75 (m, 1H)                                                                      |
|     | <sup>13</sup> C NMR: $\delta$ 158.2, 145.3, 142.1, 137.4, 136.8, 133.9, 130.8, 130.0,       |
| MeO | 129.6, 128.9, 128.6, 128.4, 128.3, 128.2, 127.5, 127.3, 126.4, 126.2,                       |
|     | 125.2, 114.1, 113.8, 113.1, 59.9, 55.1, 54.8, 40.1                                          |
|     | <b>HRMS (EI)</b> for $C_{26}H_{24}O$ : Calcd.: 352.1827, found : 352.1821                   |

# Compound 5b



# **Compound 4c**

|           | Colourless viscous liquid                                                                     |
|-----------|-----------------------------------------------------------------------------------------------|
|           | <b>IR</b> (Film) v <sub>max</sub> : 3033, 2911, 1607, 1518, 1457, 1301, 1224, 1171, 1101      |
|           | cm <sup>-1</sup> .                                                                            |
|           | <sup>1</sup> <b>H NMR</b> : δ 7.30 (d, 2H, $J$ = 8.0 Hz), 7.12-6.97 (m, 9H), 6.79 (d, 2H, $J$ |
| j j       | = 9.7 Hz), 6.46 (d, 1H, $J$ = 16.1 Hz), 5.89 (s, 1H), 3.96 (d, 1H, $J$ = 6.1                  |
|           | Hz), 3.74 (s, 3H), 3.31-3.23 (m, 1H), 3.18 – 3.10 (m, 1H), 2.79-2.72                          |
| $\square$ | (m, 1H), 2.33 (s, 3H), 2.31 (s, 3H)                                                           |
|           | <sup>13</sup> C NMR: $\delta$ 158.4, 142.5, 142.4, 137.4, 137.3, 135.7, 134.9, 13.6,          |
|           | 130.1, 129.9, 129.6, 129.3, 128.5, 127.5, 126.6, 124.7, 124.5, 113.9,                         |
| MeO       | 110.9, 60.1, 55.5, 54.7, 40.4, 21.5, 21.3                                                     |
|           | <b>HRMS (EI)</b> for $C_{28}H_{28}O$ : Calcd.: 380.2140, found : 380.2135                     |
|           |                                                                                               |

# **Compound 5c**

|      | Yellow viscous liquid                                                                                     |
|------|-----------------------------------------------------------------------------------------------------------|
|      | <b>IR</b> (Film) v <sub>max</sub> : 3668, 3022, 1685, 1641, 1612, 1582, 1513, 1461,                       |
| О ОН | 1372, 1247, 1181, 1036 cm <sup>-1</sup> .                                                                 |
|      | <sup>1</sup> <b>H NMR</b> : δ 13.9 (s, 1H), 7.42 (d, 2H, $J = 15.5$ Hz), 7.11-6.98 (m,                    |
|      | 9H), 6.79 (d, 2H, J = 8.6 Hz), 5.96 (d, 1H, J = 15.8 Hz), 4.08 (d, 1H, J                                  |
|      | $= 6.7$ Hz), 3.78 (s, 3H), 3.32-3.25 (m, 1H), 2.96 (dd, 1H, $J_1 = 18.2$ Hz,                              |
| MeO  | $J_2 = 8.6$ Hz), 2.70 (dd, 1H, $J_1 = 18.1$ Hz, $J_2 = 8.4$ Hz), 2.33 (s, 3H),                            |
|      | 2.30 (s, 3H)                                                                                              |
|      | <sup>13</sup> C NMR: δ 208.1, 167.9, 158.7, 141.9, 140.3, 139.9, 136.6, 135.7,                            |
|      | 132.9, 132.0, 130.0, 129.8, 129.7, 129.5, 129.3, 128.9, 128.6, 128.3,                                     |
|      | 128.1, 127.8, 119.2, 114.3, 113.9, 55.4, 54.2, 50.9, 44.7, 21.8, 21.4                                     |
|      | <b>HRMS (EI)</b> for C <sub>29</sub> H <sub>28</sub> O <sub>3</sub> : Calcd. : 424.2038, found : 424.2045 |

# **Compound 4d**



Compound 5d

|       | Yellow viscous liquid                                                                                                    |
|-------|--------------------------------------------------------------------------------------------------------------------------|
|       | <b>IR</b> (Film) v <sub>max</sub> : 3674, 3041, 2964, 1671, 1645, 1598, 1511, 1464,                                      |
| О ОН  | $1373, 1306, 1239, 1179, 1157, 1032 \text{ cm}^{-1}$ .                                                                   |
|       | <sup>1</sup> <b>H NMR</b> : δ 13.94 (s, 1H), 7.43(d, 1H, $J = 15.7$ Hz), 7.13-6.91 (m, 10                                |
|       | H), 6.81 (d, 2H, <i>J</i> = 8.5 Hz), 5.88 (d, 1H, <i>J</i> = 15.8 Hz), 4.1 (d, 1H, <i>J</i> =                            |
| F     | 7.0 Hz), 3.78 (s, 3H), 3.27-3.18 (m, 1H), 2.94 (dd, 1H, $J_1 = 18.0$ Hz,                                                 |
| MeO F | $J_2 = 8.4$ Hz), 2.73 (dd, 1H, $J_1 = 18.2$ Hz, $J_2 = 9.1$ Hz)                                                          |
|       | <sup>13</sup> C NMR: δ 207.6, 167.2, 158.6, 140.2, 138.6, 134.5, 131.4, 129.6,                                           |
|       | 129.5, 129.0, 128.9, 128.1, 119.3, 116.1, 115.9, 115.8, 115.6, 114.6,                                                    |
|       | 114.1, 113.4, 55.2,53.6, 51.0, 44.4                                                                                      |
|       | <b>HRMS (EI)</b> for C <sub>27</sub> H <sub>22</sub> F <sub>2</sub> O <sub>3</sub> : Calcd. : 432.1537, found : 432.1555 |

# **Compound 4e**

|     | Colourless viscous liquid                                                                                               |
|-----|-------------------------------------------------------------------------------------------------------------------------|
|     | <b>IR</b> (Film) v <sub>max</sub> : 3037, 2910, 1606, 1510, 1465, 1302, 1230, 1190, 1060                                |
| s   | cm <sup>-1</sup> .                                                                                                      |
| ) j | <sup>1</sup> <b>H NMR</b> : δ 7.15-7.05 (m, 4H), 6.97-6.94 (m, 2H), 6.89-6.87 (m, 1H),                                  |
|     | 6.82-6.79 (m, 3H), 6.73-6.62 (m, 2H), 5.84 (s, 1H), 3.99 (d, 1H, <i>J</i> = 7.3                                         |
|     | Hz), 3.77 (s, 3H), 3.59 (m, 1H), 3.23-3.15 (m, 1H), 2.83-2.75 (m, 1H)                                                   |
| , S | <sup>13</sup> C NMR: δ 158.4, 148.2, 142.9, 141.4, 135.9, 133.7, 129.5, 128.5,                                          |
|     | 127.6, 126.6, 125.9, 124.5, 124.3, 123.6, 123.2, 122.9, 113.8, 113.2,                                                   |
| MeO | 60.1, 55.1, 50.2, 4.07                                                                                                  |
|     | <b>HRMS (EI)</b> for C <sub>22</sub> H <sub>20</sub> O <sub>3</sub> S <sub>2</sub> : Calcd.: 364.0956, found : 364.0952 |
|     |                                                                                                                         |

# **Compound 5e**



# **Compound 4f**

|           | Colourless viscous liquid                                                                                |
|-----------|----------------------------------------------------------------------------------------------------------|
|           | <b>IR</b> (Film) v <sub>max</sub> : 3019, 2914, 2831, 1617, 1542, 1474, 1269, 1168, 1061                 |
| OCH₃<br>↓ | cm <sup>-1</sup> .                                                                                       |
|           | <sup>1</sup> <b>H NMR</b> : δ 7.35 (d, 2H, $J = 8.7$ Hz), 7.23-7.19 (m, 3H), 7.12-7.06 (m,               |
|           | 4H), 6.93 (d, 1H, <i>J</i> = 16.1 Hz), 6.86-6.78 (m, 4H), 6.46 (d, 1H, <i>J</i> = 16.1                   |
|           | Hz), 5.84 (s, 1H), 3.98 (d, 1H, $J = 5.9$ Hz), 3.80 (s, 3H), 3.77 (s, 3H),                               |
| $\square$ | 3.31-3.26 (m, 1H), 3.19-3.11 (m, 1H), 2.80-2.75 (m, 1H)                                                  |
|           | <sup>13</sup> C NMR: δ159.1, 158.0, 144.9, 142.6, 137.4, 132.4, 130.2, 129.6,                            |
|           | 129.3, 128.8, 128.4, 128.2, 127.6, 127.4, 126.3, 123.2, 114.1, 113.8,                                    |
| OCH3      | 112.9, 60.7, 55.2, 53.9, 40.3                                                                            |
|           | <b>HRMS (EI)</b> for C <sub>27</sub> H <sub>26</sub> O <sub>2</sub> : Calcd.: 382.1933, found : 382.1940 |
|           |                                                                                                          |

# Compound 5f

|                  | Yellow viscous liquid                                                                                     |
|------------------|-----------------------------------------------------------------------------------------------------------|
|                  | <b>IR</b> (Film) v <sub>max</sub> : 3662, 3026, 2954, 2828, 1737, 1645, 1581, 1514,                       |
| о он<br>Ц        | 1454, 1361, 1246, 1178 cm <sup>-1</sup> .                                                                 |
|                  | <sup>1</sup> <b>H NMR</b> : δ 14.03 (s, 1H), 7.43 (d, 1H, $J = 15.7$ Hz), 7.27-7.22 (m,                   |
|                  | 3H), 7.14-7.05 (m, 6H), 6.82 (d, 2H, <i>J</i> = 8.6 Hz), 6.75 (d, 2H, <i>J</i> = 8.7                      |
| OCH <sub>3</sub> | Hz), 5.90 (d, 1H, J = 15.7 Hz), 4.11 (d, 1H, J = 6.4 Hz), 3.77 (s, 6H),                                   |
| OCH3             | $3.33-3.25$ (m, 1H), 2.97 (dd, 1H, $J_1 = 14.8$ Hz, $J_2 = 8.3$ Hz), 2.72 (dd,                            |
|                  | $1H, J_1 = 18.1 Hz, J_2 = 8.2 Hz)$                                                                        |
|                  | <sup>13</sup> C NMR: δ 207.2, 168.2, 161.0, 158.5, 143.5, 139.5, 136.7, 129.5,                            |
|                  | 128.7, 128.5, 128.1, 127.1, 126.8, 117.4, 114.2, 113.3, 113.1, 55.2,                                      |
|                  | 53.4, 51.4, 44.2                                                                                          |
|                  | <b>HRMS (EI)</b> for C <sub>28</sub> H <sub>26</sub> O <sub>4</sub> : Calcd. : 426.1831, found : 426.1825 |

# Compound 4g

|   | Colourless viscous liquid                                                                  |
|---|--------------------------------------------------------------------------------------------|
| _ | <b>IR</b> (Film) v <sub>max</sub> : 3021, 2917, 1611, 1521, 1443, 1308, 1227, 1173, 1109   |
|   | cm <sup>-1</sup> .                                                                         |
|   | <sup>1</sup> <b>H</b> NMR: δ 7.41 (d, 2H, $J$ = 7.7 Hz), 7.32-7.19 (m, 10H), 7.09-6.97 (m, |
|   | 4H), 6.50 (d, 1H, $J = 16.1$ Hz), 5.9 (s, 1H), 4.04 (d,1H, $J = 5.8$ Hz),                  |
|   | 3.37-3.32 (m, 1H), 3.24-3.15 (m, 1H), 2.85-2.78 (m, 1H)                                    |
|   | <sup>13</sup> C NMR: δ145.3, 144.7, 142.4, 141.5, 137.4, 133.5, 130.1, 128.7,              |
|   | 128.6, 128.5, 128.4, 127.7, 127.5, 127.4, 127.3, 126.4, 126.3, 125.8,                      |
|   | 125.1, 60.7, 54.6, 40.2                                                                    |
|   | <b>HRMS (EI)</b> for C <sub>25</sub> H <sub>22</sub> : Calcd.: 322.1721, found : 322.1718  |
|   |                                                                                            |

# Compound 5g

|      | Yellow viscous liquid                                                                   |
|------|-----------------------------------------------------------------------------------------|
|      | <b>IR</b> (Film) v <sub>max</sub> : 3654, 3060, 3031, 1925, 1679, 1610, 1581, 1494,     |
| О ОН | 1455, 1367, 1236, 1118 cm <sup>-1</sup> .                                               |
|      | <sup>1</sup> <b>H</b> NMR: $\delta$ 13.88 (s, 1H), 7.29-7.07 (m, 16H), 5.99 (d, 1H, J = |
|      | 15.8Hz), 4.17 (d, 1H, $J = 6.6$ Hz), 3.39-3.31 (m, 1H), 3.04-2.95 (m,                   |
|      | 1H), 2.81-2.72 (m, 1H)                                                                  |
|      | <sup>13</sup> C NMR: δ 207.8, 167.4, 144.5, 143.1, 139.8, 135.2, 129.7, 129.1,          |
|      | 128.9, 128.7, 128.5, 128.3, 127.8, 127.5, 127.1, 126.9, 126.8, 126.4,                   |
|      | 119.8, 113.6, 54.1, 51.3, 44.3                                                          |
|      | <b>HRMS (EI)</b> for $C_{26}H_{22}O_2$ : Calcd. : 366.1620, found : 366.1618            |

# **Compound 4h**

|            | Colourless viscous liquid                                                                   |
|------------|---------------------------------------------------------------------------------------------|
|            | <b>IR</b> (Film) v <sub>max</sub> : 3022, 2911, 2832, 1614, 1547, 1472, 1269, 1179, 1062    |
|            | $  \mathrm{cm}^{-1}$ .                                                                      |
|            | <sup>1</sup> <b>H</b> NMR: δ 7.35-6.99 (m, 14H), 6.47 (d, 1H, $J$ = 16.1 Hz), 5.86 (s, 1H), |
| Ť.         | 4.01 (d, 1H, J = 6.0 Hz), 3.35-3.28 (m, 1H), 3.20-3.12 (m, 1H), 2.81-                       |
|            | 2.74 (m, 1H), 2.33 (s, 3H), 2.31 (s, 3H)                                                    |
| $\bigcirc$ | <sup>13</sup> C NMR: δ144.9, 142.6, 142.3, 137.2, 135.6, 134.7, 133.0, 130.0,               |
|            | 129.4, 129.1, 128.8, 128.3, 128.2, 127.7, 127.4, 127.2, 126.3, 124.3,                       |
|            | 60.6, 54.3, 40.3, 21.3, 21.1                                                                |
|            | <b>HRMS (EI)</b> for C <sub>27</sub> H <sub>26</sub> : Calcd.: 350.2034, found : 350.2032   |
|            |                                                                                             |

# **Compound 5h**

|           | Yellow viscous liquid                                                                                     |
|-----------|-----------------------------------------------------------------------------------------------------------|
|           | <b>IR</b> (Film) v <sub>max</sub> : 3654, 3060, 3031, 1925, 1679, 1610, 1581, 1494,                       |
| о он<br>Ц | 1455, 1367, 1236, 1118 cm <sup>-1</sup> .                                                                 |
|           | <sup>1</sup> <b>H NMR</b> : δ 13.93 (s, 1H), 7.41 (d, 1H, $J = 15.7$ Hz, 7.26-7.21 (m, 3H),               |
|           | 7.13-6.99 (m, 10 H), 5.95 (d, 1H, $J = 15.8$ Hz), 4.12 (d, 1H, $J = 6.3$                                  |
|           | Hz), 3.35-3.28 (m, 1H), 2.97 (dd, 1H, $J_1 = 18.1$ Hz, $J_2 = 8.1$ Hz), 2.72                              |
|           | $(dd, 1H, J_1 = 18.2 Hz, J_2 = 8.1 Hz), 2.31 (s, 3H), 2.28 (s, 3H)$                                       |
|           | <sup>13</sup> C NMR: δ 207.8, 167.9, 143.7, 141.8, 140.2, 139.9, 136.5, 132.9,                            |
|           | 129.8, 129.7, 129.3, 128.9, 128.7, 128.1, 127.7, 127.2, 119.1, 113.7,                                     |
|           | 53.9, 51.5, 44.5, 21.7, 21.3                                                                              |
|           | <b>HRMS (EI)</b> for C <sub>28</sub> H <sub>26</sub> O <sub>2</sub> : Calcd. : 394.1933, found : 394.1927 |

# <sup>1</sup>H nOe Studies of compound 4a



The relative stereochemistry of C3-H and C4-H is established from <sup>1</sup>H nOe studies. Irradiation of C3-H ( $\delta$  4.12) causes an nOe enhancement of 1.8% to C2-H signal while did not show any nOe at C4-H, which implies their trans relationship.

# <sup>1</sup>H nOe Studies of compound 4b



The relative stereochemistry of C3-H and C4-H is established from <sup>1</sup>H nOe studies. Irradiation of C3-H ( $\delta$  3.99) causes an nOe enhancement of 1.5% to C2-H signal while did not show any nOe at C4-H, which implies their trans relationship.

<sup>1</sup>H nOe Studies of compound 4c



The relative stereochemistry of C3-H and C4-H is established from <sup>1</sup>H nOe studies. Irradiation of C3-H ( $\delta$  3.96) causes an nOe enhancement of 1.9% to C2-H signal while did not show any nOe at C4-H, which implies their trans relationship.

# <sup>1</sup>H nOe Studies of compound 4d



The relative stereochemistry of C3-H and C4-H is established from <sup>1</sup>H nOe studies. Irradiation of C3-H ( $\delta$  3.92) causes an nOe enhancement of 1.5% to C2-H signal while did not show any nOe at C4-H, which implies their trans relationship.

# <sup>1</sup>H nOe Studies of compound 4e



The relative stereochemistry of C3-H and C4-H is established from <sup>1</sup>H nOe studies. Irradiation of C3-H ( $\delta$  3.99) causes an nOe enhancement of 1.8% to C2-H signal while did not show any nOe at C4-H, which implies their trans relationship.

<sup>1</sup>H nOe Studies of compound 4f



The relative stereochemistry of C3-H and C4-H is established from <sup>1</sup>H nOe studies. Irradiation of C3-H ( $\delta$  3.98) causes an nOe enhancement of 1.7% to C2-H signal while did not show any nOe at C4-H, which implies their trans relationship.

# <sup>1</sup>H nOe Studies of compound 4g



The relative stereochemistry of C3-H and C4-H is established from <sup>1</sup>H nOe studies. Irradiation of C3-H ( $\delta$  4.04) causes an nOe enhancement of 1.6% to C2-H signal while did not show any nOe at C4-H, which implies their trans relationship.

# <sup>1</sup>H nOe Studies of compound 4h



The relative stereochemistry of C3-H and C4-H is established from <sup>1</sup>H nOe studies. Irradiation of C3-H ( $\delta$  4.01) causes an nOe enhancement of 1.8% to C2-H signal while did not show any nOe at C4-H, which implies their trans relationship.

# **Compound 8a**



# **Compound 8b**



# Compound 8c



| White solid. Mp : 202-204 °C                                                                           |
|--------------------------------------------------------------------------------------------------------|
| <b>IR</b> (KBr) v <sub>max</sub> : 3026, 2914 1732, 1695, 1624, 1602, 1494, 1301, 1244,                |
| $1176, 1099 \text{ cm}^{-1}.$                                                                          |
| <sup>1</sup> <b>H NMR</b> : δ 7.43-7.37 (m, 3H), 7.29-7.25 (m, 3H), 7.18-7.12 (m, 3H),                 |
| 7.03-6.94 (m, 3H), 6.83-6.80(m, 2H), 4.59 (d, 1H, $J = 12.8$ Hz), 4.15-                                |
| 4.13 (m, 1H), 3.88 (s, 3H), 3.03-2.95 (m, 2H), 2.57-2.47 (m, 2H), 2.37                                 |
| (s, 3H), 2.21 (s, 3H), 2.17-2.16 (m, 1H), 1.66-1.62 (m, 1H).                                           |
| <sup>13</sup> CNMR: 214.4, 205.1, 157.5, 139.9, 136.3, 134.8, 134.3, 134.1,                            |
| 132.6, 130.9, 129.4, 129.1, 128.8, 128.6, 127.6, 127.1, 120.9, 110.3,                                  |
| 69.9, 55.3, 52.4, 46.6, 35.6, 26.9, 26.8, 21.5.                                                        |
| <b>HRMS (EI)</b> for C <sub>31</sub> H <sub>30</sub> O <sub>3</sub> : Calcd: 450.2195, found: 450.2194 |

# Compound 8d

|                   | White solid. Mp : 156-158 °C                                                                           |
|-------------------|--------------------------------------------------------------------------------------------------------|
| 4                 | <b>IR</b> (KBr) v <sub>max</sub> : 3022, 2916, 1738, 1691, 1614, 1581, 1511, 1459,                     |
|                   | $1255, 1165, 1060 \text{ cm}^{-1}.$                                                                    |
|                   | <sup>1</sup> <b>H NMR</b> : δ 7.42-7.37 (m, 3H), 7.25-7.16 (m, 6H), 6.98 (s, 3H),                      |
| H <sub>3</sub> CO | 6.77 (d, 2H, J = 8.6 Hz), 4.38 (d, 1H, J = 12.3 Hz) 3.73 (s, 3H),                                      |
|                   | 3.70-3.66 (m, 1H) 3.09-2.98 (m, 1H), 2.87 (dd, 1H, $J_1 = 17.8$ Hz,                                    |
|                   | $J_2 = 7.3$ Hz), 2.68 (dd, 1H, $J_1 = 17.8$ Hz, $J_2 = 12.6$ Hz) 2.59-2.51                             |
|                   | (m, 1H),2.37 (s, 3H), 2.23 (s, 3H), 2.15-2.13 (m, 1H), 1.63-1.58                                       |
|                   | (m,1H)                                                                                                 |
|                   | <sup>13</sup> CNMR: 213.8, 203.3, 157.3, 132.8, 132.1, 130.4, 130.0, 128.6,                            |
|                   | 128.3, 115.2, 113.3, 70.3, 58.1, 56.1, 55.7, 27.2                                                      |
|                   | <b>HRMS (EI)</b> for C <sub>31</sub> H <sub>30</sub> O <sub>3</sub> : Calcd: 450.2195, found: 450.2186 |

# **Compound 8e**



**Compound 8f** 



# Compound 8g

| White solid. Mp : 157-159 °C                                                                         |
|------------------------------------------------------------------------------------------------------|
| <b>IR</b> (KBr) v <sub>max</sub> : 3031, 2917, 1736, 1688, 1620, 1580, 1501, 1459, 1302,             |
| $1261, 1210, 1080 \text{ cm}^{-1}.$                                                                  |
| <sup>1</sup> <b>H NMR</b> : δ 7.43-7.24 (m, 6H), 7.18-7.12 (m, 4H), 6.99 (s, 4H), 4.44               |
| (d, 1H, $J = 12.3$ Hz), 3.75-3.71 (m, 1H), 3.08-2.99 (m, 1H), 2.90 (dd,                              |
| 1H, $J_1 = 17.8$ Hz, $J_2 = 7.3$ Hz), 2.73 (dd, 1H, $J_1 = 17.8$ Hz, $J_2 = 12.5$                    |
| Hz), 2.60-2.57 (m, 1H), 2.36 (s, 3H), 2.22 (s, 3H), 2.17-2.13 (m, 1H),                               |
| 1.64-1.59 (m, 1H)                                                                                    |
| <sup>13</sup> C NMR: 213.3, 204.5, 140.7, 140.0, 136.6, 134.7, 134.5, 134.0,                         |
| 132.6, 130.9, 129.4, 129.2, 128.8, 128.7, 127.5, 126.9, 70.1, 54.6, 47.9,                            |
| 43.3, 27.2, 26.9, 21.6.                                                                              |
| <b>HRMS (EI)</b> for C <sub>30</sub> H <sub>28</sub> O <sub>2</sub> Calcd: 420.2089, Found: 420.2076 |

# **Compound 8h**



# **Compound 8i**

|                  | White solid. Mp : 152-154 °C                                                                           |
|------------------|--------------------------------------------------------------------------------------------------------|
|                  | <b>IR</b> (KBr) v <sub>max</sub> : 3029, 2914, 1740, 1696, 1621, 1600, 1495,                           |
|                  | $1303, 1247, 1228, 1180, 1091 \text{ cm}^{-1}$ .                                                       |
| OCH <sub>3</sub> | <sup>1</sup> <b>H NMR</b> : δ 7.43 (d, 3H, $J = 8.8$ Hz), 7.25-7.20 (m, 2H), 7.02                      |
| Haco a           | (d, 2H, $J = 8.5$ Hz), 6.87 (d, 2H, $J = 8.6$ Hz), 6.79-6.69 (m,                                       |
| OCH3             | 4H), 4.35 (d, 1H, <i>J</i> = 12.3 z), 3.80 (s, 3H), 3.71 (s, 3H), 3.68 (s,                             |
|                  | 3H), 3.65-3.63 (m, 1H), 3.06-2.95 (m, 1H), 2.86 (dd, 1H, $J_1$ =                                       |
|                  | 17.8 Hz, $J_2 = 7.2$ Hz), 2.67 (dd, 1H, $J_1 = 17.8$ Hz, $J_2 = 12.4$ Hz),                             |
| 0 -              | 2.56-5.48 (m, 1H), 2.19-2.15 (m, 1H), 1.65-1.61 (m, 1H)                                                |
|                  | <sup>13</sup> CNMR: 213.6, 204.5, 160.8, 158.4, 158.3, 134.5, 133.0,                                   |
|                  | 132.6, 132.5, 129.8, 129.1, 128.3, 128.0, 114.2, 114.0, 113.8,                                         |
|                  | 70.1, 55.2, 54.9, 54.5, 48.0, 47.7, 27.1, 26.8                                                         |
|                  | <b>HRMS (EI)</b> for C <sub>31</sub> H <sub>30</sub> O <sub>5</sub> : Calcd: 482.2093, found: 482.2094 |

# Compound 8j

|                                                                                   | White solid. Mp : 162 -164 °C                                                                                         |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| S<br>OCH <sub>3</sub><br>OCH <sub>3</sub><br>OCH <sub>3</sub><br>OCH <sub>3</sub> | <b>IR</b> (KBr) v max: 3031, 2901, 1738, 1691, 1625, 1588, 1497, 1309, 1236,                                          |
|                                                                                   | $1221, 1158, 1084 \text{ cm}^{-1}$ .                                                                                  |
|                                                                                   | <sup>1</sup> <b>H</b> NMR: $\delta$ 7.70 (s, 1H), 7.53 (d, 1H, $J$ = 5.0 Hz), 7.38 (d, 1H, $J$ = 3.6                  |
|                                                                                   | Hz), 7.34-7.31 (m, 1H), 7.19-7.11 (m, 2H), 7.05-7.03 (m, 1H), 6.91-6.80                                               |
|                                                                                   | (m, 3H), 6.76-6.75 (m, 1H), 4.88 (d, 1H, $J = 12.4$ Hz), 4.08-3.97 (m, 1H),                                           |
|                                                                                   | 3.90 (s, 3H), 3.01-2.93 (m, 2H), 2.70-2.50 (m, 2H), 2.25-2.18 (m, 1H),                                                |
|                                                                                   | 1.86-1.75 (m, 1H)                                                                                                     |
|                                                                                   | <sup>13</sup> CNMR: 213.8, 203.9, 157.7, 141.0, 140.0, 133.6, 130.9, 128.6, 128.2,                                    |
|                                                                                   | 127.5, 127.3, 127.0, 126.1, 124.5, 121.1, 110.7, 70.8, 55.5, 48.2, 46.4,                                              |
|                                                                                   | 38.5, 26.8                                                                                                            |
|                                                                                   | <b>HRMS (EI)</b> for C <sub>25</sub> H <sub>22</sub> O <sub>3</sub> S <sub>2</sub> : Calcd: 434.1010, found: 434.1008 |

# **Compound 8k**



# **Compound 10**

DBU (18 mg, 12 mol %) was added to a suspension of the carbene precursor 1,3-dimesityl imidazolium chloride **3** (21 mg, 6 mol %) in dry  $CH_2Cl_2$  under argon atmosphere. This was followed by the addition of enal **6** (132 mg, 1 mmol) and dienone **9** (192 mg, 0.7 mmol) and the resulting solution was stirred for 8 h at room temparature. Removal of solvent followed by column chromatography as described in the general procedure afforded the bicyclic cyclopentene derivative **10** as a colorless viscous liquid (202 mg, 80%).



<sup>1</sup>H nOe Studies of compound 10



The relative stereochemistry of compound **10** is obtained from <sup>1</sup>H nOe studies. The irradiation of C4-H signal ( $\delta$  2.29-2.25) causes an nOe enhancement of 1.5% to C2-H signal ( $\delta$  4.06-4.03), thus confirming their *cis* relationship. In addition, irradiation of the C2-H ( $\delta$  4.06-4.03) enhanced the C1-H signal ( $\delta$  5.87), but did not show any enhancement of the signal due to C3-H thus indicating the *trans* relationship of C3-H with these protons.

#### Molecular packing diagram of compound 5a

In an attempt to understand the stabilization of the enolic form of the cyclopentanone in the solid state, we have examined the molecular packing and interactions present in this compound. A view of the H-bonding interactions is given in Figure 1. There is a strong intramolecular O-H....O interaction between the enolic hydrogen and ketonic oxygen. The exocyclic ketonic oxygen further acts as an acceptor via intermolecular C-H....O interaction with a phenyl hydrogen which link the molecules in an infinite chain with base vector [1,-1,0]. Thus the stabilization of the enolic form cyclopentanone in the solid state is chiefly attributed to the strong intramolecular O-H...O hydrogen bonding and weak intermolecular C-H...O interactions.



**Figure 1.** Close up view of the O-H....O and C-H...O hydrogen bonding interactions present in the compound **5a**.

## **Compound 4a.**



### **Compound 4a.**



## Compound 5a.



**S**19

### Compound 5a.



### Compound 4b.



## Compound 4b.



## Compound 5b.



## Compound 5b.



#### **Compound 4c.**



## **Compound 4c.**



## Compound 5c.



**S**27

## Compound 5c.



#### Compound 4d.



## Compound 4d.



## Compound 5d.



## **Compound 5d**



#### Compound 4e.



## Compound 4e.



## Compound 5e.



## Compound 5e.



#### Compound 4f.



## Compound 4f.



**S**38

## Compound 5f.



## Compound 5f.



#### Compound 4g.



## Compound 4g.



# Compound 5g.



# Compound 5g.



#### Compound 4h.







## Compound 5h.



## Compound 5h.



### Compound 8a.



# Compound 8a.



### Compound 8b.



# Compound 8b.



#### Compound 8c.



## Compound 8c.



# Compound 8d.



# Compound 8d.



### Compound 8e.



## Compound 8e.



### Compound 8f.



# Compound 8f.



# Compound 8g.



# Compound 8g.





#### Compound 8h.



# Compound 8h.



#### Compound 8i.



**S**65

## Compound 8i.



# Compound 8j.



# Compound 8j.



#### Compound 8k.



## Compound 8k.

