Supporting Information

Self-assembly of Tris(phenylisoxazolyl)benzene and its Asymmetric Induction of Supramolecular Chirality

Takeharu Haino,* Masahiro Tanaka and Yoshimasa Fukazawa
Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1
Kagamiyama, Higashi-Hiroshima 739-8526, Japan

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2007

Synthetic schemes and procedures.

Scheme S1.

1) TBAF / THF

9

Scheme S2.

Scheme S3.

1,3,5-Tris[3-(4-decyloxyphenyl)isoxazol-5-yl]benzene 1.

To a solution of 1,3,5-triethynylbenzene ${ }^{1}$ ($446 \mathrm{mg}, 2.97 \mathrm{mmol}$), and $6(3.20 \mathrm{~g}, 9.82 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{ml})$ was added triethyl amine ($2.48 \mathrm{ml}, 17.8 \mathrm{mmol}$). After stirred at room temperature for 48 h , the reaction mixture was concentrated in vacuo. The crude product was purified by column chromatography on silica gel $\left(\mathrm{CHCl}_{3}\right)$ and recrystallized from toluene solution to give desired product ($2.32 \mathrm{~g}, 80 \%$) as a white solid. M.p. $132{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 10 \mathrm{mmol} \mathrm{L}$-1, CDCl_{3}): $\delta 8.30(\mathrm{~s}, 3 \mathrm{H}), 7.82(\mathrm{~d}, 6 \mathrm{H}, J=8.9 \mathrm{~Hz}), 7.00(\mathrm{~d}, 6 \mathrm{H}, J=8.9 \mathrm{~Hz}), 6.97(\mathrm{~s}$, $3 \mathrm{H}), 4.02(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}), 1.79-1.85(\mathrm{~m}, 6 \mathrm{H}), 1.45-1.51(\mathrm{~m}, 6 \mathrm{H}), 1.29-1.38(\mathrm{~m}, 36 \mathrm{H}), 0.89(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR (125 MHz, $10 \mathrm{mmol} \mathrm{L}^{-1}, \mathrm{CDCl}_{3}$): $\delta 168.1,162.9,160.9,129.3,128.3,123.9,120.9,115.0,98.8,68.2$, 31.9, 29.6x2, 29.4, 29.3, 29.2, 26.0, 22.7, 14.1; IR (KBr) 3110, 2920, 2849, 1612, 1561, 1526, 1469, 1435, 1388, 1299, 1290, 1255, 1175, 1114, $1020 \mathrm{~cm}^{-1}$; HRMS (FAB^{+}) calcd for $\mathrm{C}_{63} \mathrm{H}_{82} \mathrm{~N}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 976.6204$, found 976.6183; Anal. Calcd for $\mathrm{C}_{63} \mathrm{H}_{81} \mathrm{~N}_{3} \mathrm{O}_{6}$: C, 77.50; H, 8.36; $\mathrm{N}, 4.30$. Found: C, 77.57 ; H, 8.33; $\mathrm{N}, 4.68$.

11,3,5-Tris\{3-[(R)-(-)-4-(3,7-Dimethyl)octyloxyphenyl]isoxazol-5-yl\}benzene R-3.

To a solution of 1,3,5-triethynylbenzene ${ }^{1}$ ($305 \mathrm{mg}, 2.03 \mathrm{mmol}$), and $R-7(2.20 \mathrm{~g}, 7.05 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ was added triethylamine ($2.8 \mathrm{ml}, 20 \mathrm{mmol}$). After being stirred at room temperature for 48 h , the reaction mixture was concentrated in vacuo. The crude product was purified by column chromatography on silica gel $\left(\mathrm{CHCl}_{3}\right)$ and recrystallized from acetone solution to give desired product ($675 \mathrm{mg}, 34 \%$) as a white solid. M.p. $140{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}=+5.5 \mathrm{~cm}^{3} \mathrm{~g}^{-1} \mathrm{dm}^{-1}\left(c=1 \mathrm{~g} \mathrm{~cm}^{-3}\right.$ in chloroform$) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, 10 \mathrm{mmol} \mathrm{L}{ }^{-1}, \mathrm{CDCl}_{3}$): $\delta 8.31(\mathrm{~s}, 3 \mathrm{H}), 7.82(\mathrm{~d}, 6 \mathrm{H}, J=9.0 \mathrm{~Hz}), 7.01(\mathrm{~d}, 6 \mathrm{H}, J=9.0 \mathrm{~Hz}), 6.99(\mathrm{~s}, 3 \mathrm{H}), 4.00-4.12(\mathrm{~m}, 6 \mathrm{H}), 1.82-1.90(\mathrm{~m}$, $3 \mathrm{H}), 1.48-1.71(\mathrm{~m}, 9 \mathrm{H}), 1.14-1.37(\mathrm{~m}, 18 \mathrm{H}), 0.97(\mathrm{~d}, 9 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}), 0.88(\mathrm{~d}, 18 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, 10 \mathrm{mmol} \mathrm{L}^{-1}, \mathrm{CDCl}_{3}$): $\delta 168.1,162.9,160.8,129.2,128.2$ 123.9, 120.8, 114.9, 98.8, 66.5, 39.2, 37.3, 36.1, 29.8, 28.0, 24.7, 22.7, 22.6, 19.7; IR (KBr) 3111, 2953, 2925, 2869, 1613, 1561, 1527, 1464, 1435, 1385, 1296, 1252, 1178, 1117, $1051 \mathrm{~cm}^{-1}$; HRMS (FAB^{+}) calcd for $\mathrm{C}_{63} \mathrm{H}_{82} \mathrm{~N}_{3} \mathrm{O}_{6}\left[\mathrm{M}+\mathrm{H}^{+}\right]$976.6204, found 976.6221; Anal. Calcd for $\mathrm{C}_{63} \mathrm{H}_{81} \mathrm{~N}_{3} \mathrm{O}_{6}$: C, 77.50; H, 8.36; $\mathrm{N}, 4.30$. Found: C, 77.15; H, 8.35; N, 4.20.

1,3,5-Tris\{3-[(S)-(-)-4-(3,7-Dimethyl)octyloxyphenyl]isoxazol-5-yl\}benzene S-3.

To a solution of 1,3,5-triethynylbenzene ${ }^{1}$ ($265 \mathrm{mg}, 1.77 \mathrm{mmol}$), and $S-7(1.82 \mathrm{mg}, 5.84 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was added triethyl amine ($2.5 \mathrm{ml}, 18 \mathrm{mmol}$). After stirred at room temperature for 48 h , the reaction mixture was concentrated in vacuo. The crude product was purified by column chromatography on silica gel $\left(\mathrm{CHCl}_{3}\right)$ and recrystallized from toluene solution to give desired product ($380 \mathrm{mg}, 22 \%$) as a white solid. M.p. $140{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}$ $=-5.9 \mathrm{~cm}^{3} \mathrm{~g}^{-1} \mathrm{dm}^{-1}\left(c=0.2 \mathrm{~g} \mathrm{~cm}^{-3}\right.$ in chloroform); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, 10 \mathrm{mmol} \mathrm{L}^{-1}, \mathrm{CDCl}_{3}\right): \delta 8.31(\mathrm{~s}, 3 \mathrm{H})$, $7.82(\mathrm{~d}, 6 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.01(\mathrm{~d}, 6 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.99(\mathrm{~s}, 3 \mathrm{H}), 4.01-4.12(\mathrm{~m}, 6 \mathrm{H}), 1.82-1.92(\mathrm{~m}, 3 \mathrm{H}), 1.48-1.71$

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2007
(m, 9H), 1.10-1.38 (m, 18H), $0.97(\mathrm{~d}, 9 \mathrm{H}, J=6.6 \mathrm{~Hz}), 0.88(\mathrm{~d}, 18 \mathrm{H}, J=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, 10 \mathrm{mmol}$ $\left.\mathrm{L}^{-1}, \mathrm{CDCl}_{3}\right): \delta 168.1,162.9,160.8,129.3,128.2,123.9,120.9,115.0,98.8,66.5,39.2,37.3,36.1,29.9,28.0$, 24.7, 22.7, 22.6, 19.7; IR (KBr) 3111, 2953, 2925, 2869, 1613, 1561, 1527, 1464, 1436, 1385, 1296, 1252, 1177, 1116, $1051 \mathrm{~cm}^{-1}$; HRMS (FAB^{+}) calcd for $\mathrm{C}_{63} \mathrm{H}_{82} \mathrm{~N}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$976.6204, found 976.6223; Anal. Calcd for $\mathrm{C}_{63} \mathrm{H}_{81} \mathrm{~N}_{3} \mathrm{O}_{6}$: C, 77.50; H, 8.36; N, 4.30. Found: C, 77.69; H, 8.33; N, 4.23.

1,3,5-Tris\{3-[4-(tert-Butyldimethylsilyl)oxyphenyl]isoxazol-5-yl\}benzene 9.

To a solution of 1,3,5-triethynylbenzene ${ }^{1}$ ($338 \mathrm{mg}, 2.25 \mathrm{mmol}$), and 8 ($2.13 \mathrm{~g}, 7.45 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (40 ml) was added triethyl amine ($1.88 \mathrm{ml}, 13.5 \mathrm{mmol}$). After stirred at room temperature for 48 h , the reaction mixture was concentrated in vacuo. The crude product was purified by column chromatography on silica gel $\left(\mathrm{CHCl}_{3}\right)$ to give desired product ($1.28 \mathrm{~g}, 63 \%$) as a white solid. M.p. $116-118{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, 20 \mathrm{mmol} \mathrm{L}^{-1}$, CDCl_{3}): $\delta 8.31(\mathrm{~s}, 3 \mathrm{H}), 7.78(\mathrm{~d}, 6 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.98(\mathrm{~s}, 3 \mathrm{H}), 6.96(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.26(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, 20 \mathrm{mmol} \mathrm{L}^{-1}, \mathrm{CDCl}_{3}$): $\delta 168.1,163.0,157.7,129.2,128.3,124.0,121.8,120.7,98.9,25.6$, 18.3, -4.4; IR (KBr) 2957, 2929, 2894, 2857, 1609, 1568, 1525, 1466, 1433, 1384, 1268, 1170, 1106, $1008 \mathrm{~cm}^{-1}$; HRMS (FAB^{+}) calcd for $\mathrm{C}_{51} \mathrm{H}_{64} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Si}_{3}[\mathrm{M}+\mathrm{H}]^{+}$898.4103, found 898.4123; Anal. Calcd for $\mathrm{C}_{51} \mathrm{H}_{63} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Si}_{3}$: C, 68.19; H, 7.07; N, 4.68. Found: C, 68.19; H, 7.16; N, 4.69.

1,3,5-Tris[3-(4-dec-9-enyloxyphenyl)isoxazol-5-yl]benzene 2.

To a solution of $\mathbf{9}(1.25 \mathrm{~g}, 1.50 \mathrm{mmol})$ in THF (15 ml) was added tetrabutyl ammonium fluoride ($1.96 \mathrm{~g}, 7.50$ mmol). After stirred at room temperature for 12 h , the reaction mixture was poured into aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Then, the crude product (510 mg) was dissolved in DMF (10 mL). 4-Dec-9-enyloxytoluene sulfonate ${ }^{6}$ ($1.09 \mathrm{~g}, 3.68 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($762 \mathrm{mg}, 5.52 \mathrm{mmol}$) were added to the stirred solution. After refluxing for overnight, the reaction mixture was quenched with 1 N HCl . The resulting solution was extracted with EtOAc, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was purified by column chromatography on silica gel (5\% AcOEt/hexane) and GPC to give desired product ($304 \mathrm{mg}, 31 \%$) as a white solid. M.p. $114{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, 30 \mathrm{mmol} \mathrm{L}{ }^{-1}, \mathrm{CDCl}_{3}$): $\delta 8.30(\mathrm{~s}, 3 \mathrm{H}), 7.82(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=8.9 \mathrm{~Hz}), 7.00(\mathrm{~d}, 6 \mathrm{H}, J=8.9 \mathrm{~Hz}), 6.97(\mathrm{~s}, 3 \mathrm{H}), 4.02$ $(\mathrm{t}, 6 \mathrm{H}, J=6.7 \mathrm{~Hz}), 1.79-1.85(\mathrm{~m}, 6 \mathrm{H}), 1.45-1.51(\mathrm{~m}, 6 \mathrm{H}), 1.29-1.38(\mathrm{~m}, 36 \mathrm{H}), 0.89(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $30 \mathrm{mmol} \mathrm{L}^{-1}, \mathrm{CDCl}_{3}$): $\delta 168.1,162.9,160.9,129.3,128.3,123.9,120.9,115.0,98.8,68.2,31.9$, 29.6x2, 29.4, 29.3, 29.2, 26.0, 22.7, 14.1; IR (KBr) 3115, 3074, 2924, 2851, 1639, 1612, 1562, 1526, 1466, 1436, 1387, 1295, 1251, 1176, 1115, $1020 \mathrm{~cm}^{-1}$; HRMS (FAB^{+}) calcd for $\mathrm{C}_{63} \mathrm{H}_{76} \mathrm{~N}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 970.5734$, found 970.5726; Anal. Calcd for $\mathrm{C}_{63} \mathrm{H}_{75} \mathrm{~N}_{3} \mathrm{O}_{6} \cdot 0.2 \mathrm{CHCl}_{3}$: C, 76.35; H, 7.62; N, 4.23. Found: C, 76.56; H, 7.74; N, 4.27.

1,3,5-Tris[(4-decyloxyphenyl)-1-ethynyl]benzene 5.

Supplementary Material (ESI) for Chemical Communications

 This journal is (c) The Royal Society of Chemistry 2007To a mixture of 1,3,5-tribromobenzene ($800 \mathrm{mg}, 2.54 \mathrm{mmol}$), (4-decyloxyphenyl)ethyne ${ }^{7}$ ($2.36 \mathrm{~g}, 8.66 \mathrm{mmol}$), and $\mathrm{CuI}(24 \mathrm{mg}, 0.13 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{NH}(30 \mathrm{~mL})$ was added $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(110 \mathrm{mg} 0.157 \mathrm{mmol})$. After being stirred at $50^{\circ} \mathrm{C}$ for 24 h , the reaction mixture was concentrated in vacuo. The crude product was purified by column chromatography on silica gel (10% AcOEt/hexane) to give desired product ($1.24 \mathrm{~g}, 58 \%$) as a yellow solid. M.p. $43-44{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 10 \mathrm{mmol} \mathrm{L}{ }^{-1}, \mathrm{CDCl}_{3}$): $\delta 7.57$ (s, 3H), 7.45 (d, $6 \mathrm{H}, \mathrm{J}=8.9 \mathrm{~Hz}$), 6.87 (d, $6 \mathrm{H}, \mathrm{J}=8.9 \mathrm{~Hz}), 3.97(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}), 1.76-1.82(\mathrm{~m}, 6 \mathrm{H}), 1.43-1.47(\mathrm{~m}, 6 \mathrm{H}), 1.28-1.34(\mathrm{~m}, 36 \mathrm{H}), 0.89(\mathrm{t}, 3 \mathrm{H}$, $J=6.8 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR (125 MHz, $10 \mathrm{mmol} \mathrm{L}^{-1}, \mathrm{CDCl}_{3}$): $\delta 159.5,133.4,133.1,124.3,114.7,114.6,90.5,86.7$, 68.1, 31.9, 29.6, 29.5, 29.4, 29.3, 29.2, 26.0, 22.7, 14.1; IR (KBr) 3043, 2921, 2851, 2209, 1606, 1577, 1508, 1468, 1389, 1293, 1248, 1171, 1107, $1024 \mathrm{~cm}^{-1}$; HRMS (FAB^{+}) calcd for $\mathrm{C}_{60} \mathrm{H}_{79} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 847.6029$, found 847.6021; Anal. Calcd for $\mathrm{C}_{60} \mathrm{H}_{78} \mathrm{O}_{3}$: C, 85.06; H, 9.28. Found: C, 85.02; H, 9.28.

Figure S1. Pictures of gels of 1 in a) acetone, b) DMF, and c) ethyl acetate.

Figure S2. TEM images of xerogels of 1 (a and b) and 2 (c and d). The bars represent a) $1 \mu \mathrm{~m}, \mathrm{~b}$) 200 nm, c) $1 \mu \mathrm{~m}$, and d) $1 \mu \mathrm{~m}$. The obtained sample was measured with a JEM-2010 (JEOL) transmission electron microscope. The accelerating voltage was 200 kV.

Figure S3. Temperature-dependent UV/Vis spectra of $1\left(5.0 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ in MCH .

Figure S4. Fluorescence spectra $\left(\lambda_{\mathrm{ex}}=278 \mathrm{~nm}\right)$ of $1\left(1.0 \times 10^{-5}\right.$ and $\left.1.0 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ at $25^{\circ} \mathrm{C}$ in MCH .

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2007

Figure S5. Plots of the molar coefficient of 1 at 278 nm vs. the concentration of 1 in MCH , and the theoretical curve obtained by nonlinear least-squares regression analysis.

Table S1. Gelation properties of 1-4.

solvent	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
hexane	P	P	P	S
cyclohexane	pG	P	P	S
methylcyclohexane	$\mathrm{G}(35)$	P	P	S
benzene	S	S	S	S
toluene	S	S	S	S
dichloromethane	S	S	S	S
chloroform	S	S	S	S
ether	$\mathrm{G}(18)$	$\mathrm{G}(20)$	P	S
acetone	$\mathrm{G}(8)$	$\mathrm{G}(20)$	P	S
ethyl acetate	$\mathrm{G}(8)$	P	S	S
acetonitrile	I	P	P	I
ethanol	I	P	P	I
IPA	I	P	P	I
THF	S	S	S	S
DMF	$\mathrm{G}(10)$	$\mathrm{G}(20)$	P	S
DMSO	$\mathrm{G}(10)$	$\mathrm{G}(20)$	pG	P

[^0]
References

[1] E. Weber, M. Hecker, E.; Koepp, W. J. Orlia, Chem. Soc. Perkin Trans. 2 1988, 7, 1251-1257.
[2] C. Keith, R. A. Reddy, A. Hauser, U. Baumeister, C. Tschierske, J. Am. Chem. Soc. 2006, 128, 3051-3066.
[3] S. J. Lee, C. R. Park, J. Y. Chang, Langmuir 2004, 20, 9513-9519.

[^0]: ${ }^{\text {a }}$ G: gel, pG: partial gelation, P: precipitation, S: solution, and I: insoluble
 ${ }^{\mathrm{b}} \mathrm{P}$, I, and S are at [gelator] $=20 \mathrm{mg} \mathrm{ml}^{-1}$.
 ${ }^{\mathrm{c}}$ The critical gelation concentration $\left(\mathrm{mg} \mathrm{ml}^{-1}\right)$ is showed in a parenthesis.

