Supporting Information

Highly Enantioselective Synthesis of Isoxazoline N-Oxides

Chun-Yin Zhu, Xian-Ming Deng, Xiu-Li Sun, Jun-Cheng Zheng, and Yong Tang*

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032 (China) Fax: 86-21-54925078

E-mail: tangy@mail.sioc.ac.cn

General Information. All reaction flasks were dried by flame. And all reactions were carried out under N_2 unless otherwise noted. All solvents were purified according to standard methods unless otherwise noted. All of the nitroalkenes were synthesized according to the literature¹.

¹H NMR and ¹³C NMR spectra were recorded on a VARIAN Mercury 300 MHz spectrometer in chloroform-d₃ unless otherwise noted. ¹H NMR chemical shifts are reported in ppm with the internal TMS signal at 0.0 ppm as a standard unless otherwise noted. The data is being reported as (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, brs = broad singlet, coupling constant(s) in Hz, integration). ¹³C NMR chemical shifts are reported in ppm with the internal chloroform signal at 77.0 ppm as a standard unless otherwise noted.

General procedure for the preparation of tertiary ammonium salt 1: A mixture of cinchonidine (cinchonine) derivative² (6 mmol) and ethyl bromoacetate (6 mmol) in acetone (2 mL) was stirred at room temperature over night. After the reaction was complete, the mixture was filtrate. The resulting solid was washed by ether and collected.

1a (solid): 24h, 95% yield; mp. 204-207 °C. IR (film) v/cm⁻¹ 2924 (m), 2926 (m), 1733 (s), 1219 (s). ¹H NMR (300MHz, CDCl₃/TMS): δ 9.00 (d, J = 4.5 Hz, 1H), 8.22 (d, J = 8.7 Hz, 1H), 7.80 - 7.87 (m, 2H), 7.67 - 7.73 (m, 1H), 7.50 (d, J = 4.2 Hz, 1H), 6.06 (d, J = 18.3 Hz, 1H), 5.49 - 5.57 (m, 1H), 5.20 - 5.27 (m, 2H), 4.85 - 5.03 (m, 3H), 4.29 - 4.54 (m, 6H), 3.45 (s, 3H), 2.88 (brs, 1H), 2.07 - 2.28 (m, 3H), 1.96 (t, J = 12.0 Hz, 1H), 1.45 (t, J = 7.2 Hz, 3H), 1.20 (brs, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 166.1, 149.7, 148.4, 139.1, 136.4, 130.6, 129.7, 127.6, 124.9, 121.6, 118.9(8), 116.7, 76.3, 63.2, 63.1, 60.1, 57.7, 57.3, 56.4, 36.9, 25.9, 25.0, 21.8, 13.9. MS (ESI, *m*/z) 395.2 (M - Br⁻). Anal. calcd for C₂₄H₃₁N₂O₃: C, 60.63; H, 6.57; N, 5.89. Found: C, 60.64; H, 6.69; N, 5.78.

1b (solid): 24h, 85% yield; IR (film) v/cm⁻¹ 3651 (m), 3589 (m), 3568 (m), 3424 (s), 2952 (s), 1736 (s), 1639 (m), 1509 (m), 1239 (m), 924 (w). ¹H NMR (300MHz, CDCl₃ / TMS): δ 9.02 (d, *J* = 4.8 Hz, 1H), 8.20 (d, *J* = 8.1 Hz, 1H), 8.05 (d, *J* = 7.8 Hz, 1H), 7.73-7.85 (m, 2H), 7.60 (d, *J* = 4.5 Hz, 1H), 5.84-5.93 (m, 1H), 5.63 – 5.68 (m, 1H), 5.44 (d, *J* = 2.7 Hz, 1H), 5.26-5.34 (m, 2H), 4.40 – 4.72 (m, 7H), 4.25 (t, *J* =

10.2 Hz, 1H), 3.52 (s, 3H), 3.01 (brs, 1H), 2.08-2.25 (m, 3H), 1.88 (m, 1H), 1.45 (t, J = 7.2 Hz, 3H), 0.96-1.03 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 165.6, 149.3, 147.9, 138.5, 134.3, 130.0, 129.4, 127.5, 124.6, 121.7, 118.7, 117.5, 77.4, 63.8, 62.9, 59.6, 57.2, 57.1, 56.4, 36.6, 26.2, 22.9, 20.9, 13.5. MS (ESI, *m*/z) 395.2 (M – Br⁻). HRMS (ESI) calcd for C₂₄H₃₁N₂O₃⁺ (M – Br⁻) 395.2338, Found: 395.23292.

General procedure for the ammonium ylide annulation reaction (substrates 2a-2k): A mixture of salt 1 (0.22 mmol), Cs_2CO_3 (0.22 mmol) and nitroalkene 2 (0.2 mmol) was cooled to 0°C under N₂. To the mixture was then added H₂O (10 µL) and THF (2.5 mL). The reaction mixture was stirred at 0°C for the desired time. After the reaction was complete (monitored by TLC), the mixture was passed rapidly through a glass funnel with a thin layer (20 mm) of silica gel (300-400 mesh), washed with AcOEt (100 mL). The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography (EtOAc/petroleum ether/Et₃N, v/v/v, 100/500/1.8).

3a (solid): 46h, 65% yield, dr > 99/1. HPLC analysis (Chiralcel OD-H, 30/70 ⁱPrOH/hexanes, 0.8 mL/min, 238 nm; t_r (major) = 12.75 min, t_r (minor) = 20.94 min) gave the isomeric composition of the product: 99% ee. [α]_D²⁰ = -171.8 (c = 1.11, CHCl₃). mp. 82-85°C. IR (film) v/cm⁻¹ 3064 (m), 3033 (m), 2983 (m), 1743 (s), 1708 (s), 1635 (s), 1207 (m), 1148 (m), 750 (s), 699 (s). ¹H NMR (300 MHz, CDCl₃/TMS) δ 7.36-7.38 (m, 3H), 7.25-7.30 (m, 5H), 7.04-7.08 (m, 2H), 5.20 (ABd, *J* = 12.3 Hz, 1H), 5.06 (ABd, *J* = 12.3 Hz, 1H), 4.92 (d, *J* = 3.0 Hz, 1H), 4.85 (d, *J* = 3.0 Hz, 1H), 4.31 (q, *J* = 7.2 Hz, 2H), 1.32 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 168.0, 157.8, 137.8, 134.5, 129.3, 128.7, 128.4, 128.3, 127.9, 127.0, 108.8, 78.7, 67.2, 62.6, 52.5, 14.0. MS (ESI, *m*/z) 424.1 (M + MeOH + Na⁺), 392.0 (M + Na⁺), 387.1 (M + NH₄⁺), 370.1 (M + H⁺). Anal. calcd for C₂₀H₁₉NO₆: C, 65.03; H, 5.18; N, 3.79. Found: C, 65.21; H, 5.19; N, 3.51.

3b (solid): 34h, 74% yield; dr > 99/1. HPLC analysis (Chiralcel OD-H, 30/70 ⁱPrOH/hexanes, 0.6 mL/min, 238 nm; t_r (major) = 18.28 min, t_r (minor) = 35.25 min) gave the isomeric composition of the product: 98% ee. [α]_D²⁰ = -162.3 (c = 1.20, CHCl₃). mp. 88-90°C. IR (film) v/cm⁻¹ 2978 (w), 2936 (w), 1740 (s), 1633 (s), 1442 (m), 1231 (s), 1011 (m), 756 (m). ¹H NMR (300 MHz, CDCl₃/TMS) δ 7.54 (ABd, *J* = 8.7 Hz, 2H), 7.23 (ABd, *J* = 8.7 Hz, 2H), 4.89 (d, *J* = 2.7 Hz, 1H), 4.83 (d, *J* = 2.4 Hz, 1H), 4.33 (q, *J* = 6.9 Hz, 2H), 3.76 (s, 3H), 1.35 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 167.7, 158.4, 136.7, 132.5, 128.6, 122.8, 108.5, 78.3, 62.8, 52.8, 51.9, 14.0. MS (ESI, *m*/z) 428.1 (M + 2 + MeOH + Na⁺), 426.1 (M + MeOH + Na⁺), 396.0 (M + 2 + Na⁺), 394.0 (M + Na⁺), 391.0 (M + 2 + NH4⁺), 389.0 (M + NH4⁺), 374.0 (M + 2 + H⁺), 372.0 (M + H⁺). Anal. calcd for C₁₄H₁₄BrNO₆: C, 45.18; H, 3.79; N, 3.76. Found: C, 45.28; H, 3.82; N, 3.61.

3c (solid): 44h, 65% yield; dr > 99/1. HPLC analysis (Chiralcel OD-H, 30/70 ⁱPrOH/hexanes, 0.8 mL/min, 238 nm; t_r (major) = 17.28 min, t_r (minor) = 26.61 min) gave the isomeric composition of the product: 99% ee. mp. 87-90°C. [α]_D²⁰ = -163.0 (c = 1.02, CHCl₃). mp. 87-90°C . IR (film) v/cm⁻¹ 2979 (m), 2904 (m), 2837 (m), 1738 (s), 1634 (s), 1538 (s), 1252 (m), 1030 (m), 838 (m), 754 (m), 698 (m). ¹H NMR (300 MHz, CDCl₃/TMS) δ 7.26-7.30 (m, 3H), 7.21 (ABd, *J* = 9 Hz, 2H), 7.11-7.12 (m, 2H), 6.88 (ABd, *J* = 9.0 Hz, 2H), 5.22 (ABd, *J* = 12 Hz, 1H), 5.09 (ABd, *J* = 12 Hz, 1H), 4.89 (d, *J* = 3.0 Hz, 1H), 4.80 (d, *J* = 3.0 Hz, 1H), 4.31 (q, *J* = 6.9 Hz, 2H), 3.82 (s, 3H), 1.33 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 168.1, 159.9, 158.0, 134.6, 129.9, 128.5, 128.4, 128.3, 128.0, 114.7, 109.0, 79.0, 67.3, 62.6, 55.4, 52.0, 14.1. MS (ESI, *m*/z) 454.2 (M + MeOH + Na⁺), 422 (M + Na⁺), 417.3(M +

 NH_4^+), 400.2 (M + H⁺). Anal. calcd for $C_{21}H_{21}NO_7$: C, 63.15; H, 5.30; N, 3.51. Found: C, 63.10; H, 5.12; N, 3.33.

3d (solid): 38h, 56% yield; dr > 99/1. HPLC analysis (Chiralcel OD-H, 30/70 ⁱPrOH/hexanes, 0.4 mL/min, 238 nm; t_r (major) = 19.19 min, t_r (minor) = 24.94 min) gave the isomeric composition of the product: 98% ee. ¹H NMR (300 MHz, CDCl₃/TMS) δ 7.26-7.28 (m, 3H), 7.19 (ABd, *J* = 9 Hz, 2H), 7.07-7.10 (m, 2H), 6.88 (ABd, *J* = 9.0 Hz, 2H), 5.23 (ABd, *J* = 12.3 Hz, 1H), 5.09 (ABd, *J* = 12.3 Hz, 1H), 4.78 (ABd, *J* = 3.3 Hz, 1H), 4.75 (ABd, *J* = 3.3 Hz, 1H), 3.81 (s, 3H) 1.51 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 166.9, 159.7, 158.0, 134.6, 130.0, 128.3, 128.2, 127.8, 114.5, 109.0, 84.0, 79.3, 67.1, 55.3, 51.9, 27.8.

3e (solid): 37h, 77% yield; dr > 99/1. HPLC analysis (Chiralcel OD-H, 30/70 ⁱPrOH/hexanes, 0.8 mL/min, 238 nm; t_r (major) = 11.38 min, t_r (minor) = 17.38 min) gave the isomeric composition of the product: 97% ee. [α]_D²⁰ = -137.7 (c = 1.03, CHCl₃). mp. 82-83°C. IR (film) v/cm⁻¹ 3032 (m), 2982 (s), 1738 (vs), 1709 (s), 1628 (vs), 1515 (m), 1456 (m), 1391 (m), 1361 (m), 1220 (s), 1024 (m), 818 (m), 751 (s), 698 (s). ¹H NMR (300 MHz, CDCl₃/TMS) & 7.25-7.27 (m, 3H), 7.17 (s, 4H), 7.06-7.09 (m, 2H), 5.20 (ABd, *J* = 12.0 Hz, 1H), 5.06 (ABd, *J* = 12.0 Hz, 1H), 4.89 (d, *J* = 3.0 Hz, 1H), 4.81 (d, *J* = 3.0 Hz, 1H), 4.31 (q, *J* = 6.9 Hz, 2H), 2.36 (s, 3H), 1.32 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) & 168.0, 157.9, 138.6, 134.8, 134.5, 129.9, 128.3, 128.2, 127.9, 126.9, 108.9, 78.7, 67.2, 62.6, 52.2, 21.1, 14.0. MS (EI, *m*/z, rel. intensity) 383 (M⁺, 0.24), 91 (100.00). Anal. calcd for C₂₁H₂₁NO₆: C, 65.79; H, 5.52; N, 3.65. Found: C, 65.82; H, 5.70; N, 3.48.

3f (solid): 34h, 79% yield, dr > 99/1. HPLC analysis (Chiralcel OD-H, 30/70 ⁱPrOH/hexanes, 0.6 mL/min, 238 nm; t_r (major) = 14.96 min, t_r (minor) = 20.54 min) gave the isomeric composition of the product: 99% ee. [α]_D²⁰ = -167.9 (c = 0.94, CHCl₃). mp. 85-87°C . IR (film) v/cm⁻¹ 2986 (m), 2938 (m), 1742 (s), 1631 (s), 1511(s), 1443 (m), 1373 (m), 1229 (m), 977 (w), 841 (m), 756 (s). ¹H NMR (300 MHz, CDCl₃/TMS) δ 7.31–7.35 (m, 2H), 7.10 (t, *J* = 8.4 Hz, 2H), 4.91 (d, *J* = 2.7 Hz, 1H), 4.85 (d, *J* = 2.7 Hz, 1H), 4.33 (q, *J* = 7.2 Hz, 2H), 3.76 (s, 3H), 1.35 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 167.9, 164.3 161.0, 158.5, 133.6, 133.5(5), 128.8, 128.7, 116.5, 116.2, 108.8, 78.6(5), 78.6(3), 62.7, 52.7, 51.8, 14.0. MS (ESI, *m*/z) 366.2 (M + MeOH + Na⁺), 334.2 (M + Na⁺), 329.2 (M + NH₄⁺), 312.2 (M + H⁺). Anal. calcd for C₁₄H₁₄FNO₆: C, 54.02; H, 4.53; N, 4.50. Found: C, 54.06; H, 4.44; N, 4.40.

3g (solid): 36h, 67% yield, dr > 99/1. HPLC analysis (Chiralcel OD-H, 30/70 ⁱPrOH/hexanes, 0.6 mL/min, 238 nm; t_r = 15.29 min, only one peak was observed.) gave the isomeric composition of the product: > 99% ee. [α]_D²⁰ = -84.4 (c = 1.00, CHCl₃). IR (film) v/cm⁻¹ 3123 (w), 2983 (m), 1739 (s), 1633 (s), 1500 (m), 1456 (m), 1393 (m), 1224 (m), 747 (m), 698 (m), 598 (m). ¹H NMR (300 MHz, CDCl₃/TMS) δ 7.22-7.39 (m, 6H), 6.35 (dd, J = 1.5, 3.3 Hz 1H), 6.27 (d, J = 3.0 Hz, 1H), 5.26 (ABd, J = 12.6 Hz, 1H), 5.14 (ABd, J = 12.6 Hz, 1H), 5.04 (s, 2H), 4.30 (q, J = 7.2Hz, 2H), 1.31 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 167.6, 157.7, 148.7, 143.1, 134.5, 128.4, 128.4, 128.0, 110.8, 108.4, 106.2, 76.0, 67.3, 62.7, 46.1, 13.9. MS (EI, *m*/z, rel. intensity) 341 (M⁺-H₂O, 1.01), 91 (100.00). HRMS (ESI) calcd for C₁₈H₁₇NO₇Na⁺ (M+Na⁺) 382.0901, Found: 382.08973.

3h (solid): 41h, 79% yield; dr > 99/1. HPLC analysis (Chiralcel OD-H, 30/70 ⁱPrOH/hexanes, 0.6 mL/min, 238 nm; t_r (major) = 14.71 min, t_r (minor) = 20.79 min) gave the isomeric composition of the product: 99% ee. [α]_D²⁰ = -123.2 (c = 1.10, CHCl₃). mp. 119-121°C. IR (film) v/cm⁻¹ 3113 (w), 2993 (w), 2909 (w), 1740 (s), 1633 (s), 1438 (m), 1230 (m), 982 (m), 751 (s), 732 (m), 546 (w). ¹H NMR (300 MHz, CDCl₃/TMS) δ 7.32 (dd, *J* = 0.9, 5.1 Hz, 1H), 7.09-7.10 (m, 1H), 7.02 (dd, *J* = 3.6, 5.4 Hz, 1H), 5.18 (d, *J* = 2.4 Hz ,1H), 5.05 (d, *J* = 2.7 Hz, 1H), 4.33 (q, *J* = 7.2 Hz, 2H), 3.80 (s, 3H), 1.35 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 167.5, 158.3, 139.4, 127.4, 125.9(9), 125.9(6), 108.4, 78.8, 62.7, 52.7,47.6, 13.9. MS (ESI, *m*/z) 354.1 (M + MeOH + Na⁺), 322.1 (M + Na⁺), 317.1 (M + NH₄⁺), 300.1 (M + H⁺). Anal. calcd for C₁₂H₁₃NO₆S: C, 48.16; H, 4.38; N, 4.68. Found: C, 48.58; H, 4.05; N, 4.63.

3i (solid): 39h, 68% yield; dr > 99/1. HPLC analysis (Chiralcel OD-H, 30/70 ⁱPrOH/hexanes, 0.6 mL/min, 238 nm; t_r (major) = 20.48 min, t_r (minor) = 27.55 min) gave the isomeric composition of the product: 96% ee. [α]_D²⁰ = -3.0 (c = 1.23, CHCl₃). IR (film) v/cm⁻¹ 3055(w), 2981(w), 2959 (w), 1759 (s), 1740 (s), 1633 (s), 1440 (s), 1227 (m), 1056 (w), 799 (m), 777 (m), 748 (m), 537 (m). ¹H NMR (300 MHz, CDCl₃/TMS) δ 8.25 (d, *J* = 8.4 Hz, 1H), 7.92 (d, *J* = 0.9 Hz, 1H), 7.88 (d, *J* = 8.4 Hz, 1H), 7.65 (dd, *J* = 6.3, 6.9 Hz, 1H), 7.58 (dd, *J* = 6.3, 6.6 Hz, 1H), 7.46 (t, *J* = 7.2 Hz, 1H), 7.32 (d, *J* = 6.6 Hz, 1H), 5.72 (d, *J* = 1.5 Hz, 1H), 4.88 (d, *J* = 1.8 Hz, 1H), 4.38-4.44 (m, 2H), 3.72 (s, 3H), 1.41 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 168.4, 158.7, 134.2, 132.8, 130.3, 129.4, 129.2, 127.1, 126.3, 125.4, 124.1, 122.5, 108.3, 78.5, 62.8, 52.8, 48.4, 14.0. MS (ESI, *m*/z) 398.1 (M + MeOH + Na⁺),

366.1 (M + Na⁺), 344.1 (M + H⁺). Anal. calcd for C₁₈H₁₇NO₆: C, 62.97; H, 4.99; N, 4.08. Found: C, 67.61; H, 4.94; N, 3.75.

3j (solid): 36h, 54% yield; dr > 99/1. HPLC analysis (Chiralcel AD-H, 10/90 ⁱPrOH/hexanes, 0.4 mL/min, 238 nm; t_r (major) = 28.02 min, t_r (minor) = 38.33 min) gave the isomeric composition of the product: 99% ee. [α]_D²⁰ = -70.3 (c = 1.13, CHCl₃). IR (film) v/cm⁻¹ 2956 (m), 2843 (m), 1741 (s), 1708 (s), 1632 (s), 1494 (m), 1246 (m), 1026 (m), 757 (s). ¹H NMR (300 MHz, CDCl₃/TMS) δ 7.33-7.35 (m, 1H), 7.12-7.14 (m, 1H), 6.94-6.98 (m, 2H), 5.15 (d, *J* = 3.6 Hz 1H), 4.86 (d, *J* = 3.6 Hz 1H), 4.30-4.34 (m, 2H), 3.88 (s, 3H), 3.74 (s, 3H), 1.35 (t, *J* = 7.2 Hz 3H). ¹³C NMR (75 MHz, CDCl₃) δ 168.2, 158.8, 156.6, 129.9, 128.3, 125.2, 120.8, 111.0, 108.1, 78.0, 62.3, 55.5, 52.5, 47.9, 14.0. MS (ESI, *m*/z) 378.1 (M + MeOH + Na⁺), 346.1 (M + Na⁺), 324.1 (M + H⁺). Anal. calcd for C₁₅H₁₇NO₇: C, 55.73; H, 5.30; N, 4.33. Found: C, 55.79; H, 5.27; N, 4.33.

3k (solid)³: 36h, 62% yield; dr > 99/1. HPLC analysis (Chiralcel OD-H, 30/70 ⁱPrOH/hexanes, 0.8 mL/min, 238 nm; t_r (major) = 12.63 min, t_r (minor) = 18.44 min) gave the isomeric composition of the product: 97% ee. [α]_D²⁰ = -228.6 (c = 1.00, CHCl₃). ¹H NMR (300 MHz, CDCl₃/TMS) δ 7.27-7.43 (m, 5H), 4.93 (d, *J* = 3.6 Hz, 1H), 4.84 (d, *J* = 3.6 Hz, 1H), 4.33 (q, *J* = 7.2 Hz, 2H), 3.75 (s, 3H), 1.35 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 168.1, 158.6, 137.8, 129.4, 128.7, 126.9, 109.0, 78.7, 62.7, 52.5, 14.0.

ent-3k (solid): 36h, 69% yield; dr > 99/1. HPLC analysis (Chiralcel OD-H, 30/70 ⁱPrOH/hexanes, 0.6 mL/min, 238 nm; t_r (minor) = 15.09 min, t_r (major) = 19.74 min) gave the isomeric composition of the product: -99% ee. [α]_D²⁰ = 216.0 (c = 0.50, CHCl₃).

31 (oil): 39h, 30% yield, dr = 80/20. HPLC analysis (Chiralcel OD-H, 1/15 ⁱPrOH/hexanes, 0.5 mL/min, 238 nm; t_{r1} (major) = 28.15 min, the other peak was not observed; t_{r2} (major) = 30.30 min, t_{r2} (minor) = 33.59 min) gave the isomeric composition of the product: trans, 99% ee, cis, 88% ee. For trans-isomer: ¹H NMR (300 MHz, CDCl₃/TMS) δ 4.76 (d, *J* = 2.7 Hz, 1H), 4.22 (dq, *J* = 2.1, 6.9 Hz, 2H), 3.82 (s, 3H), 3.58 (dd, *J* = 2.1 Hz, 3 Hz, 1H), 2.33 (hepta, *J* = 3.9 Hz, 1H). 1.26 (t, *J* = 7.8 Hz, 3H), 1.02 (d, *J* = 7.2 Hz, 3H), 0.91 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 168.9, 159.0, 108.3, 72.5, 62.2, 53.5 52.6, 29.2, 19.5, 16.6, 13.9. MS (EI, *m*/z, rel. intensity) 242 (M⁺-OH, 2.09), 186 (45.42), 144 (45.88), 142 (42.86), 100 (86.76), 85 (42.29), 59 (100.00), 43 (45.50), 41 (36.26). Anal. calcd for C₁₁H₁₇NO₆: C, 50.96; H, 6.61; N, 5.40. Found: C, 51.40; H, 6.76; N, 5.20.

References:

- 1. Fornicola, R. S.; Oblinger, E.; Montgomery, J. J. Org. Chem. 1998, 63, 3528.
- 2. Papageo, C. D.; Ley, S. V.; Gaunt, M. J. Angew. Chem. Int. Ed. 2003, 42, 828.
- 3. Kaji, E.; Zen, S. Chem. Pharm. Bull. 1980, 28, 479.

NMR spectra for new compounds ¹H NMR **1**a

 1 H NMR 1b

¹H NMR **3c**

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2007

1 H NMR **3d**

¹H NMR **3h**

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2007

¹H NMR 3k

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2007

Part VI: HPLC spectra for compounds 3.

41206299.42 512870.94 100.00

zcy report

Pea #	k Component Name	Time [min]	Area [uV*sec]	Height [u∨]	Norm. Area		
	1 2	19.808 25.068	7286972.27 7282504.40	156893.54 111879.81	50.02 49.98		
			14569476.68	268773.35	100.00		
8					6 6	-24.94	Page 1 of 1
4 2 Casponse [m/					0417+		

zcy report

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Norm. Area [%]
1		19.193	24045009.44	498113.44	99.03
2		24.942	234934.10	4112.41	0.97
			24279943.54	502225.85	100.00

ТТ

序号	峰号	组份名	保留时间	峰高	峰面积	面积百分比(%)	
1 2	1 2	Unknown Unknown	15.127 23.460	516522.8 134322.0	24163024.7 24045665.0	50. 1217 49. 8783	
습计:				650844.8	48208689.7	100.0000	

序号	峰号	组份名	保留时间	峰高	峰面积	面积百分比(%)	
1 2	1 2	Unknown Unknown	14.960 20.543	281761.1 1199.3	10335926.4 58756.6	99.4347 0.5653	
습计:				282960.4	10394683.0	100.0000	

序号	峰号	组份名	保留时间	峰高	峰面积	面积百分比(%)	
1 2	1 2	Unknown Unknown	14.710 19.460	307714.3 183206.3	10847635.1 10624099.7	50. 5205 49. 4795	
습计:				490920.7	21471734.8	100.0000	

序号	峰号	组份名	保留时间	峰高	峰面积	面积百分比(%)
1	1	Unknown	15. 293	271131.1	10845130.2	100.0000
습计:				271131.1	10845130.2	100.0000

序号	峰号	组份名	保留时间	峰高	峰面积	面积百分比(%)
1 2	1 2	Unknown Unknown	14. 793 19. 793	1449953.8 873987.7	70954876.8 71065937.7	49.9609 50.0391
습计:				2323941.5	142020814.5	100.0000

序号	峰号	组份名	保留时间	峰高	峰面积	面积百分比(%)
1	1	Unknown	14.710	499321.7	21541102.9	99.7006
2	2	Unknown	20. 793	1110.4	64683.8	0.2994
合计:				500432.2	21605786.7	100.0000

3i

分析结果表

峰号	峰名	保留时间	峰高	峰面积	含量	
1		20.123	427901.250	17548520.000	50.0288	_
2		25.523	242585. 375	17528302.000	49.9712	
总计			670486.625	35076822.000	100.0000	

峰号	峰名	保留时间	峰高	峰面积	含量
1		20.482	208724.250	9772852.000	97.9561
2		27.547	2961.011	203912. 453	2.0439
总计			211685.261	9976764.453	100.0000

ent-3k(enantiomer of 3k)

3I and 3I'

