Organocatalytic Asymmetric Vinylogous Addition to Quinones – Formation of Optically Active α-Aryl Ketones

José Alemán, Christian Borch Jacobsen, Kim Frisch, Jacob Overgaard and Karl Anker Jørgensen*

Danish National Research Foundation: Center for Catalysis Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark e-mail: kaj@chem.au.dk

Supporting Information

Contents

General methods	Page 2
Materials	Page 2
General methodology for the vinylogous addition (Table 2)	Page 2
General methodology for the aromatization (Table 3)	Page 10
Procedures for compounds of Scheme 3	Page 12
NMR spectra of compounds 4e, 4l and 5d	 Page 14
Tables S1,S2	 Page 17
Absolute structure determination	Page 19

General methods:

NMR spectra were acquired on a Varian AS 400 spectrometer, running at 400 and 100 MHz for ¹H and ¹³C, respectively. Chemical shifts (δ) are reported in ppm relative to residual solvent signals (CHCl₃, 7.26 ppm for ¹H NMR, CDCl₃, 77.0 ppm for ¹³C NMR). ¹³C NMR spectra were acquired on a broad band decoupled mode. Mass spectra were recorded on a Micromass LCT spectrometer using electrospray (ES⁺) ionization techniques. Analytical thin layer chromatography (TLC) was performed using pre-coated aluminum-backed plates (Merck Kieselgel 60 F254) and visualized by ultraviolet irradiation or KMnO₄ dip. Melting points are uncorrected. Optical rotations were measured on a Perkin-Elmer 241 polarimeter. The enantiomeric excess (ee) of the products was determined by chiral stationary phase HPLC (Daicel Chiralpak AS/AD or Daicel Chiralcel OD columns) or by GC analysis using chiral column (Astec G-TA).

Materials:

Analytical grade solvents and commercially available reagents were used as received. For flash chromatography (FC) silica gel (Silica gel 60, 230-400 mesh, Fluka) and Iatrobeads (Iatron Laboratories Inc. 6RS-8060) were used. The alkylidine derivatives **1a-g** was synthesized as described in literature.¹ Racemic samples were prepared using Et₃N as the catalyst.

General methodology for the addition of alkylidines derivatives 1a-g to quinones 2ae. Synthesis of 4a-j:

To a sample vial equipped with a magnetic stirring bar was added **1a-g** (0.20 mmol), 1 mL of solvent (1/7 acetone/CHCl₃) and **2a-c** (0.22 mmol). The mixture was stirred at -20 °C. When the mixture was cooled, the catalyst **3j** (20 mol%) was added and the mixture was vigorously stirred for the time stated below. After the reaction was judged to be complete by TLC analysis, the reaction was loaded onto a chromatographic column and the product **4** was obtained by FC (eluent indicated in each case).

¹ (a) T. B. Poulsen, M. Bell and K. A. Jørgensen, *Org. Biomol. Chem.*, **2006**, *4*, 63. (b) Xue, D., Chen, Y.-C., Wang, Q.W, Cun, L.-F., Zhu, J. , Deng, J.-G. *Org. Lett.* **2005**, *7*, 5293.

(-)-2-(2,3-Dihydro-3-(1,2,3,4-tetrahydro-1,4-dioxonaphthalen-3-yl)naphthalen-4(1H)-ylidene)malononitrile (4a)

The title compound (84% yield) was synthesized according to the general procedure as major diastereoisomer (14:1) after 24 h at -20 °C employing **1a** (0.20 mmol), **2a** (0.22 mmol) in the presence of the catalyst **3j** (0.04 mmol), in

CHCl₃/acetone 7:1 (1.0 mL) as a mixture of solvents. For the purification of the title compound was used Et₂O/hexane 1/3 as the eluent. ¹H NMR (CDCl₃): δ 8.00-7.99 (m, 2H), 7.94 (dd, *J* = 8.0, 0.8 Hz, 1H), 7.75-7.73 (m, 2H), 7.47 (td, *J* = 7.6, 1.2 Hz, 1H), 7.33 (t, *J* = 7.2 Hz, 1H), 7.26-7.23 (m, 1H), 3.72 (dt, *J* = 8.8, 4.0 Hz, 1H), 3.23-3.11 (m, 2H), 3.01-3.29 (m, 3H), 2.25-2.21 (m, 2H). ¹³C NMR (CDCl₃): δ 195.5, 194.2, 176.6, 138.6, 134.8, 134.7, 134.5, 133.4 (2C), 129.4, 129.2, 128.7, 127.3, 127.1, 126.5, 113.6, 112.9, 81.2, 47.7, 42.2, 40.5, 24.6, 20.1. HRMS: Calculated for [C₂₂H₁₆N₂O₂Na]⁺: 375.1109; found: 375.1111. The ee was determined by HPLC using Chiralpak AD column [hexane/*i*-PrOH (75:25)]; flow rate 1.0 mL/min; $\tau_{major} = 13.6 \min$, $\tau_{minor} = 17.0 \min$ (75% ee). [α]_D^{rt}: -114.5 (c = 0.1, CH₂Cl₂).

(-)-2-(2,3-Dihydro-3-(1,2,3,4-tetrahydro-1,4-dioxoanthracen-3-yl)naphthalen-4(1H)ylidene)malononitrile (4b)

The title compound (39% yield) was synthesized according to the general procedure as single diastereoisomer after 48 h at -20 °C employing **1a** (0.20 mmol), **2b** (0.22 mmol) in the presence of the catalyst

3j (0.04 mmol), in CHCl₃/acetone 7:1 (1.0 mL) as a mixture of solvents. For the purification of the title compound was used Iatrobeads (Et₂O/hexane 1/1 as eluent). ¹H NMR (CDCl₃): δ 8.47 (d, J = 3.6 Hz, 1H), 7.99-7.96 (m, 2H), 7.68-7.65 (m, 2H), 7.46 (td, J = 7.6, 0.8 Hz, 1H) 7.33 (t, J = 7.6 Hz, 1H), 7.26-7.24 (m, 3H), 3.78 (dt, J = 8.8, 4.0 Hz, 1H), 3.29-3.16 (m, 2H), 3.08-2.98 (m, 3H), 2.28-2.26 (m, 2H). ¹³C NMR (CDCl₃): δ 195.5, 194.3, 176.9, 138.7, 135.2, 135.0, 133.4, 130.2, 130.1, 130.0 (2C), 129.7 (2C), 129.4 (2C), 129.2, 128.7, 128.6, 127.1 113.6, 113.0, 81.2, 47.7, 42.2, 40.7, 24.7, 24.6. HRMS: Calculated for [C₂₇H₁₆N₂O₂Na]⁺: 425.1266; found: 425.1272. The ee was

determined by HPLC using Chiralpak AS column [hexane/*i*-PrOH (75:25)]; flow rate 1.0 mL/min; $\tau_{minor} = 35.5 \text{ min}$, $\tau_{major} = 51.3 \text{ min}$ (99% ee). [α]_D^{rt}: -339.0 (c = 0.1, CH₂Cl₂).

2-(2,3-Dihydro-3-(1,2,3,4-tetrahydro-5-acetoxy-1,4-dioxonaphthalen-2yl)naphthalen-4(1H)-ylidene)malononitrile (4c)

The title compound (80% yield) was synthesized according to the general procedure as major diastereoisomer (8:1) after 48 h employing **1a** (0.20 mmol), **2c** (0.22 mmol) in the presence of the catalyst **3j** (0.04 mmol), in CHCl₃/acetone

7:1 (1.0 mL) as a mixture of solvents at -20 °C. For the purification of the title compound silica gel was used (AcOEt/hexane 1/4 as eluent). ¹H NMR (CDCl₃): δ 7.93-7.87 (m, 2H), 7.72-7.70 (m, 1H), 7.48 (t, *J* = 7.6 Hz, 1H), 7.37-7.34 (m, 2H), 7.24 (d, *J* = 8.0 Hz, 1H), 3.71 (dt, *J* = 8.4, 4.0 Hz, 1H), 3.20-3.09 (m, 2H), 2.98-2.92 (m, 3H), 2.40 (s, 3H), 2.24-2.20 (m, 2H). ¹³C NMR (CDCl₃): δ 194.5, 193.2, 175.7, 169.3, 148.8, 138.6, 135.6, 134.9, 133.4, 129.8, 129.2, 129.1, 128.7, 127.0, 126.9, 124.8, 113.6, 112.7, 81.5, 48.7, 41.6, 40.2, 24.6, 24.3, 21.0. HRMS: Calculated for [C₂₅H₁₈N₂O₄Na]⁺: 433.1164; found: 435.1154. The ee was determined by HPLC using Chiralcel OD column [hexane/*i*-PrOH (80:20)]; flow rate 1.0 mL/min; $\tau_{major} = 34.2 \text{ min}$, $\tau_{minor} = 39.6 \text{ min}$ (60% ee). [α]_D^{rt}: -204 (c = 0.1, CH₂Cl₂).

(-)-2-(2,3-Dihydro-3-(1,2,3,4-tetrahydro-1,4-dioxonaphthalen-3-yl)-6methoxynaphthalen-4(1H)-ylidene)malononitrile (4d)

The title compound (81% yield) was synthesized according to the general procedure as major diastereoisomer (5:1) after 40 h employing **1b** (0.2 mmol), **2a** (0.22 mmol) in the presence of the catalyst

3j (0.04 mmol), in CHCl₃/acetone 7:1 (1.0 mL) as a mixture of solvents at -20 °C. For the purification of the title compound was used silica gel (AcOEt/hexane 1/3 as eluent). ¹H NMR (CDCl₃): δ 8.03-8.00 (m, 2H), 7.77-7.74 (m, 2H), 7.40 (d, *J* = 2.8 Hz, 1H), 7.14 (d, *J* = 8.4 Hz, 1H), 7.03 (dd, *J* = 8.4, 2.8 Hz, 1H), 3.84 (s, 3H), 3.69 (dt, *J* = 6.0, 2.0 Hz, 1H), 3.24-3.15 (m, 2H), 3.04-2.87 (m, 3H), 2.25-2.19 (m, 2H). ¹³C NMR (CDCl₃): δ

195.7, 194.3, 176.7, 158.0, 134.8, 134.7, 134.5 (2C), 130.5, 130.3, 129.8, 127.3, 126.5, 121.4, 113.7, 112.9, 111.8, 81.1, 55.7, 47.7, 42.2, 40.7, 25.1, 23.7. HRMS: Calculated for $[C_{24}H_{18}N_2O_3Na]^+$: 405.1215; found: 405.1218. The ee was determined by HPLC using Chiralcel OD column [hexane/*i*-PrOH (80:20)]; flow rate 1.0 mL/min; $\tau_{major} = 29.1$ min, $\tau_{minor} = 44.6 \text{ min } (63\% \text{ ee}). [\alpha]_D^{\text{rt}}: -278.0 (c = 0.1, CH_2Cl_2).$

(-)-2-(2,3-Dihydro-3-(1,2,3,4-tetrahydro-1,4-dioxonaphthalen-3-yl)-5methoxynaphthalen-4(1H)-ylidene)malononitrile (4e)

The title compound (76% yield) was synthesized according to the general procedure as major diastereoisomer (14:1) after 48 h employing **1c** (0.20 mmol), **2a** (0.22 mmol) in the presence of the catalyst

3j (0.04 mmol), in CHCl₃/acetone 7:1 (1.0 mL) as a mixture of solvents at -20 °C. For the purification of the title compound was used silica gel (AcOEt/hexane 1/3 as eluent). ¹H NMR (CDCl₃): δ 8.18-7.98 (m, 2H), 7.94 (d, *J* = 8.8 Hz, 1H), 7.75-7.77 (m, 2H), 6.86 (dd, *J* = 8.8, 2.8 Hz, 1H), 6.72 (d, *J* = 2.8 Hz, 1H), 3.83 (s, 3H), 3.67 (dt, *J* = 8.8, 4.0 Hz, 1H), 3.22-3.13 (m, 3H), 3.01-2.90 (m, 2H), 2.21-2.19 (m, 2H). ¹³C NMR (CDCl₃): δ 195.6, 194.3, 175.3, 163.6, 141.1, 134.8, 134.6, 134.4 (2C), 130.8, 127.3, 126.5, 122.1, 114.2, 114.1, 113.3, 113.0, 78.7, 55.5, 47.9, 42.0, 40.4, 24.9, 24.3. HRMS: Calculated for [C₂₄H₁₈N₂O₃Na]⁺: 405.1215; found: 405.1226. The ee was determined by HPLC using Chiralpak AS column [hexane/*i*-PrOH (80:20)]; flow rate 1.0 mL/min; $\tau_{major} = 52.8$ min, $\tau_{minor} = 65.7$ min (99% ee). [α]_D^{rt}: -406.0 (c = 0.1, CH₂Cl₂).

(-)-2-(2,3-Dihydro-3-(1,2,3,4-tetrahydro-1,4-dioxonaphthalen-3-yl)-6,7dimethoxynaphthalen-4(1H)-ylidene)malononitrile (4f)

The title compound (69% yield) was synthesized according to the general procedure as single diastereoisomer (>98%) after 40 h employing 1d (0.20 mmol), 2a (0.22 mmol) in the presence of the

catalyst **3j** (0.04 mmol), in CHCl₃/acetone 7:1 (1.0 mL) as a mixture of solvents at -20 °C. For the purification of the title compound was used Iatrobeads (Et₂O/hexane 3/1 as

eluent). ¹H NMR (CDCl₃): δ 8.01-8.01 (m, 2H), 7.76-7.74 (m, 2H), 7.44 (s, 1H), 6.66 (s, 1H), 3.93 (s, 3H), 3.90 (s, 3H), 3.63 (dt, J = 8.4, 4.0 Hz, 1H), 3.25-3.15 (m, 3H), 3.06-2.89 (m, 2H), 2.26-2.21 (m, 2H). ¹³C NMR (CDCl₃): δ 195.8, 194.4, 175.2, 153.6, 147.6, 134.8, 134.7, 134.4, 133.0, 127.4, 126.5, 121.4, 114.4, 113.4, 110.9, 110.6, 78.6, 56.2, 56.1, 42.0, 40.7, 30.2, 24.8, 24.4. HRMS: Calculated for [C₂₅H₂₀N₂O₄Na]⁺: 435.1320; found: 435.1323. The ee was determined by HPLC using Chiralcel OD column [hexane/*i*-PrOH (75:25)]; flow rate 1.0 mL/min; $\tau_{minor} = 26.1 \text{ min}$, $\tau_{major} = 38.6 \text{ min}$ (96% ee). [α]_D^{rt}: -107.0 (c = 0.5, CH₂Cl₂).

(-)-2-(2,3-Dihydro-3-(1,2,3,4-tetrahydro-1,4-dioxonaphthalen-3-yl)thiochromen-4-ylidene)malononitrile (4g)

The title compound (81% yield) was synthesized according to the general procedure as major diastereoisomer $(4:1)^2$ after 44 h employing **1e** (0.20 mmol), **2a** (0.22 mmol) in the presence of the catalyst **3j** (0.04 mmol), in CHCl₃/acetone

7:1 (1.0 mL) as a mixture of solvents at -20 °C. For the purification of the title compound was used silica gel (AcOEt/hexane 1/4 as eluent). ¹H NMR (CDCl₃): δ 8.04-8.00 (m, 1H), 7.95-7.91 (m, 1H), 7.80 (dd, J = 8.0, 1.2 Hz, 1H), 7.76-7.72 (m, 2H), 7.37-7.33 (m, 1H), 7.18-7.14 (m, 2H), 3.85-3.81 (m, 1H), 3.56 (dd, J = 14.4, 2.8 Hz, 1H), 3.51-3.44 (m, 1H), 3.35 (dd, J = 16.0, 6.0 Hz, 1H), 3.18 (dd, J = 14.4, 4.0, 1H), 3.02 (dd, J = 15.6, 12.0 Hz, 1H). ¹³C NMR (CDCl₃): δ 195.6, 193.6, 173.8, 136.1, 134.8, 134.7, 134.6, 134.5, 133.4, 130.9, 127.2, 126.7, 126.6, 125.9, 125.1, 113.3, 112.7, 82.6, 46.6, 40.8, 39.1, 28.8. HRMS: Calculated for [C₂₂H₁₄N₂O₂SNa]⁺: 393.0673; found: 393,0674. The ee was determined by HPLC using Chiralcel OD column [hexane/*i*-PrOH (85:15)]; flow rate 1.0 mL/min; $\tau_{major} = 51.2$ min, $\tau_{minor} = 57.7$ min (65% ee). [α]_D^{rt}: -338.0 (c = 0.1, CH₂Cl₂).

² Diastereomeric ratio determined by weight of the isolated products.

(-)-2-(1,2-Dihydro-2-(1,2,3,4-tetrahydro-2-acetoxy-1,4-dioxonaphthalen-2-yl)inden-3-ylidene)malononitrile (4h)

The title compound (67% yield) was synthesized according to the general procedure as major diastereoisomer (11:1) after 18 h employing **1f** (0.20 mmol), **2c** (0.22 mmol) in the presence of the catalyst **3j** (0.04 mmol), in CHCl₃/acetone 7:1 (1.0 mL) as a mixture of solvents at -20 °C. For the

purification of the title compound was used Iatrobeads (Et₂O/hexane 1/1 as eluent). ¹H NMR (CDCl₃): δ 8.40 (d, *J* = 8.0 Hz, 1H), 7.96 (d, *J* = 7.6 Hz, 1H), 7.75 (t, *J* = 7.6 Hz, 1H), 7.62 (t, *J* = 7.6 Hz, 1H), 7.50-7.40 (m, 3H), 4.38 (d, *J* = 6.8 Hz, 1H), 3.93 (d, *J* = 12.0 Hz, 1H), 3.54 (dd, *J* = 18.0, 6.8 Hz, 1H), 2.88 (d, *J* = 19.2 Hz, 1H), 2.55-2.35 (m, 2H), 2.44 (s, 3H). ¹³C NMR (CDCl₃): δ 193.2, 192.9, 179.6, 169.6, 152.2, 149.2, 136.0, 135.9, 135.8, 135.2, 130.4, 128.6, 126.6, 125.9, 125.8, 125.1, 112.9, 112.5, 75.6, 50.3, 44.8, 37.1, 34.0, 20.9. HRMS: Calculated for [C₂₄H₁₆N₂O₄Na]⁺: 419.1007; found: 419.0999. The ee was determined by HPLC using Chiralpak OD column [hexane/*i*-PrOH (75:25)]; flow rate 1.0 mL/min; $\tau_{minor} = 24.1 \text{ min}$, $\tau_{major} = 32.5 \text{ min}$ (68% ee). [α]_D^{rt}: -30.0 (c = 0.1, CH₂Cl₂).

(-)-2-(5,6,7,8-Tetrahydro-8-(1,2,3,4-tetrahydro-5-acetoxy-1,4-dioxonaphthalen-3-yl)benzo[7]annulen-9-ylidene)malononitrile (4i)

The title compound (83% yield) was synthesized according to the general procedure as single diastereoisomer (>98%) after 24 h employing **1g** (0.20 mmol), **2c** (0.22 mmol) in the presence of the catalyst **3j** (0.04 mmol), in CHCl₃/acetone 7:1 (1.0 mL) as a mixture of solvents at -20 °C. For the purification

of the title compound was used silica gel (AcOEt/hexane 1/1 as eluent). ¹H NMR (CDCl₃): δ 7.91 (d, *J* = 7.6 Hz, 1H), 7.68 (d, *J* = 8.0 Hz, 1H), 7.35-7.16 (m, 4H), 6.97 (d, *J* = 7.2 Hz, 1H), 3.67-3.63 (m, 1H), 3.08 (dd, *J* = 16.0, 5.2 Hz, 1H), 3.01-2.95 (m, 1H), 2.80-2.60 (m, 4H), 2.49 (s, 3H), 2.35-2.20 (m, 1H), 2.04-1.92 (m, 2H). ¹³C NMR (CDCl₃): δ 195.1, 193.0, 185.9, 169.3, 148.8, 137.4, 135.8, 134.8, 134.3, 131.0, 130.3, 129.9, 128.7, 128.6, 126.9, 125.0, 112.1, 111.9, 85.9, 48.4, 43.8, 40.1, 35.7, 32.4, 22.0,

21.0. HRMS: Calculated for $[C_{26}H_{20}N_2O_4Na]^+$: 447.1320; found: 447.1312. The ee was determined by HPLC using Chiralpak AS column [hexane/*i*-PrOH (80:20)]; flow rate 1.0 mL/min; $\tau_{major} = 27.0 \text{ min}, \tau_{minor} = 34.5 \text{ min} (80\% \text{ ee}). [\alpha]_D^{\text{rt}}: -48.0 (c = 0.1, CH_2Cl_2).$

(-)-(2,3-Dihydro-3-(1,2,3,4-tetrahydro-1,4-dioxoanthracen-3-yl)thiochromen-4-ylidene)malononitrile (4j)

The title compound (50% yield) was synthesized according to the general procedure as major diastereoisomer (12:1) after 48 h employing **1e** (0.20 mmol), **2b** (0.22 mmol) in the presence of the catalyst **3j**

(0.02 mmol), in CHCl₃/acetone 7:1 (1.0 mL) as a mixture of solvents at -20 °C. For the purification of the title compound was used Iatrobeads (Et₂O/hexane 1/1 as eluent). ¹H NMR (CDCl₃): δ 8.50 (d, *J* = 2.0 Hz, 1H), 8.43 (d, *J* = 4.4 Hz, 1H), 7.97-7-96 (m, 2H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.67-7.64 (m, 2H), 7.34-7.30 (m, 1H), 7.16-7.14 (m, 2H), 3.89 (dt, *J* = 5.6, 2.4 Hz, 1H), 3.57 (dd, *J* = 14.4, 2.8 Hz, 1H), 3.35-3.45 (m, 1H), 3.48 (dd, *J* = 15.8, 5.6 Hz, 1H), 3.22 (dd, *J* = 14.4, 4.0 Hz, 1H), 3.09 (dd, *J* = 15.6, 12.0 Hz, 1H). ¹³C NMR (CDCl₃): δ 195.6, 193.7, 174.1, 140.0, 136.2, 135.1, 135.0, 133.3, 131.1, 130.8, 130.3, 130.2, 130.0, 129.9, 129.7, 129.2 (2C), 128.8, 128.7, 126.5, 125.1, 82.5, 46.6, 40.8, 39.1, 28.9. HRMS: Calculated for [C₂₆H₁₆N₂O₂Na]⁺: 443.0830; found: 443.0821. The ee was determined by HPLC using Chiralpak AS column [hexane/*i*-PrOH (70:30)]; flow rate 1.0 mL/min; $\tau_{minor} = 29.5 \text{ min}$, $\tau_{major} = 70.9 \text{ min}$ (93% ee). [α]_D^{rt}: -88.2 (c = 0.1, CH₂Cl₂).

(-)-2-(2,3-Dihydro-3-(1,2,3,4-tetrahydro-1,4-dioxoanthracen-3-yl)-6,7dimethoxythiochromen-4-ylidene)malononitrile (4k)

The title compound (51% yield) was synthesized according to the general procedure as a single diastereoisomer (>98%) after 48 h employing 1d (0.20 mmol), 2b (0.22 mmol) in the presence of

the catalyst **3j** (0.02 mmol), in CHCl₃/acetone 7:1 (1.0 mL) as a mixture of solvents at - 20 °C. For the purification of the title compound was used Iatrobeads (Et₂O/hexane 3/1 as

eluent). ¹H NMR (CDCl₃): δ 8.53 (d, J = 5.2 Hz, 2H), 8.00-7.98 (m, 2H), 7.68-7.66 (m, 2H), 7.55 (s, 1H), 6.66 (s, 1H), 3.91 (s, 3H), 3.89 (s, 3H), 3.68 (dt, J = 8.0, 3.6 Hz, 1H), 3.30-3.22 (m, 3H), 2.93-2.91 (m, 2H), 2.33-2.17 (m, 2H). ¹³C NMR (CDCl₃): δ 195.8, 194.4, 175.4, 153.5, 147.6, 135.3, 135.1, 133.1, 130.2, 130.2, 130.1, 130.0, 129.9, 129.7, 129.5, 128.5, 121.4, 114.5, 113.4, 110.9, 110.5, 78.6, 56.2, 56.1, 48.1, 42.0, 40.9, 24.9, 24.4. HRMS: Calculated for $[C_{29}H_{22}N_2O_4Na]^+$: 485.1477; found: 485.1477. The ee was determined by HPLC using Chiralpak AS column [hexane/*i*-PrOH (75:25)]; flow rate 1.0 mL/min; $\tau_{major} = 34.3$ min, $\tau_{minor} = 75.3$ min (92% ee). $[\alpha]_D^{rt}$: -30.0 (c = 0.1, CH₂Cl₂).

(-)-2-(2-(1,2,3,4-Tetrahydro-1,4-dioxonaphthalen-3-yl)cyclohexylidene)malononitrile (4l)

The title compound (57% yield) was synthesized according to the general procedure as single diastereoisomer (>98%) after 64 h employing **1e** (0.2 mmol), **2a** (0.22 mmol) in the presence of the catalyst **3j** (0.04 mmol), in CHCl₃/acetone 7:1 (1.0 mL) as a

mixture of solvents at -20 °C. For the purification of the title compound was used silica gel (AcOEt/hexane 1/3 as eluent). ¹H NMR (CDCl₃): δ 8.07-8.05 (m, 1H), 7.99-7.97 (m, 1H), 7.80-7.78 (m, 2H), 3.56-3.50 (m, 1H), 3.29 (dd, *J* = 16.4, 5.2 Hz, 1H), 3.31-3.26 (m, 1H), 3.05 (dd, *J* = 16.4, 6.8 Hz, 1H), 2.96 (d, *J* = 14.4 Hz, 1H), 2.53 (td, *J* = 13.6, 6.0 Hz, 1H), 2.23-2.12 (m, 2H), 1.72-1.52 (m, 4H). ¹³C NMR (CDCl₃): δ 196.3, 194.1, 185.1, 135.1(2C), 135.0, 134.4, 127.3, 111.5, 110.9, 83.7, 48.0, 44.1, 40.5, 31.2, 29.7, 28.7, 19.6. HRMS: Calculated for [C₁₉H₁₆N₂O₂Na]⁺: 327.1109; found: 327.1105. The ee was determined by HPLC using Chiralpak AD column [hexane/*i*-PrOH (90:10)]; flow rate 1.0 mL/min; $\tau_{minor} = 28.3 \text{ min}$, $\tau_{major} = 31.7 \text{ min}$ (10% ee). [α]_D^{rt}: -132.0 (c = 0.1, CH₂Cl₂).

Compounds in Table 3

General procedure for the aromatization acid catalyzed reaction

A flask equipped with a magnetic stirring bar was charged with compound 4 (0.1 mmol), and the corresponding anhydride (0.5 mmol). Then 5 μ L of concentrated H₂SO₄ (0.05 mmol) was added. After 2 min the mixture was diluted with 1 mL of CH₂Cl₂ and directly charged and purified by FC (eluent indicated in each case).

(-)-2-(2,3-Dihydro-3-(1,4-diacetoxynaphthalen-3-yl)naphthalen-4(1H)-

ylidene)malononitrile (5a)

NC CN OCOMe The title compound (74% yield) was synthesized according to the general procedure after 1 min employing 4a (0.1 mmol) and Ac₂O (0.5 mmol) (Et₂O/hexane 1/1 as eluent). This reaction could be done in 6.0 mmol scale (69% yield) ¹H

NMR (CDCl₃): δ 8.15 (d, J = 8.0 Hz, 1H), 7.85-7.83 (m, 1H), 7.69-7.67 (m, 1H), 7.57-7.52 (m, 3H), 7.49 (t, J = 8.0 Hz, 1H), 7.47 (d, J = 7.6 Hz, 1H), 6.79 (s, 1H), 4.69 (dd, J = 8.4, 6.4 Hz, 1H), 2.95-2.89 (m, 1H), 2.75-2.67 (m, 1H), 2.49-2.43 (m, 1H), 2.37 (s, 3H), 2.36 (s, 3H), 1.91-1.82 (m, 1H). ¹³C NMR (CDCl₃): δ 172.8, 169.3, 168.5, 144.9, 142.3, 141.9, 133.6, 131.1, 129.1, 128.8, 128.3, 127.9, 127.6, 127.4, 127.1, 127.1 122.1, 121.7, 117.5, 113.7, 112.5, 84.1, 43.2, 38.3, 31.3, 29.1, 28.2. HRMS: Calculated for [C₂₇H₂₀N₂O₄Na]⁺: 459.1320; found: 459.1320. The ee was determined by HPLC using Chiralpak OD column [hexane/*i*-PrOH (80:20)]; flow rate 1.0 mL/min; $\tau_{major} = 15.2$ min, $\tau_{minor} = 18.7$ min (75% ee). [α]_D^{rt}: -98.0 (c = 0.1, CH₂Cl₂).

(-)-2-(1-(Dicyanomethylene)-1,2,3,4-tetrahydronaphthalen-2-yl)anthracene-1,4-diyl dipropionate (5b)

1H), 2.97-2.68 (m, 6H), 2.53-2.46 (m, 1H), 1.94-1.86 (m, 1H), 1.42 (t, J = 7.6 Hz, 3H), 1.35 (t, J = 7.6 Hz, 3H). ¹³C NMR (CDCl₃): δ 173.5 (2C), 172.6, 145.3, 142.7, 141.7, 133.9, 132.5, 132.1, 131.3, 129.1, 129.0, 128.7, 128.6, 128.4, 127.9, 127.6, 126.9, 126.8, 126.2, 125.6, 121.5, 121.1, 114.1, 112.6, 84.4, 43.4, 29.1, 28.7, 28.1, 27.9, 9.7, 9.4. HRMS: Calculated for $[C_{33}H_{26}N_2O_4Na]^+$: 537.1785; found: 537.1779. The ee was determined by HPLC using Chiralcel OD column [hexane/*i*-PrOH (90:10)]; flow rate 1.0 mL/min; $\tau_{minor} = 22.0$ min, $\tau_{major} = 28.7$ min (90% ee). [α]: -127.0 (c = 0.1, CH₂Cl₂).

(-)-2-(4-(Dicyanomethylene)thiochroman-3-yl)naphthalene-1,4-diyl diacetate (5c)

The title compound (71% yield) was synthesized according to the general procedure after 1 min employing **4b** (0.1 mmol) and Ac₂O (0.5 mmol) (EtOAc/hexane 1/4 as eluent). ¹H NMR (60 °C, CDCl₃): δ 7.88-7.84 (m, 2H), 7.736 (dd, J = 6.4, 2.4 Hz, 1H), 7.60-7.53 (m, 2H), 7.48 (d, J = 4.0 Hz, 2H), 7.38-

7.33 (m, 1H), 7.06 (s, 1H), 5.01 (dd, J = 8.8, 6.0 Hz, 1H), 3.44 (dd, J = 13.6, 6.4 Hz, 1H), 3.09 (dd, J = 13.6, 9.2 Hz, 1H), 2.50 (s, 3H), 2.39 (s, 3H). ¹³C NMR (CDCl₃): δ 172.5, 169.9, 168.9, 145.2, 142.1, 139.3, 133.2, 131.4, 130.0, 129.7, 128.1, 127.8 (2C), 127.4, 127.1, 126.9, 122.2, 121.9, 116.9, 113.1, 112.1, 86.2, 48.6, 32.8, 21.2, 21.1. HRMS: Calculated for [C₂₆H₁₈N₂O₄SNa]⁺: 477.0879; found: 477.0880. The separation of enantiomers at HPLC was not possible. [α]: -320.0 (c = 0.1, CH₂Cl₂).

(-)-2-(2,3-Dihydro-3-(1,4-dipropionatoxynaphthalen-3-yl)naphthalen-4(1H)ylidene)malononitrile (5d)

The title compound (93% yield) was synthesized according to the general procedure after 1 min employing **4a** (0.1 mmol) and propionic anhydride (0.5 mmol) (Et₂O/hexane 1/1 as eluent). ¹H NMR (60 ^OC, CDCl₃): δ 8.16 (d, *J* = 7.6

Hz, 1H), 7.82-7.80 (m, 1H), 7.67-7.65 (m, 1H), 7.55-7.48 (m, 3H), 7.44 (d, J = 7.6 Hz, 1H), 7.33 (d, J = 7.2 Hz, 1H), 6.73 (s, 1H), 4.69 (t, J = 7.6 Hz, 1H), 2.90 (dt, J = 10.8, 4.8 Hz, 1H), 2.75-2.60 (m, 6H), 2.45-2.41 (m, 1H), 1.95-1.84 (m, 1H), 1.33 (t, J = 7.2 Hz, 3H), 1.28 (t, J = 7.6 Hz, 3H).¹³C NMR (CDCl₃): δ 172.9, 172.8, 172.0, 144.9, 142.3,

141.9, 133.5, 131.1, 129.1, 128.8, 128.8, 128.3, 128.3, 128.1, 127.5, 127.3, 127.1, 127.0, 122.1, 121.6, 113.7, 112.5, 94.5, 43.1, 29.2, 28.1, 27.7, 27.5, 9.2, 9.0. HRMS: Calculated for $[C_{29}H_{24}O_4N_2Na]^+$: 487.1633; found: 487.1643. The ee was determined by HPLC using Chiralpak OD column [hexane/*i*-PrOH (80:20)]; flow rate 1.0 mL/min; $\tau_{major} = 10.5$ min, $\tau_{minor} = 13.4$ min (70% ee). $[\alpha]_D^{rt}$: -90.3 (c = 0.6, CH₂Cl₂).

Compounds in Scheme 3

General procedure for the oxidative cleavage of 4a and 5a to 6 and 7 respectively.

A flask equipped with a magnetic stirring bar was charged with 4a or 5a (0.1 mmol), KMnO₄ (0.25 mmol) and anhydrous MgSO₄ (0.2 mmol). Then acetone (1 mL) and water (one drop) was added and the mixture was stirred at room temperature for 15 min. The mixture was directly charged on FC (silica gel) (eluent indicated in each case).

(*R*)-2,3-dihydro-2-((*R*)-1,2,3,4-tetrahydro-1-oxonaphthalen-2-yl)naphthalene-1,4dione (6)

The title compound (71% yield) was synthesized according to the general procedure as single diastereoisomer employing **4a** (0.1 mmol) (Et₂O/hexane 1/1 as eluent). ¹H NMR (CDCl₃): δ 8.10-8.05 (m, 2H), 7.77-7.74 (m, 2H), 7.50 (td, J = 7.5, 1.2

Hz, 1H), 7.33 (t, J = 7.4 Hz, 1H), 7.28-7.25 (m, 2H), 4.06 (ddd, J = 8.4 6.4, 2.4 Hz, 1H), 3.44 (ddd, J = 7.2, 4.8, 2.4 Hz, 1H), 3.21-3.00 (m, 4H), 2.22-2.12 (m, 2H). ¹³C NMR (CDCl₃): δ 197.6, 197.1, 195.8, 143.9, 135.4, 135.2, 134.3, 134.2, 133.6, 132.3, 128.7, 127.5, 126.9, 126.7, 126.6, 47.9, 46.8, 40.5, 29.5, 26.2. HRMS: Calculated for [C₂₀H₁₆O₃Na]⁺: 327.0997; found: 327.0991. The ee was determined by HPLC using Chiralpak OD column [hexane/*i*-PrOH (80:20)]; flow rate 1.0 mL/min; $\tau_{major} = 20.3$ min, $\tau_{minor} = 25.0$ min (68% ee). [α]_D^{rt}: -69.2 (c = 0.2, CH₂Cl₂).

(+)-3,4-dihydro-2-(1,4-diacetoxynaphthalen-3-yl)naphthalen-1(2H)-one (7)

The title compound (82% yield) was synthesized according to the general procedure as single diastereoisomer employing **5a**

(0.1 mmol) (Et₂O/hexane 1/1 as eluent). ¹H NMR (CDCl₃): δ 8.04 (d, *J* = 8.0 Hz, 1H), 7.80-7.78 (m, 1H), 7.66-7.64 (m, 1H), 7.47-7.45 (m, 3H), 7.30-7.23 (m, 2H), 7.05 (s, 1H), 3.93 (dd, *J* = 8.0, 9.0 Hz, 1H), 3.10-3.03 (m, 2H), 2.40-2.30 (m, 2H), 2.35 (s, 3H), 2.30 (s, 3H).¹³C NMR (CDCl₃): δ 196.6, 169.3, 169.1, 144.6, 143.9, 142.3, 133.6, 132.6, 128.8, 127.8, 127.1, 126.8, 126.6, 121.7, 121.6, 118.5, 49.7, 30.6, 303, 29.5, 21.0, 20.6. HRMS: Calculated for [C₂₄H₂₀O₅Na]⁺: 411.1208; found: 411.1217. The ee was determined by HPLC using Chiralpak AD column [hexane/*i*-PrOH (80:20)]; flow rate 1.0 mL/min; $\tau_{major} = 24.0$ min, $\tau_{minor} = 29.0$ min (72% ee). [α]_D^{rt}: +5 (c = 0.8, CH₂Cl₂).

NMR spectra of compounds 4e, 4l and 5d.

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2007

Figure S3: 1 H NMR (60 ${}^{\circ}$ C, 400 MHz) and 13 C NMR (60 ${}^{\circ}$ C, 100 MHz) of 5d

Ent	Catalyst ^a	Solvent (mL)	Т	Time	conv (%)	ee (%)
	-		(°C)	(h)		
1	Proline	DMSO (0.2)/H ₂ O (0.05)	rt	72	no conv.	-
2	Proline	EtOH (0.2)/H ₂ O (0.05)	rt	72	no conv.	-
3	Proline	DMF (0.2)/H ₂ O (0.05)	rt	72	no conv.	-
4	Proline	CH ₃ CN (0.2)/H ₂ O (0.05)	rt	72	no conv.	-
5	Proline	CH ₂ Cl ₂ (0,2)/H ₂ O (0,05)	rt	72	no conv.	-
7	Prolinamide	EtOH $(0.2)/H_2O(0.05)$	rt	48	no conv.	-
8	Prolinamide	DMF (0.2)/H ₂ O (0.05)	rt	48	no conv.	-
9	Prolinamide	EtOH $(0.2)/H_2O(0.05)$	rt	120	no conv.	-
10	Prolinamide	EtOH (0.15)/H ₂ O (0.1)	rt	120	no conv.	-
11	Prolinamide	DMF (0.2)/H ₂ O (0.05)	rt	120	no conv.	-
12	Prolinamide	DMF (0.15)/H ₂ O (0.1)	rt	120	no conv.	-
13	Prolinamide	EtOH (0.2)/H ₂ O (0.05)	40	120	_b	-
14	Prolinamide	DMF (0.2)/H ₂ O (0.05)	40	120	_b	-
15	Prolinamide	DMF (0.2)/H ₂ O (0.02)	rt	120	no conv.	-
16	Prolinamide	EtOH (0.2)/H ₂ O (0.02)	rt	120	no conv.	-
17	(S,S)-1,2-	DMF (0.2)/H ₂ O (0.025)	rt	240	no conv.	-
	diphenylethyl					
	diamine					
18	(S,S)-1,2-	THF (0.2)/H ₂ O (0.025)	rt	240	no conv.	-
	diphenylethyl					
	diamine					
19	./	DMF (0.2)/H ₂ O (0.025)	rt	240	no conv.	-
	Bn N N					
20		DMF (0.2)/H ₂ O (0.025)	rt	240	no conv	_
20				2.0	110 001111	
	Phr N					
	(R,R)					
21	Ph _{//} _N	DMF $(0.2)/H_2O(0.025)$	rt	240	no conv.	-
	∽CO ₂ H					
	Ph					
	п (R,R)					
22	(S,S)-1,2-	DMF (0.2)/H ₂ O (0.025)	rt	240	no conv.	-
	diphenylethyl	+				
	diamine	AcOH (1 mL, 5eg)				
23	\square	THF (0.2)/H ₂ O (0.025)	rt	240	no conv.	-
	Ph					
24	_(K,K)		,	120		
24		EtOH $(0.2)/H_2O(0.02)$	rt	120	no conv.	-
	`H́ ┣━Ph					
	'™ Ph					

^{*a*} The reaction were carried out with 10-20 mol% of catalyst. ^{*b*} The 1,4-naphthoquinone was converted into the corresponding hydroquinone.

			0 +	o			
Ent	Catalyst	mol%	solvent (mL)	Т	time (h)	conv	ee
1	Ph N''Ph (R,R)	10	DMF (0.2)/H ₂ O (0.025)	rt	240	no conv.	- (70)
2	H_2N NH_2 Ph Ph (R,R)	20	DMF (0.2)/H ₂ O (0.025)	rt	240	no conv.	-
3	Proline	20	EtOH $(0.2)/H_2O$	rt	24	no	-
4	OTMS H Ph Ph	20	$EtOH (0.2)/H_2O$ (0.02)	rt	24	no conv.	-

Table. S-2. Addition of cyclohexanone to quinone 2a using different conditions and catalyst.

Absolute structure determination

The relative configuration of compounds in Table 1,2 was *anti* according to the X-ray crystal analysis of the compound *rac*-**4j** (Figure S4).³ The absolute configuration of the product was established by assuming an identical stereochemical reaction course with the same nucleophile and catalyst **3j**, used by us and others.¹ Therefore the configuration of these compounds is 2R,3R.

Figure S4: X-ray crystal structure of *rac*-4j including in the cell crystal structure one molecule of acetone.

³ CCDC 666377 (rac-**4j**) contains the supplementary crystallographic data. These data can be obtained free of charge at <u>www.ccdc.cam.ac.uk/conts/retrieving.html</u> [or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (internat.) +44(1223)336-033, e-mail: <u>deposit@ccdc.cam.ac.uk</u>].

¹ (a) T. B. Poulsen, M. Bell and K. A. Jørgensen, *Org. Biomol. Chem.*, **2006**, *4*, 63. (b) D. Xue, Y.-C. Chen, Q. W. Wang, L.-F. Cun, J. Zhu, J.-G. Deng, *Org. Lett.* **2005**, *7*, 5293.