Supporting information for:

Tandem Driven Dynamic Combinatorial Resolution via Henry – Iminolactone Rearrangement

Marcus Angelin, Pornrapee Vongvilai, Andreas Fischer, and Olof Ramström*

KTH - Royal Institute of Technology, Department of Chemistry Teknikringen 30, S-10044 Stockholm, Sweden

General methods

All commercially available starting materials and solvents were of reagent grade and used as received. ¹H and ¹³C spectra were recorded with a Bruker Avance 400 instrument or a Bruker DMX 500 instrument at 298K in CD₃CN or DMSO, using the residual signals: ¹H: $\delta = 1.94$ ppm; ¹³C: $\delta = 1.32$ ppm and ¹H: $\delta = 2.50$ ppm; ¹³C: $\delta = 39.52$ ppm respectively. ¹H peak assignments were made by first order analysis of the spectra, supported by standard ¹H-¹H correlation spectroscopy (COSY). High resolution mass spectra (HRMS) were performed by Instrumentstationen, Kemicentrum, Lund Institute of Technology, Lund, Sweden.

General procedure for library generation and resolution

The various aldehydes **1-5** (0.15 mmol each) were dissolved in an NMR tube using 750 μ L CD₃CN. Subsequently, nitroethane (0.15 mmol) and triethylamine (0.45 mmol) were added and the mixture was left at room temperature. The reaction was followed by ¹H-NMR analysis.

Analytical data for compound 12

¹H NMR (500 MHz, DMSO) δ 1.16 (d, J = 6.94 Hz), 1.56 (d, J = 6.94 Hz), 5.11 (d, J = 2.84 Hz,), 5.29-5.38 (m), 7.50-7.57 (m), 7.62-7.67 (m), 7.70 (d, J = 7.57) 8.86 (s), 9.02 (s); ¹³C NMR (125 MHz, DMSO) δ 11.9, 15.2, 57.5, 58.4, 83.0, 83.4, 122.9, 123.1, 123.4, 123.8, 128.8, 129.0, 131.8, 132.1, 132.4, 142.9, 143.0, 169.4, 169.8; HRMS (CI) calcd for $[C_{10}H_{11}N_2O_3]^+$: 207.0770, found: 207.0763

Kinetic analysis of tandem reaction

Kinetic analysis of the tandem reaction with aldehyde **1** was performed using timedependent ¹H-NMR-studies. Each starting material (0.2 mmol) and triethylamine (0.1 mmol) were dissolved in CD₃CN (600 μ L), and the reaction followed until completion. The chemical kinetics software package Copasi 4.2 was adopted for fitting the resulting NMR-data to the kinetic model,¹ using the Levenberg-Marquardt method at a tolerance of 1 x 10⁻⁶ for parameter fitting. Estimated kinetic parameters: k_1 : 7.2 x 10⁻² M⁻¹ min⁻¹ (SD: 1.4 x 10⁻³ M⁻¹ min⁻¹), k_{-1} : 5.6 x 10⁻³ min⁻¹ (SD: 3.3 x 10⁻⁴ min⁻¹), k_2 : 1.4 x 10⁻² min⁻¹ (SD: 1.2 x 10⁻⁴ min⁻¹), where k_1 and k_{-1} are the rate constants of the forward and reverse Henry reaction, respectively, and k_2 is the rate constant for the consecutive cyclization step.

¹ S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu, P. Mendes and U. Kummer, *Bioinformatics* 2006, **22**, 3067-3074.