Solid State Structures and Photophysical Properties of (Trimethylsilyl)methyl-substituted Anthracenes and Pyrenes

Masaki Shimizu,* Hironori Tatsumi, Kenji Mochida and Tamejiro Hiyama

Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

E-mail: shimizu@npc05.kuic.kyoto-u.ac.jp

General Information

Melting points were determined using Seiko Instrument Inc. DSC6200. ¹H NMR spectra measured on a Varian Mercury 300 (300 MHz) and 400 (400 MHz) spectrometers. The chemical shifts of ¹H NMR are expressed in parts per million downfield relative to the internal chloroform (δ = 7.26 ppm). Splitting patterns are indicated as s, singlet; d, doublet; t, triplet, q, quartet; m, multiplet. ¹³C NMR spectra were measured on a Varian Mercury 300 (75 MHz) and 400 (100 MHz) spectrometers with chloroform ($\delta = 77.0$ ppm). ²⁹Si NMR spectra were measured on a Varian Mercury 400 (80 MHz) spectrometer with tetramethylsilane as an internal standard ($\delta = 0$ ppm). Chemical shift values are given in parts per million downfield relative to the internal standard. Infrared spectra (IR) were recorded on a Shimadzu FTIR-8400 spectrometer. UV and fluorescence spectra were measured with Shimadzu UV-2100PC and RF-5300PC spectrometers, respectively. Thin films spin-coated on quartz were prepared with MIKASA SPINCOATER MS-A100. GC-MS analyses were performed with a JEOL JMS-700 spectrometer by electron ionization at 70 eV. FAB-MS analyses were performed with a JEOL-HX110A spectrometer. Elemental analyses were carried out with a YANAKO MT2 CHN CORDER machine at Elemental Analysis Center of Kyoto University. TLC analyses were performed by means of Merck Kieselgel 60 F₂₅₄ and column chromatography was carried out using Merck Kieselgel 60 (230-400 mesh). Preparative HPLC was carried out with a Japan Analytical Industry Co., Ltd, LC-908 using a JAIGEL-1H and -2H GPC columns. 9-Bromoanthracene, chromatograph 9,10-dibromoanthracene, and 1-bromopyrene were purchased from Aldrich and used as received. Et₂O and THF were distilled from benzophenone ketyl before use. All reactions were carried out under an argon atmosphere.

Preparation of 9-(trimethylsilyl)methylanthracene (1a)

To a Schlenk tube (80 mL) equipped with a magnetic stirring bar were added 9-bromoanthracene (1.90 g, 7.5 mmol), and NiCl₂(PEt₃)₂ (82 mg, 0.23 mmol). The tube was then capped with a rubber septum, evacuated, and purged with argon. The evacuation-purge operation was repeated three times. Diethyl ether (23 mL) was added to the tube at 0 °C. To the solution was added 1 M solution of (trimethylsilyl)methylmagnesium chloride in Et₂O (9.0 mL, 9.0 mmol) dropwise at 0 °C over a period of 10 min. Then, the solution was refluxed for 70 h. After the resulting solution was cooled to room temperature, 5% aq. HCl (10 mL) was added to the solution at 0 °C. The aqueous layer was extracted with Et₂O (10 mL x 3). The combined organic layer was washed with sat. aq. NaCl (15 mL), dried over anhydrous MgSO₄, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel (hexane) followed by recrystallization (hexane/EtOH 1:1) to give 1a (1.89 g, 95% yield, CAS NO. 88920-42-7) as a colorless solid. Mp: 65.4 °C. TLC: R_f0.30 (hexane). ¹H NMR (400 MHz, CDCl₃): δ 0.00 (s, ^{13}C 9H), 3.18 (s, 2H), 7.42–7.48 (m, 4H), 7.95–8.00 (m, 2H), 8.14-8.19 (m, 2H), 8.23 (s, 1H). ²⁹Si NMR (75 MHz, CDCl₃): δ –0.2, 19.1, 123.5, 124.4, 124.6, 125.3, 128.8, 129.0, 131.5, 134.1. NMR (80 MHz, CDCl₃): δ 4.31 (s). IR (KBr): ν = 3045, 2950, 1620, 1340, 1244, 1148, 885, 862, 839, 731 cm⁻¹. MS (EI) m/z: 265 (2, $[M^+] + 2$), 264 (10, $[M^+] + 1$), 264 (38, $[M^+]$), 191 (30), 73 (100). Anal. Calcd for C₁₈H₂₀Si: C, 81.76; H, 7.62. Found: C, 81.56; H, 7.62.

Preparation of 9,10-bis[(trimethylsilyl)methyl]anthracene (1b)

To a Schlenk tube (20 mL) equipped with a magnetic stirring bar were added 9,10-dibromoanthracene (0.34 g, 1.0 mmol) and NiCl₂(PPh₃)₂ (33 mg, 0.05 mmol). The tube was then capped with a rubber septum, evacuated, and purged with argon. The evacuation–purge operation was repeated three times. Diethyl ether (10 mL) was added to the mixture at 0 °C. To the solution was added a 1 M solution of (trimethylsilyl)methylmagnesium chloride in Et₂O (3.0 mL, 3.0 mmol) at 0 °C. The solution was refluxed for 18 h. After the resulting solution was cooled to room temperature, 5% aq. HCl (4 mL) was added to the tube at 0 °C. The aqueous layer

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

was extracted with CH₂Cl₂ (5 mL x 3). The combined organic layer was washed with sat. aq. NaCl (15 mL), dried over anhydrous MgSO₄, and concentrated in vacuo. The crude product was purified by recrystallization from the EtOH solution to give **1b** (0.21 g, 61% yield, CAS NO. 69020-25-3) as a colorless solid. Mp: 143.0 °C. ¹H NMR (400 MHz, CDCl₃): δ –0.02 (s, 18H), 3.15 (s, 4H), 7.42–7.46 (m, 4H), 8.17–8.21 (m, 4H). ¹³C NMR (75 MHz, CDCl₃): δ –0.2, 18.7, 123.8, 126.0, 128.8, 130.2. ²⁹Si NMR (80 MHz, CDCl₃): δ 3.95. IR (KBr): v = 2951, 1364, 1250, 1151, 1026, 876, 837, 748, 689 cm⁻¹. MS (EI) *m/z*: 352 (8, [M⁺] + 2), 351 (21, [M⁺] + 1), 350 (60, [M⁺]), 277 (25), 73 (100).

Preparation of 1-(trimethylsilyl)methylpyrene (2a)

To a Schlenk tube (20 mL) equipped with a magnetic stirring bar were added 1-bromopyrene (84 mg, 0.3 mmol), NiCl₂ (1.9 mg, 15 µmol), and tri(2-furyl)phosphine (8.4 mg, 36 µmol). The tube was then capped with a rubber septum, evacuated, and purged with argon. The evacuation-purge operation was repeated three times. THF (2 mL) was added to the mixture at room temperature. To the solution was added 1 M solution of (trimethylsilyl)methylmagnesium chloride Et₂O (0.45 mL, 0.45 mmol) at room temperature. The resulting solution was refluxed for 12 h. The solution was allowed to cool to room temperature before adding sat. aq. NH₄Cl (2 mL) at 0 °C. The aqueous layer was extracted with Et₂O (4 mL x 3). The combined organic layer was washed with sat. aq. NaCl (10 mL), dried over anhydrous MgSO₄, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel (hexane/EtOAc 100:1) followed by recrystallization (hexane/EtOH 1:1) to give 2a (79 mg, 91% yield) as a colorless solid. Mp: 79.7 °C. TLC: R_f0.18 (hexane). ¹H NMR (400 MHz, CDCl₃): δ 0.05 (s, 9H), 2.87 (s, 2H), 7.71 (d, J = 8.0 Hz, 1H), 7.94–8.07 (m, 5H), 8.12–8.18 (m, 3H). ¹³C NMR (75 MHz, CDCl₃): δ –1.0, 24.6, 124.1, 124.3, 124.4, 124.6, 125.0, 125.1, 125.6, 125.7, 126.2, 127.0, 127.5, 127.6, 128.3, 131.0, 131.5, 135.7. ²⁹Si NMR (80 MHz, CDCl₃): δ 3.17. IR (KBr): ν = 3042, 2953, 2893, 1601, 1506, 1246, 1182, 1151, 843, 760 cm⁻¹. MS (FAB) m/z: 290 (18, $[M^+] + 2$), 289 (50, $[M^+] + 1$), 288 $(100, [M^+]), 215 (20), 73 (25).$ Anal. Calcd for C₂₀H₂₀Si: C, 83.28; H, 6.99. Found: C, 83.44; H, 7.06.

To a Schlenk tube (20 mL) equipped with a magnetic stirring bar were added 1,6-dibromopyrene (110 mg, 0.3 mmol), NiCl₂ (1.9 mg, 15 µmol), and tri(2-furyl)phosphine (8.4 mg, 36 µmol). The tube was then capped with a rubber septum, evacuated and purged with argon. The evacuation-purge operation was repeated three times. THF (2 mL) was added to the mixture at room temperature. To the solution was added 1 M solution of (trimethylsilyl)methylmagnesium chloride in Et₂O (0.90 mL, 0.90 mmol) at room temperature. The resulting solution was refluxed for 12 h. Then, the mixture was allowed to cool to room temperature before adding sat. aq. NH₄Cl (2 mL) at 0 °C. The aqueous layer was extracted with Et₂O (4 mL x 3). The combined organic layer was washed with sat. aq. NaCl (10 mL), dried over anhydrous MgSO₄, and concentrated in vacuo. The crude product was dissolved in CH₂Cl₂ and filtered through a pad of Florisil. The filtrate was concentrated by rotary evaporator and the residue was purified by GPC (CHCl₃) followed by recrystallization (hexane/EtOH 1:1) gave 2b (80 mg, 71% yield) as a colorless solid. Mp: 144.1 °C. TLC: $R_f 0.19$ (hexane). ¹H NMR (400 MHz, CDCl₃): δ 0.07 (s, 18H), 2.86 (s, 4H), 7.68 (d, J = 7.8 Hz, 2H), 8.00 (d, J = 9.4 Hz, 2H), 8.02 (d, J = 7.8 Hz, 2H), 8.07 (d, J = 9.4 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃): δ-1.0, 24.7, 122.7, 123.9, 125.5, 126.4, 126.9, 128.1, 128.3, 135.0. ²⁹Si NMR (80 MHz, CDCl₃): δ 3.11. IR (KBr): v = 2953, 2893, 1603, 1495, 1418, 1246, 845, 692 cm⁻¹. MS (EI) m/z: 376 (4, $[M^+] + 2$), 375 (13, $[M^+] + 1$), 374 (30, $[M^+]$), 301 (20), 73(100). Anal. Calcd for C₂₄H₃₀Si₂: C, 76.94; H, 8.07. Found: C, 76.81; H, 8.08.

Preparation of 1,3,6,8-tetrakis[(trimethylsilyl)methyl]pyrene (2c)

To a Schlenk tube (20 mL) equipped with a magnetic stirring bar were added 1,3,6,8-tetrabromopyrene (100 mg, 0.20 mmol), NiCl₂ (1.3 mg, 10 μ mol), and dppp (4.9 mg, 12 μ mol). The tube was then capped with a rubber septum, evacuated, and purged with argon. The evacuation–purge operation was repeated three times. THF (2 mL) was added to the mixture at room temperature. To the solution was added 1 M solution of (trimethylsilyl)methylmagnesium chloride in Et₂O (1.2 mL, 1.2 mmol) at room temperature. The resulting solution was refluxed for 5 days. The solution was allowed to cool to room temperature before adding sat. aq. NH₄Cl (2

mL) at 0 °C. The aqueous layer was extracted with Et₂O (5 mL x 3). The combined organic layer was washed with sat. aq. NaCl (10 mL), dried over anhydrous MgSO₄, and concentrated in vacuo. The crude product was dissolved in CH₂Cl₂ and filtered through a pad of Florisil. The filtrate was concentrated by rotary evaporator and the residue was purified by GPC (CHCl₃) and then recrystallization (hexane) to give **2c** (24 mg, 21% yield) as a colorless solid. Mp: 197.1 °C. TLC: R_f0.39 (hexane/EtOAc 10:1). ¹H NMR (400 MHz, CDCl₃): δ 0.05 (s, 36H), 2.76 (s, 8H), 7.35 (s, 2H), 7.94 (s, 4H). ¹³C NMR (75 MHz, CDCl₃): δ -0.8, 24.5, 121.8, 125.5, 126.5, 128.0, 133.6. ²⁹Si NMR (80 MHz, CDCl₃): δ 3.12. IR (KBr): ν = 2952, 2891, 1605, 1504, 1248, 1155, 895, 837, 692 cm⁻¹. MS (EI) *m/z*: 548 (10, [M⁺] + 2), 547 (28, [M⁺] + 1), 546 (100, [M⁺]), 473 (30), 73 (40). Anal. Calcd for C₃₂H₅₀Si₄: C, 70.25; H, 9.21. Found: C, 70.17; H, 9.26.

Data of X-ray crystallographic analysis:

Compound **1a:** The detailed crystallographic data have been deposited at the Cambridge Crystallographic Data Centre and allocated the number CCDC-662226.

Crystal data and structure refinement for **1a**.

Empirical formula	C18 H20 Si		
Formula weight	264.43		
Temperature	300(2) K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	Pbca		
Unit cell dimensions	$a = 17.266(4) \text{ Å} \qquad \alpha = 90^{\circ}.$		
	$b = 7.1904(17) \text{ Å} \qquad \beta = 90^{\circ}.$		
	$c = 25.133(6) \text{ Å}$ $\gamma = 90^{\circ}.$		
Volume	3120.2(13) Å ³		
Z	8		
Density (calculated)	1.126 Mg/m^{3}		
Absorption coefficient	0.136 mm ⁻¹		
F(000)	1136		
Crystal size	$0.50 \ge 0.40 \ge 0.40 \text{ mm}^3$		
Theta range for data collection	1.62 to 27.05°.		
Index ranges	-20<=h<=22, -9<=k<=7, -32<=l<=2	31	
Reflections collected	17759		
Independent reflections $3411 [R(int) = 0.0272]$			
Completeness to theta = 27.05°	99.6 %		
Absorption correction	Empirical		
Max. and min. transmission	0.9477 and 0.9352		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3411 / 0 / 175		
Goodness-of-fit on F2	1.025		
Final R indices [I>2sigma(I)]	R1 = 0.0496, wR2 = 0.1288		
R indices (all data)	R1 = 0.0669, wR2 = 0.1415		
Largest diff. peak and hole 0.343 and -0.168 e. Å ⁻³			

Compound **1b**: The detailed crystallographic data have been deposited at the Cambridge Crystallographic Data Centre and allocated the number CCDC-662227.

Crystal data and structure refinement for 1b.

Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions

Volume Ζ Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges **Reflections collected** Independent reflections Completeness to theta = 26.99° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole

C22 H30 Si2 350.64 300(2) K 0.71073 Å Monoclinic P2(1)/ca = 12.4707(9) Å $\alpha = 90^{\circ}$. b = 6.2382(5) Å $\beta = 111.4620(10)^{\circ}$. c = 14.2962(11) Å $\gamma = 90^{\circ}$. 1035.05(14) Å³ 2 1.125 Mg/m^3 0.172 mm^{-1} 380 $0.50 \ge 0.50 \ge 0.40 \text{ mm}^3$ 1.75 to 26.99°. -15<=h<=15, -7<=k<=7, -11<=l<=18 5986 2232 [R(int) = 0.0186] 99.2 % Empirical 0.9343 and 0.9188 Full-matrix least-squares on F^2 2232 / 0 / 113 1.092 R1 = 0.0370, wR2 = 0.1007R1 = 0.0406, wR2 = 0.10420.046(5)0.253 and –0.263 e. ${\rm \AA^{-3}}$

Compound **2c**: The detailed crystallographic data have been deposited at the Cambridge Crystallographic Data Centre and allocated the number CCDC-662228.

Crystal data and structure refinement for 2c.

Empirical formula	C32 H50 Si4			
Formula weight	547.08			
Temperature	300(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P2(1)/c			
Unit cell dimensions	a = 13.524(3) Å	$\alpha = 90^{\circ}$.		
	b = 10.663(3) Å	$\beta = 109.495(4)^{\circ}$		
	c = 12.834(3) Å	$\gamma = 90^{\circ}$.		
Volume	1744.7(8) Å ³			
Z	2			
Density (calculated)	1.041 Mg/m^3			
Absorption coefficient	0.188 mm^{-1}			
F(000)	596	596		
Crystal size	0.50 x 0.50 x 0.50 m	0.50 x 0.50 x 0.50 mm ³		
Theta range for data collection	2.49 to 25.50°.	2.49 to 25.50°.		
Index ranges	-14<=h<=16, -12<=k	-14<=h<=16, -12<=k<=10, -15<=l<=14		
Reflections collected	9289			
Independent reflections	3243 [R(int) = 0.019]	6]		
Completeness to theta = 25.50°	99.8 %			
Absorption correction	Empirical			
Max. and min. transmission	0.9119 and 0.9119	0.9119 and 0.9119		
Refinement method	Full-matrix least-squ	Full-matrix least-squares on F ²		
Data / restraints / parameters	3243 / 0 / 170			
Goodness-of-fit on F ²	1.084			
Final R indices [I>2sigma(I)]	R1 = 0.0552, wR2 =	R1 = 0.0552, wR2 = 0.1695		
R indices (all data)	R1 = 0.0614, wR2 =	0.1771		
Largest diff. peak and hole	0.522 and -0.249 e. A	$Å^{-3}$		

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

Comparison of absorption and excitation spectra of 2a and 2b.

Chart S1

Comparison of HOMO and LUMO Energy Levels by the DFT Method at the B3LYP/6-31G(d)//B3LYP/6-31G(d) Level

		Ċ	R	F	R	
R		Н	SiH ₃	Н	SiH ₃	
LUMO/eV	-1.63	-1.60	-1.67	-1.59	-1.73	
HOMO/eV	-5.23	-5.11	-5.13	-5.01	-5.05	
LUMO-HOMO/eV	3.60	3.51	3.46	3.42	3.32	

			-R	R	R	R
R		H SiH	3 Н	SiH ₃	Н	SiH ₃
LUMO/eV	-1.48	-1.46 -1.4	9 –1.45	-1.51	-1.42	-1.54
HOMO/eV	-5.33	-5.22 -5.2	3 –5.12	-5.13	-4.94	-4.99
LUMO-HOMO/eV	3.85	3.76 3.7	4 3.67	3.62	3.52	3.45