Supporting Information

Chimeric (α-amino acid + nucleoside- β-amino acid) ${ }_{\mathbf{n}}$ peptide oligomers show sequence specific DNA/RNA recognition

Khirud Gogoi* and Vaijayanti A Kumar*

Division of Organic Chemistry, National Chemical Laboratory, Pune411008, India
E-mail: va.kumar@ncl.res.in

S2-S3: Experimental procedures
S4-S6: ${ }^{1} \mathrm{H}$ NMR spectra of 7 and $\mathbf{8},{ }^{13} \mathrm{C}$ and DEPT NMR spectra of $\mathbf{8}$ and Mass spectra of compound $\mathbf{8}$

S6-S7: Oligomer synthesis, Solid phase synthesis scheme and structure of ONs synthesized.

S8-S12: Table of ONs synthesized and their RP-HPLC and MALDI-TOF mass spectral data.

S13-S16: UV-melting experiments and UV-Job's plots.
S16-S17: CD graphs.

Experimental Procedure:

Melting points of samples were determined in open capillary tubes using Buchi Melting point B-540 apparatus and are uncorrected. IR spectra were recorded on an infrared Fourier Transform spectrometer .Column chromatographic separations were performed using silica gel $60-120$ and 230-400 mesh, Ethyl acetate, Petroleum ether, Dichloromethane and Methanol as the solvent system. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were obtained using Bruker AC 200 (200MHz) NMR spectrometers.

Synthesis of 3'-azidothymidine-5'-carboxylic acid 7^{1} :

BAIB ($3.9 \mathrm{~g}, 12.4 \mathrm{mmol}$) and TEMPO ($180 \mathrm{mg}, 1.12 \mathrm{mmol}$) and 3 '-azido-thymidine $\mathbf{6}$ $(1.5 \mathrm{~g}, 5.6 \mathrm{mmol})$ were combined in a reaction vessel and to the mixture was added 12 ml of 1:1 acetonitrile-water solution. The reaction mixture was stirred for 3 h . Solvents were removed in vacuo and the resulting residue was triturated sequentially with diethyl ether and acetone, filtered and dried in vacuo. Yield: $1.22 \mathrm{~g}, 78 \%$.
M.P. $174-177^{\circ} \mathrm{C}$ FT-IR (Nujol) 3440, 2110, 1748, 1721, 1694, $1610 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 1.78(\mathrm{~s}, 3 \mathrm{H}), 2.2(\mathrm{~m}, 2 \mathrm{H}), 4.35(\mathrm{~d}, 1 \mathrm{H}), 4.64(\mathrm{~m}, 1 \mathrm{H}), 6.2(\mathrm{t}, 1 \mathrm{H})$, 8.36(s, 1H).

Synthesis of $3^{\prime}-N$-Fmoc- 3^{\prime}-aminothymidine- 5^{\prime}-carboxylic acid 8:

[^0]3'-azidothymidine-5'-carboxylic acid $7(1.2 \mathrm{~g}, 4.26 \mathrm{mmol})$ was dissolved in 10 ml methanol and to it was added $120 \mathrm{mg}(10 \%) \mathrm{Pd}-\mathrm{C}$ catalyst. The mixture was subjected to hydrogenation at 40 Psi of hydrogen pressure for 3.5 h . The catalyst was filtered over celite and concentration of the filtrate in vacuo gave $1.1 \mathrm{~g}, 97 \%$ of 3 '-deoxy-3'-amino thymidine-5'-carboxylic acid.

The amino acid 3'-deoxy-3'-aminothymidine-5'-carboxylic acid ($1.1 \mathrm{~g}, 4.3 \mathrm{mmol}$) was treated with Fmoc-succinimide $(1.74 \mathrm{~g}, 5.17 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(1.81 \mathrm{~g}, 21.5 \mathrm{mmol})$ in $10 \mathrm{ml} \mathrm{1:1}$ acetone-water. After stirring for five hours, acetone was evaporated and the reaction mixture was diluted with 5 ml water. The water layer was extracted with ethyl acetate to remove all the nonpolar unwanted impurities. The water layer was neutralized by adding dilute HCl to bring the $\mathrm{pH}=7.0$. The water layer was then extracted with ethyl acetate. The organic layer was washed with water ($1 \times 10 \mathrm{ml}$) and saturated NaCl solution ($1 \times 10 \mathrm{ml}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness to afford 1.25 g of $\mathbf{8}(61 \%)$ as pure white amorphous solid. M.p. $147-150^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+1\right.$ drop DMSO- $\left.\mathrm{d}_{6}, 200 \mathrm{MHz}\right)$ 1.87(s, 3 H$), 2.0-2.2(\mathrm{~m}, 1 \mathrm{H}), 2.3-2.4(\mathrm{~m}$, $1 \mathrm{H}), 4.1-4.5(\mathrm{~m}, 4 \mathrm{H}), 6.46(\mathrm{t}, 3 \mathrm{H}), 7.2-7.4(\mathrm{~m}, 5 \mathrm{H}), 7.6-7.73(\mathrm{~m}, 5 \mathrm{H}), 8.1(\mathrm{~s}, 1 \mathrm{H}), 10.4(\mathrm{~s}$, $1 \mathrm{H})$.
${ }^{13}$ C NMR (DMSO-d ${ }_{6}, 50 \mathrm{MHz}$) 12.4, 36.2, 46.6, 54.5, 65.6, 81.5, 85.1, 109.3, 120.1, 125.1, 127.1, 127.6, 136.4, 140.7, 143.8, 150.5, 155.5, 163.7, 172.2.

Mass calc. 477.42 obs. 499.62(+Na $\left.{ }^{+}\right)$

Figure S1: 1H NMR of 7

Figure S2: ${ }^{1} \mathrm{H}$ NMR of $\mathbf{8}$

Figure S3: ${ }^{13} \mathrm{C}$ NMR of $\mathbf{8}$

Figure S4: DEPT NMR of $\mathbf{8}$

Figure S5: Mass spectrum of $\mathbf{8}$

Oligomer Synthesis:

The amino acids used for solid-phase oligonucleotides(ON) synthesis were Fmoc -Lys(Boc)-OH, Fmoc-Pro-OH, Fmoc-Met-OH and Fmoc-Sar-OH. All the N^{α}-Fmoc Lamino acids (except Fmoc-Sar-OH) and resins were obtained from Novabiochem (Fmoc= 9-fluorenyl methoxy-carbonyl). Sarcosine (N-methylglycine) was obtained from Lancaster chemicals and Fmoc protection was done by standard methods. The amounts of isolated ONs were determined spectrophotometrically at 260 nm wavelength. The molar absorptivities were assumed to be identical to the Deoxyribonucleosides.

Figure S6: Solid-Phase synthesis of amino acid backbone modified ONs and structure of ONs synthesized.

 Step1 i) $\mathbf{2 0 \%}$ piperidine/DMF ii)Fmoc-Pro-OH, HBTU,HOBt, DIPEA, DMF Repeatition step1 and step2 7 times, then 20\% piperidine/DMF 10\% TFA-DCM, Triethyl silane	Rink amide resin 12 13 14

Table S1: Amino-acid backbone modified ONs and their HPLC and MALDI-TOF mass characterization.

Figure S7: RP-HPLC of $\mathbf{1 2}$

Figure S8: RP-HPLC of $\mathbf{1 3}$

Figure S9: RP-HPLC of $\mathbf{1 4}$

Figure S10: RP-HPLC of $\mathbf{1 5}$

Figure S11: MALDI-TOF mass of $\mathbf{1 5}$

Figure S12: MALDI-TOF mass of $\mathbf{1 4}$
(

Figure S13: MALDI-TOF mass of $\mathbf{1 2}$

Figure S14: MALDI-TOF mass of 13

UV-Tm studies: The complementary DNA and RNA oligomers were synthesized on an Applied Biosystems 3900 DNA Synthesizer. The concentration was calculated on the basis of absorbance from the molar extinction coefficients of the corresponding nucleobases. The experiments were performed in $1-2 \mu \mathrm{M}$ concentrations. The complexes were prepared in 10 mM sodium phosphate buffer, pH 7.0 containing $\mathrm{NaCl}(100 \mathrm{mM})$ and EDTA $(0.1 \mathrm{mM})$ and were annealed by keeping the samples at $90^{\circ} \mathrm{C}$ for 5 minutes followed by slow cooling to room temperature. Absorbance versus temperature profiles were obtained by monitoring at 260 nm with Perkin-Elmer Lambda 35 spectrophotometer scanning from 5 to $85^{\circ} \mathrm{C}$ at a ramp rate of $0.5^{\circ} \mathrm{C}$ per minute. The data were processed using Microcal Origin 6.1 and T_{m} values derived from the derivative curves. All values are an average of at least 3 experiments and accurate to within $\pm 0.5^{\circ} \mathrm{C}$.

Table S2: $T \mathrm{~m}\left({ }^{\circ} \mathrm{C}\right)$ values of ONs: DNA / Mismatch DNA

Entry	ON Sequence	DNA 9	DNA 16	$\Delta T_{\text {(mismatch) }}$
1	5^{\prime} тTTTTTTT 3' 11	17.8		
2	β-Ala-(Pro-t $)_{8}$-H 12	49.0	37.5	11.5
3	β-Ala-(Sar-t $)_{8}$-H 13	49.1	35.3	13.8
4	${\text { (Lys-t })_{8} \text {-H 14 }}$ (Met-t) ${ }_{8}$-H 15	56.3	38.5	17.8
5	β-Ala-(M.3	47.3	32.9	14.4

DNA 95^{\prime} ' GCAAAAAAAACG 3' DNA 165^{\prime} GCAAAATAAACG 3'(Single base mismatch sequence)

Figure S15: A.UV-melting Curves of 12, 13, 14 and 15 with complementary DNA 9 and B. Corresponding first derivative Curves.

Figure S16: C. UV-melting Curves of 12, 13, 14 and 15 with mismatch DNA 16 and D. Corresponding first derivative Curves.

Table S3: $T \mathrm{~m}\left({ }^{\circ} \mathrm{C}\right)$ values of ONs: RNA / Mismatch RNA

Entry	ON Sequence	RNA10	RNA 17	$\Delta T_{m_{\text {(mismatch) }}}$
1	5^{\prime} тTTTTTTT 3' 11	15.6		
2	β-Ala-(Pro-t) ${ }_{8}$-H 12	60.8	44.6	16.2
3	β-Ala-(Sar-t $)_{8}$-H 13	61.6	45.6	16.0
4	${\text { (Lys-t })_{8} \text {-H 14 }}^{\beta}$-Ala-(Met-t) ${ }_{8}$-H 15	69.0	55.5	13.5
5	β-Al	57.3	41.2	16.1

RNA 10 r(5' GCAAAAAAAACG 3') RNA 17 r(5' GCAAAAUAAACG 3')(single base mismatch sequence).

Figure S17: E.UV-melting Curves of 12, 13, 14 and $\mathbf{1 5}$ with complementary RNA 10 and F. Corresponding first derivative Curves.

Figure S18: G.UV-melting Curves of $\mathbf{1 2 , 1 3}, \mathbf{1 4}$ and $\mathbf{1 5}$ with mismatch RNA $\mathbf{1 7}$ and \mathbf{H}. Corresponding first derivative Curves.

Figure S19: Jobs plot of modified ONs 12, 13, $\mathbf{1 4}$ and $\mathbf{1 5}$ with complementary DNA 9 at $25^{\circ} \mathrm{C}$ in the relative molar ratios of 0:100, 10:90, 20:80, 30:70, 40:60, 50:50, 60:40, 70:30, 80:20, 90:10, and 100:0 (10 mM sodium phosphate buffer $\mathrm{pH} 7.0,100 \mathrm{mM} \mathrm{NaCl}$, 0.1 mM EDTA.

Reference: P. Job, Ann. Chim.,1928, 9, 113-203.

Figure S20: Jobs plot of modified ONs $\mathbf{1 2}$ and $\mathbf{1 4}$ with complementary RNA $\mathbf{1 0}$ at $25^{\circ} \mathrm{C}$ in the relative molar ratios of $0: 100,10: 90,20: 80,30: 70,40: 60,50: 50,60: 40$, $70: 30,80: 20,90: 10$, and 100:0 (10 mM sodium phosphate buffer $\mathrm{pH} 7.0,100 \mathrm{mM} \mathrm{NaCl}$, 0.1 mM EDTA.

Reference: P. Job, Ann. Chim., 1928, 9, 113-203.

Circular dichorism studies:

The circular dichorism spectra were obtained in a JASCO J-715 spectrometer. The experiment were performed in $2 \mu \mathrm{M}$ concentration and The complexes were prepared in 10 mM sodium phosphate buffer, pH 7.0 containing $\mathrm{NaCl}(100 \mathrm{mM})$ and EDTA (0.1 mM) and were annealed by keeping the samples at $90^{\circ} \mathrm{C}$ for 5 minutes followed by slow cooling to room temperature. The experiments were performed at $25^{\circ} \mathrm{C}$.The data were processed using Microcal Origin 6.1.

Figure S21: CD Curves of ONs 12, 13, 14 and 15 in water

Figure S23: CD curves of $\mathbf{1 2}, \mathbf{1 3}, \mathbf{1 4}$ and $\mathbf{1 5}$ with complementary RNA 10

[^0]: ${ }^{1}$ J. B. Epp and T. S. Widlanski, J. Org. Chem. 1999, 64, 293-295

