Supplementary Information

An Efficient Enantioselective Method for Asymmetric Michael Addition of Nitroalkanes to α, β-Unsaturated Aldehydes

Yongcan Wang, ^a Pengfei Li, ^a Xinmiao Liang, *^{a, b} Tony Y. Zhang ^c and Jinxing Ye *^b

^a Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian 116023, China. E-mail: liangxm@dicp.ac.cn.

^b School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.

^c Eli Lilly and Company, Indianapolis, Indiana 46285.

A: General Information and Starting Materials	S2
B: General Procedure for the Michael Addition	S3
C: Characterization Data of Addition Products	S4
D: Procedure for the Preparation of (R)-Baclofen	S7
E: CSP-HPLC or CSP-GC Analysis of Addition Products	S 8
F: References	S17

A: General Information and Starting Materials

General. The ¹H-NMR and ¹³C-NMR were recorded on a Bruke DRX 400 (400 MHz) instrument. Chromatography was carried out with silica gel (350-400 mesh) using mixtures of petroleum ether and ethyl acetate as eluents. NMR data of known compounds are in agreement with literature values.

Materials. All solvent and inorganic reagents were of p.a. quality and used without purification. Nitroalkanes and α , β -unsaturated aldehydes were obtained from commercial sources. Cinnamylaldehyde and crotonaldehyde were purified by distillation before usage; other materials were used without purification. Lithium acetate was obtained from commercial sources; other lithium salts were prepared by the reaction of lithium hydroxide and corresponding acid. Catalyst **4** was prepared as described in the literature.¹

B: General Procedure for the Michael Addition

To a mixed solution of $CH_2Cl_2/MeOH=1/9(v/v, 2.0 \text{ mL})$ was added a, β -unsaturated aldehyde 1 (1.0 mmol), nitroalkane 2 (3.0 mmol), catalyst 4 (6.5 mg, 0.02 mmol) and lithium acetate (6.6 mg, 0.10 mmol). The reaction mixture was stirred at room temperature for the time indicated in Table 2 and then the solvent was removed under vacuum. The residue was added water (5.0 mL) and extracted with CH_2Cl_2 three times. The combined organic phases were dried over unhydrous Na_2SO_4 , filtered and evaporated under vacuum. The residue was purified by column chromatography on silica gel (350-400 mesh) to yield the desired addition product.

C: Characterization Data of Addition Products

4-Nitro-3-phenylbutanal

Colorless oil. ¹H-NMR (CDCl₃): δ 9.68 (s, 1H), 7.37-7.22 (m, 5H), 4.69-4.65 (m, 1H), 4.63-4.59 (m, 1H), 4.10-4.04 (m, 1H), 2.98-2.89 (m, 2H). ¹³C-NMR (CDCl₃): δ 198.8, 138.2, 129.2, 128.1, 127.4, 79.4, 46.5, 38.0. The enantiomeric excess was determined by HPLC. [AD-H column, 220 nm, hexane: IPA = 20:1, 0.8 mL/min]: 23.8 min (major), 25.0 min (minor).

3-(2-Methoxyphenyl)-4-nitrobutanal

Colorless oil. ¹H-NMR (CDCl₃): δ 9.67 (s, 1H), 7.26-7.24 (m, 1H), 7.15-7.13 (m, 1H), 6.93-6.88 (m, 2H), 4.74-4.70 (m, 2H), 4.30-4.26 (m, 1H), 3.00-2.97 (m, 2H). ¹³C-NMR (CDCl₃): δ 200.0, 157.2, 129.4, 121.1, 111.2, 78.0, 55.5, 45.1, 34.5. The enantiomeric excess was determined by HPLC. [AD-H column, 220 nm, hexane: IPA = 100:1, 0.8 mL/min]: 42.2 min (major), 44.0 min (minor).

3-(2-Chlorophenyl)-4-nitrobutanal

Light yellow solid. ¹H-NMR (CDCl₃): δ 9.72 (s, 1H), 7.42-7.41 (m, 1H), 7.25-7.24 (m, 3H), 4.77-4.70 (m, 2H), 4.57-4.54 (m, 1H), 3.07-3.04 (m, 2H). ¹³C-NMR (CDCl₃): δ 198.9, 129.9, 129.1, 128.2, 127.5, 78.7, 45.3, 34.8. The enantiomeric excess was determined by HPLC. [AD-H column, 220 nm, hexane: IPA = 20:1, 0.8 mL/min]: 22.8 min (major), 24.3 min (minor).

4-Nitro-3-(2-nitrophenyl)butanal

Colorless oil. ¹H-NMR (CDCl₃): δ 9.72 (s, 1H), 7.93-7.90 (m, 1H), 7.62-7.60 (m, 1H), 7.49-7.40 (m, 2H), 4.84-4.83 (m, 2H), 4.65-4.61 (m, 1H), 3.12-3.10 (m, 2H). ¹³C-NMR (CDCl₃): δ 198.3, 133.7, 129.2, 128.7, 125.6, 78.1, 46.1, 29.7. The enantiomeric excess was determined by HPLC. [AD-H column, 220 nm, hexane: IPA = 9:1, 0.8 mL/min]: 52.1 min (major), 54.8 min (minor).

3-(4-Methoxyphenyl)-4-nitrobutanal

Colorless oil. ¹H-NMR (CDCl₃): δ 9.70 (s, 1H), 7.16-7.14 (d, *J*=8.8 Hz, 2H), 6.88-6.86 (d, *J*=8.8 Hz, 2H), 4.64-4.58 (m, 2H), 4.03 (m, 1H), 3.79 (s, 3H), 2.93-2.91 (m, 2H). ¹³C-NMR (CDCl₃): δ 199.2, 130.1, 128.7, 114.8, 79.9, 55.5, 46.8, 37.6. The enantiomeric excess was determined by HPLC. [AD-H column, 220 nm, hexane: IPA = 20:1, 0.8 mL/min]: 23.8 min (major), 25.0 min (minor).

3-(4-Fluorophenyl)-4-nitrobutanal

Colorless oil. ¹H-NMR (CDCl₃): δ 9.69 (s, 1H), 7.23-7.20 (m, 2H), 7.05-7.01 (m, 2H), 4.69-4.65 (m, 1H), 4.61-4.56 (m, 1H), 4.11-4.05 (m, 1H), 2.94-2.92 (m, 2H). ¹³C-NMR (CDCl₃): δ 198.8, 163.7, 134.2, 129.3, 116.3, 79.6, 46.7, 37.4. The enantiomeric excess was determined by HPLC. [AD-H column, 220 nm, hexane: IPA = 20:1, 0.8 mL/min]: 31.4 min (major), 32.9 min (minor).

3-(4-Bromophenyl)-4-nitrobutanal

Colorless oil. ¹H-NMR (CDCl₃): δ 9.66 (s, 1H), 7.48-7.45 (m, 2H), 7.13-7.11 (m, 2H), 4.68-4.63 (m, 1H), 4.60-4.55 (m, 1H), 4.05-4.01 (m, 1H), 2.92-2.90 (m, 2H). ¹³C-NMR (CDCl₃): δ 198.7, 132.6, 129.4, 122.1, 79.2, 46.4, 37.4. The enantiomeric excess was determined by HPLC. [AD-H column, 220 nm, hexane: IPA = 20:1, 0.8 mL/min]: 37.3 min (major), 38.9 min (minor).

4-Nitro-3-*p*-tolylbutanal

Colorless oil. ¹H-NMR (CDCl₃): δ 9.63 (s, 1H), 7.14-7.09 (m, 4H), 4.65-4.53 (m, 2H), 4.03-3.99 (m, 1H), 2.89-2.86 (m, 2H), 2.30 (s, 3H). ¹³C-NMR (CDCl₃): δ 199.3, 137.9, 135.3, 130.1, 127.5, 79.7, 53.6, 46.5, 37.7. The enantiomeric excess was determined by HPLC. [AD-H column, 220 nm, hexane: IPA = 20:1, 0.8 mL/min]: 19.9 min (major), 20.8 min (minor).

3-(4-Chlorophenyl)-4-nitrobutanal

Colorless oil. ¹H-NMR (CDCl₃): δ 9.68 (s, 1H), 7.33-7.28 (m, 2H), 7.19-7.16 (m, 2H), 4.68-4.64 (m, 1H), 4.60-4.55 (m, 1H), 4.07-4.03 (m, 1H), 2.93-2.92 (d, *J*=6.8 Hz, 2H). ¹³C-NMR (CDCl₃): δ 198.6, 137.0, 134.2, 129.5, 128.2, 79.3, 46.5, 37.5. The enantiomeric excess was determined by HPLC. [AD-H column, 220 nm, hexane: IPA = 20:1, 0.8 mL/min]: 35.6 min (major), 37.2 min (minor).

3-(3-Chlorophenyl)-4-nitrobutanal

Colorless oil. ¹H-NMR (CDCl₃): δ 9.70 (s, 1H), 7.30-7.12 (m, 4H), 4.70-4.58 (m, 2H), 4.10-4.02 (m, 1H), 2.96-2.94 (d, *J*=6.8 Hz, 2H). ¹³C-NMR (CDCl₃): δ 198.5, 140.5, 135.2, 130.5, 128.6, 127.8, 126.0, 79.2, 46.5, 37.7. The enantiomeric excess was determined by HPLC. [AD-H column, 220 nm, hexane: IPA = 20:1, 0.8 mL/min]: 29.4 min (major), 31.0 min (minor).

3-(Furan-2-yl)-4-nitrobutanal

Light yellow oil. ¹H-NMR (CDCl₃): δ 9.75 (s, 1H), 7.35 (m, 1H), 6.31-6.28 (m, 1H), 6.18-6.17 (m, 1H), 4.73-4.60 (m, 2H), 4.21-4.14 (m, 1H), 3.04-2.89 (m, 2H). ¹³C-NMR (CDCl₃): δ 198.7, 151.2, 142.8, 110.8, 107.7, 77.3, 44.2, 32.0. The enantiomeric excess was determined by HPLC. [AD-H column, 220 nm, hexane: IPA = 20:1, 0.8 mL/min]: 25.3 min (major), 26.5 min (minor).

3-(Nitromethyl)butanal

Colorless oil. ¹H-NMR (CDCl₃): δ 9.78 (s, 1H), 4.44-4.41 (m, 1H), 4.38-4.34 (m, 1H), 2.92-2.85 (m, 1H), 2.68-2.63 (m, 1H), 2.55-2.50 (m, 1H), 1.12-1.11 (d, *J*=5.5, 1H). ¹³C-NMR (CDCl₃): δ 199.6, 80.2, 47.1, 27.3, 17.4. The enantiomeric excess was determined by HPLC. [AD-H column, 220 nm, hexane: IPA = 100:1, 0.8 mL/min]: 34.0 min (major), 35.3 min (minor).

3-(Nitromethyl)pentanal

3-(Nitromethyl)hexanal

Colorless oil. ¹H-NMR (CDCl₃): δ 9.79 (s, 1H), 4.48-4.42 (m, 2H), 2.76-2.71 (m, 1H), 2.68-2.64 (m, 1H), 2.61-2.56 (m, 1H), 1.44-1.36 (m, 4H), 0.99-0.96 (t, *J*=5.6, 3H). ¹³C-NMR (CDCl₃): δ 200.0, 78.5, 45.4, 33.7, 31.8, 19.7, 13.9. The enantiomeric excess was determined by GC. [Chirasil-Dex CB column, 1.0 mL/min, 95°C hold for 60 min, then 10°C/min to 200°C.]: 65.0 min (minor), 65.2 min (major).

3-(Nitromethyl)heptanal

Colorless oil. ¹H-NMR (CDCl₃): δ 9.78 (s, 1H), 4.46-4.45 (m, 2H), 2.74-2.63 (m, 3H), 1.45-1.29 (m, 6H), 0.92-0.90 (m, 3H). ¹³C-NMR (CDCl₃): δ 200.2, 78.6, 45.5, 32.1, 31.4, 28.8, 22.6, 14.0. The enantiomeric excess was determined by GC. [Chirasil-Dex CB column, 1.0 mL/min, 10°C/min from 70°C to 140°C then hold for 12 min.]: 17.3 min (minor), 17.5 min (major).

3-(Nitromethyl)decanal

Colorless oil. ¹H-NMR (CDCl₃): δ 9.78 (s, 1H), 4.46-4.44 (d, *J*=6.0 Hz, 2H), 2.73-2.69 (m, 1H), 2.64-2.61 (m, 2H), 1.45-1.27 (m, 12H), 0.90-0.86 (m, 3H). ¹³C-NMR (CDCl₃): δ 200.2, 78.6, 45.5, 32.1, 31.9, 31.7, 29.5, 29.2, 26.6, 22.7, 14.2. The enantiomeric excess was determined by GC. [Chirasil-Dex CB column, 1.0 mL/min, 10°C/min from 70°C to 150°C then hold for 30 min.]: 35.2 min (minor), 35.6 min (major).

(Z)-3-(Nitromethyl)non-6-enal

Colorless oil. ¹H-NMR (CDCl₃): δ 9.78 (s, 1H), 5.44-5.42 (m, 1H), 5.30-5.25 (m, 1H), 4.48-4.46 (m, 2H), 2.74-2.63 (m, 3H), 2.12-2.02 (m, 4H), 1.52-1.48 (m, 2H), 0.98-0.95 (m, 3H). ¹³C-NMR (CDCl₃): δ 200.1, 133.5, 127.2, 79.4, 45.4, 31.8, 31.5, 24.2, 20.8, 14.4. The enantiomeric excess was determined by GC. [Chirasil-Dex CB column, 1.0 mL/min, 10°C/min from 70°C to 150°C then hold for 20 min.]: 24.2 min (minor), 24.4 min (major).

4-Nitro-3-phenylpentanal (Diastereomer 1)

Colorless oil. ¹H-NMR (CDCl₃): δ 9.56 (m, 1H), 7.38-7.19 (m, 5H), 4.81-4.75 (m, 1H), 3.78-3.73 (m, 1H), 2.99-2.93 (m, 1H), 2.78-2.73 (m, 1H), 1.35-1.34 (d, *J*=5.4 Hz, 3H). ¹³C-NMR (CDCl₃): δ 198.7, 137.6, 129.3, 128.3, 128.2, 87.1, 46.4, 44.3, 17.8. The enantiomeric excess was determined by GC. [Chirasil-Dex CB column, 1.0 mL/min, 10°C/min from 70 °C to 180°C then hold for 25 min.]: 26.9 min (major), 27.3 min (minor).

4-Nitro-3-phenylpentanal (Diastereomer 2)

Colorless oil. ¹H-NMR (CDCl₃): δ 9.67 (t, *J*=0.8 Hz, 1H), 7.34-7.16 (m, 5H), 4.89-4.83 (m, 1H), 3.84-3.79 (m, 1H), 3.03- 2.98 (m, 1H), 2.96-2.91 (m, 1H), 1.53-1.52 (d, *J*=5.4 Hz, 3H). ¹³C-NMR (CDCl₃): δ 199.2, 137.6, 129.0, 128.2, 128.1, 86.5, 44.8, 43.6, 16.7. The enantiomeric excess was determined by GC. [Chirasil- Dex CB column, 1.0 mL/min, 10°C/min from 70 °C to 180°C then hold for 25 min.]: 28.6 min (minor), 29.2 min (major).

D: Procedure for the Preparation of (R)-Baclofen

The preparation of **3i'** was according to the general procedure for the Michael addition described above using (R)-**4** as catalyst with 62% of isolation yield and 91% *ee*.

The oxidation step was taken up according to similar literature procedure. ² **3i**² (227.6 mg, 1.0 mmol) was dissolved in 6.0 mL of MeCN, and 6.0 mL of water. The solution was cooled down to 0 °C, KH₂PO₄ (370.6 mg, 2.7 mmol) and NaClO₂ (270.6 mg, 2.5 mmol) were added. After the injection of 1 mL H₂O₂ (35%), the mixture was warmed up to room temperature and stirred for 2 hours. The pH was adjusted to 3 with 1M HCl and 10 mL saturated Na₂SO₃ solution were added. The resulting mixture was extracted 3 times with 10 mL of CH₂Cl₂, the combined organic layers were washed with 10 mL of water, dried over Na₂SO₄, and concentrated under vacuum. The residual acid was directly hydrogenation according to literature procedure ³ afforded the (R)-baclofen hydrochloride salt as a white solid in 66% yield (total yield of the above two steps). ¹H-NMR (*d*⁶-DMSO): δ 8.19 (m, 3H), 7.27-7.29 (m, 4H), 3.32 (m, 1H), 2.99 (m, 1H), 2.78-2.83 (m, 2H), 2.51 (m, 1H). ¹³C-NMR (*d*⁶-DMSO): δ 170.9, 138.1, 130.4, 128.6, 127.2, 41.9, 37.7, 36.5. [α]_D²⁰= -2.0 (c=0.6 in H₂O). These results are in agreement with the reported data. ³⁻⁴

E: CSP-HPLC or CSP-GC Analysis of Addition Products

4-Nitro-3-phenylbutanal

3-(Nitromethyl)butanal

3-(3-Chlorophenyl)-4-nitrobutanal

3-(4-Chlorophenyl)-4-nitrobutanal

3-(4-Fluorophenyl)-4-nitrobutanal

3-(4-Bromophenyl)-4-nitrobutanal

4-Nitro-3-p-tolylbutanal

3-(2-Chlorophenyl)-4-nitrobutanal

3-(2-Methoxyphenyl)-4-nitrobutanal

3-(4-Methoxyphenyl)-4-nitrobutanal

4-Nitro-3-(2-nitrophenyl)butanal

3-(Furan-2-yl)-4-nitrobutanal

3-(Nitromethyl)pentanal

3-(Nitromethyl)hexanal

3-(Nitromethyl)heptanal

3-(Nitromethyl)decanal

(Z)-3-(Nitromethyl)non-6-enal

4-Nitro-3-phenylpentanal

F: References

- 1. M. Marigo, T. C. Wabnitz, D. Fielenbach, and K. A. Jørgensen, *Angew. Chem. Int. Ed.*, 2005, 44, 794.
- 2. S. Brandau, A. Landa, J. Franzén, M. Marigo and K. A. Jørgensen, Angew. Chem. Int. Ed., 2006, 45, 4305.
- 3. F. Felluga, V. Gombac, G. Pitacco and E. Valentin, *Tetrahedron: Asymmetry*, 2005, 16, 1341.
- 4. P. Resende, W. P. Almeida and F. Coello, Tetrahedron: Asymmetry, 1999, 10, 2113.