Electronic Supplementary Information for:

Rhodamine B thiolactone: a simple chemosensor for Hg²⁺ in aqueous media

Wen Shi and Huimin Ma*

Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China

Table of contents

- 1. Apparatus and reagents
- 2. Synthesis of 1
- 3. General procedure for Hg^{2+} detection
- 4. Optimization of experimental conditions
- 5. MS proofs for reaction mechanism

1. Apparatus and reagents

A Hitachi F-2500 spectrofluorimeter was used for fluorescence measurements. The absorption spectra were recorded with a Techcomp UV-8500 spectrophotometer (Shanghai, China). NMR spectra were measured on a Bruker DMX-300 spectrometer at 300 MHz in CDCl₃ with tetramethylsilane as the internal standard. Electrospray ionization (ESI) mass spectra were measured with an LC-MS 2010A (Shimadzu) instrument. High-resolution Fourier transform ion cyclotron resonance mass spectrum (FTICR-MS) was recorded on an APEX II mass spectrometer (Bruker, Daltonics). Elemental analyses were carried out with a Flash EA 1112 instrument. Single crystal was characterized on an R-AXIS Rapid IP (Rigaku). A Delta 320 pH-meter [Mettler-Toledo Instruments (Shanghai) Co., China] was used for pH measurements.

Rhodamine B and thoiurea were purchased from Beijing Chemical Company. Mercuric choride was obtained from Tianjin Jingjin Chemical Reagent Plant. All other chemicals used were local products of analytical grade. Distilled-deionized water was used throughout. The stock solution (1.0 mM) of the chemosensor **1** was prepared by dissolving the requisite amount of it in 1,4-dioxane. Stock solutions (1-100 mM) of various other ions were prepared by dissolving their salts in water or acidic solutions.

2. Synthesis of 1

The rhodamine derivative 1 can be prepared easily from rhodamine B and thiourea by two steps (Scheme 1). Typically, to a stirred solution of rhodamine B (239 mg, 0.5 mmol) in 1,2-dichloroethane (5 mL), phosphorus oxychloride (0.3 mL) was added dropwise. The solution was refluxed for 4 h. The reaction mixture was cooled and evaporated in vacuo to give rhodamine B acid chloride as a violet-red oil, which was used directly in the next step.¹ Namely, the crude acid chloride was dissolved in THF (6 mL), and the resulting solution was then added dropwise to a mixed solution of thiourea (152 mg, 2 mmol) and triethylamine (1.2 mL) in THF (5 mL)/water (1 mL) at room temperature. After stirring over night, the solvent was removed under reduced pressure to give a violet-red oil. Then, 5 mL of water was added to the oil, and the formed precipitate was filtered. The precipitate was washed several times with water and dried in air to give a violet-red powder. The crude product was purified by silica-gel column chromatography with petroleum ether (60-90 °C)/ethyl acetate (25:1, v/v) as eluent, affording 114 mg of 1 (yield 45%); mp 176-178 °C. The ¹H NMR and ¹³C NMR spectra of **1** are shown below in Figures S1 and S2, respectively. ¹H NMR (300 MHz, CDCl₃, 298 K) δ 7.85 (d, J = 7.5 Hz, 1H), 7.55-7.42 (m, 2H), 7.21 (d, J = 7.8 Hz, 1H), 6.71 (d, J = 8.7 Hz, 2H), 6.33-6.29 (m, 4H), 3.33 (q, J = 6.9 Hz, 8H), 1.16 (t, J = 6.9 Hz, 12H); 13 C NMR (300 MHz, CDCl₃, 297 K) δ 197.7, 158.0, 152.3, 148.4, 135.6, 134.2, 129.8, 128.2, 127.3, 122.5, 108.5, 108.2, 97.6, 62.8, 44.4, 12.6; ESI-MS m/z 459.3 [M + H]⁺. Elemental analysis, calcd. for 1 (C₂₈H₃₀N₂O₂S), C 73.33, H 6.59, N 6.11, S 6.99%; found, C 73.31, H 6.49, N 6.19, S 6.97%.

Figure S1. ¹H NMR spectrum of 1 (300 MHz, CDCl₃, 298 K).

Figure S2. ¹³C NMR spectrum of **1** (300 MHz, CDCl₃, 297K).

3. General procedure for Hg²⁺ detection

All the measurements were made according to the following procedure. In a 10 mL tube, 5 mL of 20 mM Na₂HPO₄-NaH₂PO₄ buffer (pH 7) and 50 μ L of the stock solution of **1** were mixed, followed by addition of an appropriate volume of Hg²⁺ sample solution. The final volume was adjusted to 10 mL with the phosphate buffer and the reaction solution was mixed well. After 5 min at room temperature, a 3-mL portion of the reaction solution was transferred to a quartz cell of 1 cm optical length to measure absorbance or fluorescence intensity/spectrum with $\lambda_{ex/em} = 530/585$ nm and both excitation and emission slit widths of 10 nm. In the meantime, a blank solution containing no Hg²⁺ was prepared and measured under the same conditions for comparison.

4. Optimization of experimental conditions

As shown in Figure S3, the solution of **1** is stable in a wide pH range of 3 to 11. Time course studies reveal that the reaction of **1** with Hg^{2+} completes nearly in 1 min (Figure S4). Thus a reaction time of 5 min may be used for this system.

Figure S3. The variation of fluorescence intensity ($\lambda_{ex/em} = 530/585$ nm) of **1** (5 μ M) over a pH range of 2 to 13 at room temperature.

Figure S4. The change of fluorescence intensity ($\lambda_{ex/em} = 530/585$ nm) of **1** (5 μ M) with time in the presence of 100 μ M of Hg²⁺ in 20 mM Na₂HPO₄-NaH₂PO₄ buffer (pH 7) at room temperature.

Figure S5. The variation of fluorescence intensity ($\lambda_{ex/em} = 530/585$ nm) of **1** (5 μ M) in the presence of 100 μ M of Hg²⁺ in 20 mM Na₂HPO₄-NaH₂PO₄ buffer with different pH values from 5 to 8.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

5. MS proofs for reaction mechanism

Figure S6. ESI mass spectrum of the reaction products of **1** with 1 equiv of Hg^{2+} after 60 min. The numbers **1**, **3** and **4** stand for the compounds shown in Scheme 2.

Figure S7. ESI mass spectrum of the reaction products of **1** with 1 equiv of Hg^{2+} after 24 h. The numbers **1** and **3** stand for the compounds shown in Scheme 2.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

Figure S8. High-resolution FTICR mass spectrum of the ion peak at m/z 559 shown in Figures S6 and S7. The mass difference ($\Delta m/z$) between the neighboring isotopic peaks is 0.5, indicating that this peak is a doubly charged ion peak.

Reference

1. V. Dujols, F. Ford and A. W. Czarnik, J. Am. Chem. Soc., 1997, 119, 7386-7387.