ELECTRONIC SUPPLEMENTARY DATA

for

Single-Crystal-to-Single-Crystal Transformation Involving Release of Bridging Water Molecules and Conversion of Chain Helicity in a Chiral Three-Dimensional Metal-Organic Framework

Dong-Xu Xue,^a Wei-Xiong Zhang,^a Xiao-Ming Chen*^{a,b} and He-Zhou Wang^b

^aMOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry

and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China.

Fax: +86-20-84112245; Tel: +86-20-84112074

e-mail: cxm@mail.sysu.edu.cn

^bState Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China.

Materials and Measurements:

Solvent and starting materials for synthesis were purchased commercially, and were used as received. H₂bct was prepared according to the literature procedure.^[1] Infrared spectra were obtained from KBr pellets on a Bruker TENSOR 27 Fourier Transform Infrared spectrometer in the 400-4000 cm⁻¹ region. Elemental analyses (C, H, N) were performed on a Perkin-Elmer 240 elemental analyzer. Thermogravimetric analyses (TGA) were performed at a rate of 10 °C/min under air using a NETZSCH TG 209 system. Low-temperature DSC analysis was performed on a NETZSCH DSC 204 instrument. Powder X-ray diffraction (PXRD) data were recorded on a Bruker D8 ADVANCE X-ray powder diffractometer (CuK α , 1.5418 Å). The second harmonic generation (SHG) measurements were performed by the powder Perry and Kurtz method,^[2] by placing a powder sample in an intense fundamental beam from a Q-switched Nd:YAG laser of wavelength 1064 nm.

Synthesis of 1: A reaction of a mixture of Cd(NO₃)₂·4H₂O (0.154 g, 0.5 mmol), H₂bct (0.136 g, 0.5 mmol), iso-propyl alcohol (5.0 mL), and water (5.0 mL) in a 12-mL Teflon-lined bomb at 120 °C for 3 days afforded colourless prismatic crystals (yield *ca*. 68%). Anal. calcd (%) for C₆H₆CdN₂O₅S₃: C, 18.3; H, 1.5; N, 7.1. Found: C, 18.2; H, 1.5; N, 7.1. IR (KBr pellet, cm⁻¹): 1563(s), 1369(s), 1239(m), 1067(m), 897(m), 770(w), 675(m).

Synthesis of **2**: A single crystal or bulk crystals of **1** were heated at 180 °C for 30 min under vacuum to produce a single crystal and bulk crystals of **2** for single-crystal X-ray diffraction and other measurements, respectively. Anal. calcd (%) for $C_6H_4CdN_2O_4S_3$: C, 19.1; H, 1.3; N, 7.4. Found: C, 19.0; H, 1.3; N, 7.5. IR (KBr pellet, cm⁻¹): 1558(s), 1420(s), 1227(m), 1049(m), 940(m), 891(m), 698(w).

Single-crystal X-ray diffraction measurements for all data were carried out on a Bruker Smart APEX CCD area-detector diffractometer (MoK α , 0.71073 Å) at 293(2) K. Absorption corrections were applied by using multi-scan program SADABS. The structures were solved with direct methods and refined with a full-matrix least-squares technique with the SHELXTL program package.³

Reference

- X.-H. Lou, Y. Zhu, H. Gao, A.-X. Zhu, Y.-T. Fan, H.-W. Hou, H.-J. Lu, *Chin. J. Inorg. Chem.*, 2005, **21**, 716.
- 2 S. K. Kurtz, T. T. Perry, J. Appl. Phys., 1968, 39, 3798.
- 3 (a) SMART Version 5.625, SAINT+ Version 6.22. Bruker Analytical X-ray System, Inc., Madison, Wisconsin, USA, 2001; (b) G. M. Sheldrick, SHELXTL, Version 6.10. Bruker Analytical X-ray System, Siemens Industrial Automation Inc., Madison, Wisconsin, USA, 2000.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

1 ⋅mpm			
Cd1-O1a	2.2666(2)	Cd1-O1w	2.3954(2)
Cd1-O1wc	2.3909(2)	Cd1-N2b	2.3477(2)
Cd1-O3	2.2276(2)	Cd1-O4d	2.2977(2)
O1w-Cd1-N2b	97.225(4)	N2b-Cd1-O4d	100.686(4)
O4d-Cd1-O1wc	76.302(3)	O1wc-Cd1-O1w	83.947(3)
O3-Cd1-O1w	96.925(4)		
2·pmm			
2 pmm Cd1-O3	2.256(1)	Cd1-O4	2.532(1)
2 pmm Cd1-O3 Cd1-N2b	2.256(1) 2.467(1)	Cd1-O4 Cd1-O4c	2.532(1) 2.288(1)
2 ·pmm Cd1-O3 Cd1-N2b Cd1-O2e	2.256(1) 2.467(1) 2.315(1)	Cd1-O4 Cd1-O4c Cd1-O1a	2.532(1) 2.288(1) 2.275(1)
2∙pmm Cd1-O3 Cd1-N2b Cd1-O2e O3-Cd1-O4	2.256(1) 2.467(1) 2.315(1) 54.33(1)	Cd1-O4 Cd1-O4c Cd1-O1a O1a-Cd1-O2e	2.532(1) 2.288(1) 2.275(1) 91. 39(1)
2·pmm Cd1-O3 Cd1-N2b Cd1-O2e O3-Cd1-O4 O3-Cd1-N2b	2.256(1) 2.467(1) 2.315(1) 54.33(1) 88.71(3)	Cd1-O4 Cd1-O4c Cd1-O1a O1a-Cd1-O2e O2e-Cd1-O4c	2.532(1) 2.288(1) 2.275(1) 91. 39(1) 82.76(1)

Table S1 Selected Bond Lengths (Å) and Bond Angles (°) for 1·mpm and 2·pmm.

Symmetry codes for 1 mpm: a, -x + 1/2, -y + 1, z + 1/2; b, x - 1/2, -y + 1/2, -z; c, x - 1/2, -y + 3/2, -z; d, x - 1, y, z. For 2 pmm: a, -x - 3/2, -y, z + 1/2; b, x + 1/2, -y + 1/2, -z; c, x + 1/2, -y - 1/2, -z; e, -x - 1/2, -y, z + 1/2.

<u>Supplementary Material (ESI) for Chemical Communications</u> <u>This journal is (c) The Royal Society of Chemistry 2008</u>

(a)

Fig. S1 Perspective view of the 2-D layer viewed along the *b*-axis in $1 \cdot \text{mpm}$ (a) and $2 \cdot \text{pmm}$ (b).

Fig. S2 TGA plots of 1 and 2 recorded in air.

<u>Supplementary Material (ESI) for Chemical Communications</u> <u>This journal is (c) The Royal Society of Chemistry 2008</u>

Fig. S3 DSC plot of 1 recorded in nitrogen gas.

Fig. S4 PXRD patterns for (a) simulated 1; (b) as-synthesized 1; (c) simulated 2; (d) as-synthesized 2 upon heating 1 at 180 °C for 30 minutes under vacuum.

(a) 1·mpm

(c) 1·pmp

(b) **2**·pmm

(d) **2**·mpp

Fig. S5 Photos of the single crystals of 1·mpm (a), 2·pmm (b), 1·pmp (c), and 2·mpp (d).

Fig. S6 Different conformations and corresponding coordination modes of bct in $1 \cdot \text{mpm}$ (a) and $2 \cdot \text{pmm}$ (b).

<u>Supplementary Material (ESI) for Chemical Communications</u> <u>This journal is (c) The Royal Society of Chemistry 2008</u>

Fig. S7 Perspective views of the structural superpositions of 1 mpm (red) and 2 pmm (lavender) in two different directions. Some bct ligands are simplified for clarity in the plots.