Simple rhodium-chlorophosphine precatalysts for the ortho-arylation of Phenols

R. B. Bedford, M. Betham, A. J. M. Caffyn, J. P. H. Charmant, L. C. Lewis-Alleyne, P. D. Long, D. Polo Cerón and S. Prashar

Electronic Supplementary Information

General

All reaction were performed under nitrogen using standard Schlenk techniques and all solvents used were anhydrous unless otherwise stated.

Catalysis (as given in table 2).

To a solution of chlorodiisopropylphosphine (0.008 ml, 0.05 mmol) and [{RhCl(COD)}₂] (0.006 g, 0.0125 mmol) in toluene (5 ml) was added the appropriate phenol (0.5 mmol), Cs_2CO_3 (0.277 g, 0.85 mmol) and the appropriate aryl halide (0.6 mmol). The mixture was heated at reflux temperature for 18h, allowed to cool then quenched with $HCl_{(aq)}$ (2 M, 2.5 ml). The organic phase was extracted with CH_2Cl_2 (3 × 8 ml), dried (MgSO₄), then filtered and the solvent was removed under reduced pressure. The crude product mixture was dissolved in CDCl₃ solution and 1,3,5-MeO₃C₆H₃ (internal standard, 0.5 M, 1.00 ml) and the conversion to the ortho-arylated phenol was determined by ¹H NMR spectroscopy. The spectroscopic data for the known phenols where verified against those prepared previously.¹

2-tert-butyl-6-(2',6'-dimethylphenyl)phenol (table 2, entry 7). To a solution of chlorodiisopropylphosphine (0.008 ml, 0.05 mmol) and [{RhCl(COD)}₂] (0.006 g, 0.0125 mmol) in toluene (5 ml) was added 2-tert-butylphenol (0.075 g, 0.5 mmol), Cs₂CO₃ (0.277 g, 0.85 mmol) and 2-bromo-*meta*-xylene (0.111 g, 0.6 mmol). The mixture was heated to reflux temperature for 18h, allowed to cool then guenched with $HCl_{(aq)}$ (2 M, 2.5 ml). The organic phase was extracted with CH_2Cl_2 (3 × 8 ml), dried (MgSO₄), then filtered and the solvent was removed under reduced pressure. The crude mixture was dissolved in CDCl₃ solution and 1.3.5-MeO₃C₆H₃ (internal standard, 0.5 M, 1.00 ml) and the conversion to the ortho-arylated phenol was determined by ¹H NMR spectroscopy. The crude product was purified by column chromatography (SiO₂) to give the product as a colourless oil: 0.106 g (83.3 %); R_f 0.58 (CHCl₃/hexane, 1:4); ¹H NMR (400 MHz, CDCl₃) δ 1.45 (s, 9H, ^tBu), 2.07 (s, 6H, Me), 4.77 (s, 1H, OH), 6.89 (dd, J = 1.96 & 7.36 Hz, 1H, ArH), 6.95 (t, J = 7.32 Hz, 1H, ArH), 7.15 – 7.23 (m, 3H, metaxylene ArH), 7.32 (dd, J = 1.96 & 7.56 Hz, 1H, ArH); ¹³C NMR (67.9 MHz, CDCl₃) δ 20.4 (s, CH₃), 29.6 (s, CH₃), 34.9 (s, C), 120.1 (s, C), 126.2 (s, C), 127.1 (s, CH), 127.3 (s, CH), 128.2 (s, CH), 128.6 (s, CH), 135.1 (s, CH), 136.1 (s, CH), 138.4 (s, CH), 150.9 (s, C); HRMS (CI) calcd for $C_{18}H_{23}O[M^+ + H] 255.1749$, found 255.1760.

Synthesis of complex 2. Chlorodiisopropylphosphine (0.132 ml, 0.832 mmol) was added to a solution of [{RhCl(COD}₂] (0.205 g, 0.416 mmol) in CH₂Cl₂ (10 ml) the resultant solution stirred at room temperature for 2h. The solvent was removed under reduced pressure to give analytically pure [RhCl(COD)(PCl¹Pr₂)], **2** as a yellow powder. 0.325 g (98 %); Crystals of complex **2** suitable for X-ray analysis were grown from a concentrated CH₂Cl₂ solution; ¹H NMR (400 MHz, CDCl₃) δ 1.27 (d, *J* = 6.8 Hz, 3H, CH(CH₃)₂), 1.31 (d, *J* = 6.8 Hz, 3H, CH(CH₃)₂), 1.40 (d, *J* = 7.2 Hz, 3H, CH(CH₃)₂), 1.27 (d, *J* = 7.2 Hz, 3H, CH(CH₃)₂), 2.05 – 2.15 (m, 4H, 2 × CH₂), 2.28 – 2.45 (m, 4H, 2 × CH₂), 2.64 (hept, *J* = 7.0 Hz, 3H, CH(CH₃)₂), 3.58 – 3.62 (m, 2H, =CH *trans* to Cl), 5.38 – 5.42 (m, 2H, =CH *trans* to P); ¹³C NMR (100 MHz, CDCl₃) δ 17.5 (s, CH₃), 19.1 (s, CH₃), 19.2 (s, CH₃), 28.7 (s, CH₂), 28.8 (s, CH₂), 32.5 (d, *J*_{P-C} = 1.5 Hz, CH), 32.6 (d, *J*_{Rh-C} = 12.7 Hz, *J*_{P-C} = 6.5 Hz, =CH); ³¹P NMR (121.4 MHz, CDCl₃) δ 173.2 (d, *J*_{Rh-P} = 175 Hz); HRMS (ESI) calcd for C₁₄H₂₆Cl₂PRh [M⁺ + Na] 421.009 643, found 421.011 276. Anal. calcd for C₁₄H₂₆Cl₂PRh: C, 42.13; H, 6.57. Found: C, 42.37; H, 6.42.

Synthesis of complex 4. A solution of [{RhCl(COD)}₂] (0.493 g, 1.0 mmol) and $P^{t}Pr_{2}(OC_{6}H_{3}-2,4^{-t}Bu_{2})$ (0.645 g, 2.0 mmol) in CH₂Cl₂ (10 ml) was stirred at room temperature for 1h. The solvent was then removed under reduced pressure and the yellow solid washed with hexane (3 x 12 ml) and then dried under reduced pressure to give complex 4. 1.09 g (96 %); ¹H NMR (400 MHz, d_8 -toluene) δ 1.25 (s, 9H, ^tBu), 1.28 (d, J = 7.3, 3H, CH(CH₃)₂), 1.32 (d, J = 7.3, 3H, CH(CH₃)₂), 1.41 (s, 9H, ^tBu), 1.48 (d, J = 7.2, 3H, CH(CH₃)₂), 1.52 (d, J = 7.2, 3H, CH(CH₃)₂), 1.62 – 1.68 (m, 4H, 2 × CH₂), 2.02 -2.10 (m, 4H, 2 × CH₂), 2.68 -2.81 (m, 2H, CH(CH₃)₂), 4.27 -4.36 (m, 2H, =CH trans to Cl), 5.73 - 5.78 (m, 2H, =CH *trans* to P), 7.21 (dd, J = 2.4 Hz & 8.5 Hz, 1H, aromatic meta CH), 7.42 (d, J = 2.4 Hz, 1H, aromatic meta CH), 8.15 (dd, J = 8.5 & $J_{P-H} = 2.2$ Hz, aromatic ortho CH); ¹³C NMR (100 MHz, d₈-toluene) δ 18.1 (s, CH₃), 18.2 (s, CH₃), 19.7 (s, CH₃), 28.0 (s, CH₂), 28.1 (s, CH₂), 29.7 (s, CH₃), 30.7 (d, J_{P-C} = 1.5 Hz, CH), 30.9 (d, $J_{P-C} = 1.5 \text{ Hz}, \text{CH}$, 31.4 (s, CH₃), 32.8 (s, CH₂), 32.9 (s, CH₂), 34.8 (s, C(CH₃)₃), 34.9 (s, $C(CH_3)_3$, 78.0 (d, $J_{Rh-C} = 13.8$ Hz, =CH), 107.4 (dd, $J_{Rh-C} = 13.1$ Hz, $J_{P-C} = 6.2$ Hz, =CH) 118.7 (d, $J_{P-C} = 10.8$ Hz, aromatic ortho CH), 123.5 (s, aromatic meta CH), 123.8 (s, aromatic meta CH), 141.8 (s, aromatic C), 144.7 (s, aromatic C), 153.0 (s, aromatic C); ³¹P {¹H} NMR (121.4 MHz, CDCl₃) δ 152.2 (d, J_{Rh-P} = 170 Hz) HRMS (ESI) calcd for $C_{28}H_{47}OPRh$ [M⁺ - Cl] 533.241 4081, found 533.241 0940. Anal. Calcd for C₂₈H₄₇ClOPRh: C, 59.10; H, 8.32. Found: C, 58.88; H, 8.25.

Synthesis of complex 3, method a. A solution of complex 4 (0.150 g, 0.264 mmol) and NaO^tBu (0.030 g, 0.311 mmol) in toluene (4 ml) was heated at 80°C for 1h. During this time the yellow solution slowly turned orange/red in colour. The solvent was removed under reduced pressure to give an orange solid. The crude product was dissolved in Et₂O (5 ml) and the solution filtered through Celite. The solvent was removed under reduced pressure to give an orange powder. 0.128 g (91 %); ¹H NMR (400 MHz, d₈-toluene) δ 0.96 (d, J = 7.3, 3H, CH(CH₃)₂), 1.01 (d, J = 7.3, 3H, CH(CH₃)₂), 1.08 (d, J = 6.8, 3H, CH(CH₃)₂), 1.39 (s, 9H, ^tBu), 1.59 (s, 9H, ^tBu), 2.08 – 2.16 (m, 4H, 2 × CH₂), 2.38 – 2.43 (m, 2H, CHⁱPr₂), 2.44 – 2.52 (m, 4H, 2 × CH₂), 4.57 – 4.62 (m, 2H, =CH *trans* Cl), 6.07 – 6.13 (m, 2H, =CH *trans* P), 7.27 (dd, J = 2.2 Hz &

 $J_{Rh-H} = 1.5$ Hz, 1H, aromatic *meta* CH), 7.36 (dd, $J_{Rh-H} = 4.1$ Hz & J = 2.1 Hz, 1H, aromatic *meta* CH); ¹³C NMR (100 MHz, d₈-toluene) δ 17.4 (s, CH₃), 17.5 (s, CH₃), 17.6 (s, CH₃), 29.3 (s, CH₂), 29.4 (s, CH₂), 30.3 (s, CH₃), 30.8 (d, $J_{P-C} = 3.0$ Hz, CH), 31.0 (d, $J_{P-C} = 3.0$ Hz, CH), 32.0 (s, CH₃), 32.1 (s, CH₂), 32.2 (s, CH₂), 34.7 (s, *C*(CH₃)₃), 34.9 (s, *C*(CH₃)₃), 80.2 (d, $J_{Rh-C} = 7.7$ Hz, =CH *cis* P), 99.1 (d, $J_{Rh-C} = 7.7$ Hz, =CH *trans* P), 99.2 (d, $J_{Rh-C} = 7.7$ Hz, =CH *trans* P), 123.4 (s, aromatic *meta* CH), 123.6 (s, aromatic *meta* CH), 141.2 (s, aromatic C), 142.0 (s, aromatic C), 150.2 (dd, $J_{Rh-C} = 35.4$ Hz & $J_{P-C} = 9.2$ Hz, aromatic *ortho* C), 152.6 (s, aromatic C); ³¹P {¹H} NMR (121.4 MHz, d₈-toluene) δ 188.3 (d, $J_{Rh-P} = 198$ Hz); HRMS (ESI) calcd for C₂₈H₄₆OPRh [M⁺ + H] 533.241 4081, found 533.241 9830. Anal. calcd for C₂₈H₄₆OPRh: C, 63.15; H, 8.70. Found: C, 61.75; H, 8.70.

Method b. A solution of complex **2** (0.040 g, 0.1 mmol), 2,4-di-*tert*-butylphenol (0.021 g, 0.1 mmol) and NaO^tBu (0.021 g, 0.21 mmol) in toluene (2 ml) was heated at 80°C for 1h. During this time the yellow solution slowly turned orange/red in colour. The solvent was removed under reduced pressure to give an orange solid. The crude product was dissolved in Et_2O (10 ml) and filtered through Celite. The solvent was removed under reduced pressure to give an orange powder. 0.051 g (96%); Data as above.

Figure S1. Comparison of the steric hindrance to nucleophilic attack for the fragments 'Rh-PClⁱPr₂' (left), 'Rh-PClCy₂' (centre) and 'Rh-PClP^tBu₂' (right) with Rh-P aligned along x-axis (top row) and Rh-P-Cl aligned with XZ plane (bottom row). MM2 models with bond lengths and angles about P optimised to those obtained from the X-ray analysis of complex **2**.

¹ R. B. Bedford and M. E. Limmert, J. Org. Chem., 2003, 68, 8669.