Crystal structure and silica condensing activities of silicatein α/cathepsin L chimeras.

Michael Fairhead^{*a*}, Kenneth A. Johnson^{*b*}, Stephen A. McMahon^{*b*}, Thomas Kowatz^{*b*}, Lester G. Carter^{*b*}, Muse Oke^{*b*}, Huanting Liu^{*b*}, James H. Naismith^{**b*} and Christopher F. van der Walle^{**a*}

^a SIPBS, University of Strathclyde, 27 Taylor Street, Glasgow, Scotland. E-mail: chris.walle@strath.ac.uk

^b The Centre for Biomolecular Science, University of St. Andrews, North Haugh, St. Andrews, Scotland. E-mail: naismith@st-andrews.ac.uk

Additional supporting material

Molecular biology

The procathepsin-L gene (amino acids 18 to 333) was amplified from clone 6712564 (LGC Promochem) harbouring preprocathepsin-L (UniProtKB/TrEMBL entry P07711) by PCR using primers PCLFP01 (5'-end) and PCLRP01 (3'-end) and ligated into *Pichia pastoris* vector pPICZ- α -B (Invitrogen) which contains a gene for ZeocineTM resistance as well as an α factor secretion signal which leads to secretion of recombinant protein into the growth media. Mutations to the loop region (amino acids 285-294) were made using primers PCLFP01 and LOOPRP01 in a standard PCR protocol, digesting the product with PstI and SspI and ligating into pPICZ- α -procathepsin-L, similarly digested. All other mutations were made using the QuikchangeTM method (Stratagene) and the sequences confirmed by the University of Dundee Sequencing Service.

Primer	Sequence 5' to 3'	Purpose
PCLFP01	GCGAAGG <u>CTGCAG</u> GAGCTACTCTAACATTTGAT	Introduce PstI site
PCLRP01	GATGGGGTGACACATT <u>GGCGCC</u> TAGAGC	Introduce SacII site
CATFPCS ^a	CAGGGTCAGTGTGGTTCT <u>TCT</u> TGGGCTTTTAGTGC	C25S mutation
CATFPASY ^a	CAGGGTCAGTGTGGT <u>GCTTCTTAC</u> GCTTTTAGTGCT	S24A W26Y
	ACTG	
CATFPLNHAM ^a	GACTGTAGCAGTGAAGAC <u>TTGAAT</u> CAT <u>GCTATG</u> CTG	M161L, D162N, G164A, V165M
	GTGGAAGGC	mutation
LOOPRP01	CACGACCACCAACCGATGCCTAAA <u>TAGAGGTTGTT</u>	¹⁷³ ESTESDNN ¹⁸⁰ to ISNNQ mutation
	<u>GGTC</u> T <u>TTATAA</u> CCGAC	
CATFP2S ^a	TTTATTTTGAGCCAGACTGTAGCAGT <u>TCAAGC</u> TTGA	E159S, D160S mutation
	ATCATGCTATGCTGGTGGTTG	
CATRP4S ^a	GTCCTTCCTGTTCTATAAAGAAGGCATTTATTTT <u>TCG</u>	E153S, P154S mutation
	TCAGACTGTAGCAGTTCAA	

^a only the forward primer is shown

Protein expression and purification

Pichia pastoris strain X-33 was transformed with plasmid using lithium chloride as described in the Invitrogen EasyselectTM Pichia Expression Kit manual. Transformed cells were plated onto YPG-agar plates (2% yeast extract, 2% peptone, 2% glycerol, 2% agar) containing 100 µg/mL of zeocin. After 3 days at 31 °C the resulting colonies were screened for protein expression. Cells were grown in 50 mL of YPG medium in a 250 mL baffled flask (Nalgene, UK) for 48 h at 30 °C. Cells were then transferred to 1000 mL of YPM (2% yeast extract, 2% peptone, 1% methanol) medium and grown in a 2 L baffled flask for 96 h at 20 °C, with fresh methanol added every 24 h. Wet cell biomass at the end of this period was typically 70-80 g/l. The clarified supernatant was concentrated to 40 mL, (NH₄)₂SO₄ added to 1 M and loaded onto a 20 mL Phenyl Sepharose 6 Fast Flow column (GE healthcare, UK) pre-equilibrated with buffer A (20 mM Tris.HCl, pH 8.2) + 1 M (NH₄)₂SO₄. After loading, the column was washed with buffer $A + 1 M (NH_4)_2SO_4$, the protein eluted isocratically in buffer A and desalted. The sample was then loaded onto a 5 mL Q Sepharose column and eluted with a linear gradient from 0 to 1 M NaCl. Protein containing fractions were exchanged into buffer B (20 mM CH₃COONa pH 5), loaded onto a 5 mL SP Sepharose column and eluted with a linear gradient from 0 to 1 M NaCl. Typically, 20-40 mg of pure protein were obtained per litre of culture supernatant, depending upon the construct being expressed. Processing of inactive procathepsin-L mutants to the mature form was done by incubating 20 mg of the selected mutant with 0.2 mg of activated wild type cathepsin-L in 0.1 M CH₃COONa pH 5, with 2 mM DTT for 48-96 h at room temperature. Processing was checked by SDS-PAGE and continued until a single band at 24 kDa (mature form) was present. Processed enzyme was then exchanged into 10 mM CH₃COONa pH 5 and stored at -80 °C.

Structural Biology

The protein was screened for crystallization against 4 commercial 96-condition screens: 1)Wizard 1 and 2 (Emerald Biosystems); 2)JCSG+, 3)Classics and 4)Pegs (GE Healthcare). Conditions which gave crystals were used to design optimization screens based on a simple stochastic method using inhouse software¹. The crystal used for data collection was obtained by the hanging drop method using protein at 10mg/ml mixed 2µl:1µl with the well solution of 450µl containing 17.36% PEG3350, 0.1M sodium acetate, pH4.5, and 0.1M lithium sulphate. Prior to exposure to X-rays, the crystal was transferred to a cryoprotecting solution containing 20% PEG3350, 0.1M sodium acetate, pH 4.5, 0.1M lithium sulphate and 20% PEG400. The crystal was flash frozen in liquid nitrogen and transported in a dry cryogenic dewar to beamline ID29 at the European Synchrotron Radiation Facility. Data were collected from a single crystal at 100 K at a wavelength of 1.27 Å. The data were indexed and merged using Denzo and Scalepack in the integrated package HKL2000².

The structure was solved using PHASER^{3, 4} using a monomer of cathepsin (PDB 1MHW) as a model finding four monomers in the asymmetric unit. Manual modification of the protein to convert the sequence to 4SER used COOT⁵. The structure was refined using REFMAC5⁶, TLS parameters, isotropic B-thermal factors and NCS restraints were employed throughout. Water molecules were added using COOT⁵. Structure quality was checked with PROCHECK⁷ and MOLPROBITY⁸. The final structure and experimental data were deposited with the PDB⁹ and have accession code 2VHS.

Data collection	4SER	
λ (Å)	1.27	
Resolution	28 - 1.5	
Last shell (Å)	(1.55 - 1.5)	
Spacegroup	P1	
Cell (Å)	a = 56.8 b = 58.1 c = 70.2	
	$\alpha = 105.7 \ \beta = 105.0 \ \gamma = 105.1$	
Unique refl's	108723	
Average redundancy	1.9 (1.7)	
I/σ	20 (2.1)	
Complete (%)	92 (74)	
R _{merge}	0.039 (0.293)	
Refinement		
R %	18.8 (26.4)	
R _{free} %	22.0 (32.1)	
rmsd bonds (Å) /angles (°)	0.006 / 0.985	
Ramach'n favoured (%)	98	
PDB accession code	2VHS	

Table	1	X-rav	data	
abic		2 X -1 ay	uata	

REFERENCES

- 1. B. Rupp, B. W. Segelke, H. I. Krupka, T. P. Lekin, J. Schafer, A. Zemla, D. Toppani, G. Snell and T. Earnest, *Acta Cryst. D*, 2002, **58**, 1514-1518.
- 2. W. Minor, M. Cymborowski and Z. Otwinowski, *Acta Physica Polonica A*, 2002, **101**, 613-619.
- 3. A. J. McCoy, R. W. Grosse-Kunstleve, L. C. Storoni and R. J. Read, *Acta Cryst. D*, 2005, **61**, 458-464.
- 4. L. C. Storoni, A. J. McCoy and R. J. Read, Acta Cryst. D, 2004, 60, 432-438.
- 5. P. Emsley and K. Cowtan, *Acta Cryst. D*, 2004, **60**, 2126-2132.
- 6. G. N. Murshudov, A. A. Vagin, A. Lebedev, K. S. Wilson and E. J. Dodson, *Acta Cryst. D*, 1999, **55**, 247-255.
- R. A. Laskowski, M. W. MacArthur, D. S. Moss and J. M. Thornton, J. Appl. Cryst., 1993, 26, 548-558.
- I. W. Davis, L. W. Murray, J. S. Richardson and D. C. Richardson, *Nucleic Acids Res*, 2004, 32, W615-W619.
- H. Boutselakis, D. Dimitropoulos, J. Fillon, A. Golovin, K. Henrick, A. Hussain, J. Ionides, M. John, P. A. Keller, E. Krissinel, P. McNeil, A. Naim, R. Newman, T. Oldfield, J. Pineda, A. Rachedi, J. Copeland, A. Sitnov, S. Sobhany, A. Suarez-Uruena, J. Swaminathan, M. Tagari, J. Tate, S. Tromm, S. Velankar and W. Vranken, *Nucleic Acids Res*, 2003, **31**, 458-462.