# Electronic Supplementary Material For: Lewis acid catalyzed hydrogenation: $B(C_6F_5)_3$ mediated reduction of imines and nitriles with $H_2$ <sup>†</sup>

Preston A. Chase, Titel Jurca and Douglas W. Stephan<sup>a</sup>\*

**General Considerations:** All experiments were performed on double manifold Schlenk N<sub>2</sub>(H<sub>2</sub>)/vacuum lines or in a N<sub>2</sub>-<sup>5</sup> filled MBraun 130-BG glove box. All glassware was heated to 140°C overnight and either assembled and attached to the vacuum lines or placed into the glovebox while hot. Toluene, hexanes and CH<sub>2</sub>Cl<sub>2</sub> were dried by passage through alumina and molecular sieves in a commercially available solvent purification system. H<sub>2</sub> gas (Praxair) was dried by passage through a column of 50:50 activated molecular sieves and Dririte. NMR experiments were performed on a Bruker Avance-300 spectrometer at 300K unless otherwise noted. <sup>1</sup>H and <sup>13</sup>C {<sup>1</sup>H} NMR spectra are referenced to SiMe<sub>4</sub> using the residual <sup>10</sup> proton peak of the given solvent. <sup>31</sup>P, <sup>11</sup>B and <sup>19</sup>F NMR spectra were referenced to 85% H<sub>3</sub>PO<sub>4</sub> ( $\delta = 0$ ), BF<sub>3</sub>(OEt<sub>2</sub>) ( $\delta = 0$ ), and CFCl<sub>3</sub> ( $\delta = 0$ ), respectively. Chemical shifts ( $\delta$ ) are reported in ppm and coupling constants (*J*) in Hz. Combustion analyses were performed in house employing a Perkin Elmer CHN Analyzer. Commercially available imines, nitriles and 1,2,3-triphenylaziridine were purchased from Aldrich and P(2,4,6-Me<sub>3</sub>C<sub>6</sub>H<sub>2</sub>)<sub>3</sub> (P(C6H2Me3)<sub>3</sub>) was purchased from Strem Chemicals; all were used without further purification. B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> was generously donated by NOVA corporation and used <sup>15</sup> without further purification. Compounds *t*BuN=CPh<sub>2</sub>,<sup>1</sup> DippN=CPh(Me),<sup>2</sup> DippN=C*t*Bu(Me)<sup>3</sup> (C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>BN≡CMe, (C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>BN≡CPh.<sup>4</sup> were prepared by literature methods.

#### Catalysis procedure, B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>-only

In the glovebox, substrate (1 mmol), B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (26 mg, 0.05 mmol, 5 mol%) and dry toluene (4 ml) were weighed into a <sup>20</sup> 100 ml round bottomed flask equipped with a sealable Teflon tap (Kontes valve) and small magnetic stirbar. The reaction was then attached to a double manifold H<sub>2</sub>/vacuum line and degassed (freeze-pump-thaw cycle x 3). The reaction was cooled to -196°C (liquid N<sub>2</sub>) and 1 atm. H<sub>2</sub> was introduced. The flask was sealed and warmed to room temperature. The reaction was then placed in an oil bath heated to the desired temperature and stirred at 500 rpm. At 120°C, the H<sub>2</sub> pressure is ~ 5 atm. Aliquots were obtained at periodic intervals by rapidly cooling the reaction in a water bath and venting the H<sub>2</sub><sup>25</sup> pressure. Samples were taken by pipette in the glove box. The reaction was re-pressurized using the above procedure. Upon full conversion, the reaction was poured onto a 10 cm plug of silica (200 mesh) and eluted with 2:1 hexanes/ ethyl acetate (200 ml). If the amine was not fully soluble in the reaction mixture or the hexanes/ ethyl acetate solvent, CH<sub>2</sub>Cl<sub>2</sub> (3 x 5 ml) was used to wash the reaction vessel. The collected eluent was removed *in vacuo* to obtain the product.

#### <sup>30</sup> Catalysis procedure, B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> and P(C<sub>6</sub>H<sub>2</sub>Me<sub>3</sub>)<sub>3</sub>:

In the glovebox, substrate (1 mmol),  $B(C_6F_5)_3$  (26 mg, 0.05 mmol, 5 mol%),  $P(2,4,6-Me_3C_6H_2)_3$  (19 mg, 0.05 mmol, 5 mol%) and dry toluene (4 ml) were weighed into a 100 ml round bottomed flask equipped with a sealable Teflon

<sup>&</sup>lt;sup>1</sup> Moritti, I.; Torre, G. Synthesis, **1970**, 141.

<sup>&</sup>lt;sup>2</sup> Syntheiszed via the procedure in Moritti, I.; Torre, G. Synthesis, **1970**, 141. For NMR see Mueller, G.; Klinga, M.; Osswald, P.; Leskelae, M.; Rieger, B. Z. Natur. B, Chem. Sci. **2002**, 57, 803.

<sup>&</sup>lt;sup>3</sup> Syntheiszed via the procedure in Moritti, I.; Torre, G. Synthesis, **1970**, 141. For NMR see Budzelaar, P.H.M.; van Oort, A.B.; Orpen, A.G. Eur. J. Inorg. Chem. **1998**, 1485.

<sup>&</sup>lt;sup>4</sup> Jacobsen, H.; Berke, H.; Döring, S.; Kehr, G.; Erker, G.; Fröhlich, R.; Meyer, O. Organometallics 1999, 18, 1724.

tap (Kontes valve) and small magnetic stirbar. The reaction was then attached to a double manifold  $H_2$ /vacuum line and degassed (freeze-pump-thaw cycle x 3). The reaction was cooled to -196°C (liquid N<sub>2</sub>) and 1 atm. H<sub>2</sub> was introduced. The flask was sealed and warmed to room temperature. The reaction was then placed in an oil bath heated to the desired temperature and stirred at 500 rpm. At 120°C, the H<sub>2</sub> pressure is ~ 5 atm. Aliquots were obtained at periodic intervals by <sup>5</sup> rapidly cooling the reaction in a water bath and venting the H<sub>2</sub> pressure. Samples were taken by pipette in the glove box.

- The reaction was re-pressurized using the above procedure. Upon full conversion, the reaction was poured onto a 10 cm plug of silica (200 mesh) and eluted with 2:1 hexanes/ ethyl acetate (200 ml). If the amine was not fully soluble in the reaction mixture or the hexanes/ ethyl acetate solvent,  $CH_2Cl_2$  (3 x 5 ml) was used to wash the reaction vessel. The collected eluent was removed *in vacuo* to obtain the product.
- 10

Previously reported amines were identified by comparison of <sup>1</sup>H NMR spectra to literature values:

E1; HN(tBu)CH<sub>2</sub>Ph: Froyen, P.; Juvvik, P. Tetrahedron Lett. 1995, 36, 9555.

E2; HN(CHPh<sub>2</sub>)CH<sub>2</sub>Ph: Mehrotra, K. N.; Giri, B. P. Synthesis 1977, 470.

E3, E8; HN(SO<sub>2</sub>Ph)CH<sub>2</sub>Ph: Nyasse, B.; Grehn, L.; Ragnarsson, U.; Maia, H. L. S.; Monteiro, L. S.; Leito, I.; Koppel, I.; <sup>15</sup> Koppel, J. *J. Chem. Soc. Perkin Trans. 1*, **1995**, 2025.

E4; HN(tBu)CHPh<sub>2</sub>: Cliffe, I.A.; Crossley, R.; Shepard, R.G. Synthesis, 1985, 1138.

- **E5**; HN(Dipp)CHPh(Me): <sup>1</sup>**H** NMR (C<sub>6</sub>D<sub>6</sub>, 500 MHz): 7.16 (br, 4H, Ar*H*), 7.11 (t, 1H,  ${}^{3}J_{HH} = 6.7$  Hz), 7.09 (s, 3H, Ar*H*), 4.12 (d of q, 1H,  ${}^{3}J_{HH} = 9.3$  Hz,  ${}^{3}J_{HH} = 6.7$  Hz, C*H*Ph(Me), 3.22 (heptet, 2H,  ${}^{3}J_{HH} = 7.0$  Hz, C*H*Me<sub>2</sub>), 3.14 (d, 1H,  ${}^{3}J_{HH} = 9.3$  Hz, N*H*), 1.39 (d, 3H,  ${}^{3}J_{HH} = 6.7$  Hz, CHPh(C*H*<sub>3</sub>)), 1.19 (d, 6H,  ${}^{3}J_{HH} = 6.7$  Hz, CH(C*H*<sub>3</sub>)), 1.05 (d, 6H,  ${}^{3}J_{HH} = 6.7$  Hz, CHPh(C*H*<sub>3</sub>)), 1.19 (d, 6H,  ${}^{3}J_{HH} = 6.7$  Hz, CH(C*H*<sub>3</sub>)), 1.05 (d, 6H,  ${}^{3}J_{HH} = 6.7$  Hz, CH
- <sup>20</sup> CH(CH<sub>3</sub>)). <sup>13</sup>C{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>): δ 145.6 (s, *ipso* ArC), 143.3 (s, *ipso* ArC), 142.5 (s, *ipso* ArC), 129.0 (s, ArCH), 127.6 (s, ArCH), 127.0 (s, ArCH), 124.6 (s, ArCH), 124.3 (s, ArCH), 60.8 (s, NCHPh(Me)), 28.4 (overlapping s, 2 x *i*Pr CHCH<sub>3</sub>), 22.4 (NCCH<sub>3</sub>). *Anal. Calc'd:* C 85.35 H 9.67 N 4.98; *Found:* C 84.98 H 9.93 N 5.08.
  - E6: no product obtained

E7; HN(Ph)C(Ph)CH<sub>2</sub>Ph: Bytschkov, I.; Doye, S. Eur. J. Org. Chem. 2001, 4411.

<sup>25</sup> **E9**; EtNH<sub>2</sub>B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>: Chase, P.A.; Welch, G.C.; Jurca, T.; Stephan, D.W. Angew. Chem. Int. Ed. **2007**, 45, 8050.

**E10**; PhCH<sub>2</sub>NH<sub>2</sub>B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>: Mountford, A.J.; Lancaster, S.J.; Coles, S.J.; Horton, P.N.; Hursthouse, M.B.; Light, M.E. *Inorg. Chem.* **2005**, *44*, 5921.

# Partial NMR data for PhCH<sub>2</sub>(*t*Bu)NH-B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (2):

<sup>30</sup> <sup>1</sup>**H NMR** (C<sub>6</sub>D<sub>5</sub>Br): δ 7.18 (br s, 5H, Ar*H*), 6.20 (v br, 1H, PhC*H*<sub>2</sub>), 4.60 (m, 1H, N*H*), 4.16 (v br, 1H, PhC*H*<sub>2</sub>), 0.93 (s, 9H, C(C*H*<sub>3</sub>)<sub>3</sub>). <sup>19</sup>**F NMR** (C<sub>6</sub>D<sub>5</sub>Br): δ -122.8 (d, 1F,  ${}^{3}J_{FF} = 23.3$  Hz, *o*-Ar*F*), -126.7 (d, 1F,  ${}^{3}J_{FF} = 22.0$  Hz, *o*-Ar*F*), -127.9 (t, 1F,  ${}^{3}J_{FF} = 23.3$  Hz, *o*-Ar*F*), -130.0 (t, 1F,  ${}^{3}J_{FF} = 29.1$  Hz, *o*-Ar*F*), -131.9 (m, 1F, *o*-Ar*F*), -134.0 (m, 1F, *o*-Ar*F*), -154.4 (t, 1F,  ${}^{3}J_{FF} = 21.3$  Hz, *p*-Ar*F*), -155.8 (t, 1F,  ${}^{3}J_{FF} = 21.3$  Hz, *p*-Ar*F*), -157.1 (t, 1F,  ${}^{3}J_{FF} = 21.3$  Hz, *p*-Ar*F*), -161.1 (m, 1F, *m*-Ar*F*), -161.9 (m, 1F, *m*-Ar*F*), -162.6 (m, 1F, *m*-Ar*F*), -162.9 (m, 1F, *m*-Ar*F*), -163.4 (m, 1F, *m*-Ar*F*), -163.8 (m, 1F, *m*-Ar*F*). <sup>11</sup>**B** <sup>35</sup> **NMR** (C<sub>6</sub>D<sub>5</sub>Br): δ -4.5 (br s).

### Synthesis of [*t*BuNH<sub>2</sub>(CH<sub>2</sub>Ph)][HB(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>] (3):

 $B(C_6F_5)_3$  (0.360g, 0.70 mmol) and tBuN=CPh(H) (0.117g, 0.71 mmol) were weighted into a 50 ml glass bomb and dissolved in dry toluene (10 ml). The reaction was degassed (freeze-pump-thaw x 3) and the flask was immersed in LN<sub>2</sub>. H<sub>2</sub>

gas was introduced, the flask sealed and allowed to warm to room temperature. The reaction was heated to 120°C for 30 minutes and stirred for 16 hours at room temperature. In the glovebox, dry hexanes (30 ml) was added to the turbid solution and a white solid precipitated. The solid was filtered, washed with hexanes (3 x 10 ml) and dried *in vacuo*. Yield 0.411 g (87%). X-ray quality crystals were obtained at room temperature by layering hexanes onto a solution of product in CH<sub>2</sub>Cl<sub>2</sub>. s <sup>1</sup>**H** NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  7.44 (t, 1H, <sup>3</sup>*J*<sub>HH</sub> = 7 Hz, *p*-Ar*H*), 7.35 (t, 2H, <sup>3</sup>*J*<sub>HH</sub> = 7 Hz, *m*-Ar*H*), 7.20 (d, 2H, <sup>3</sup>*J*<sub>HH</sub> = 7 Hz, *o*-Ar*H*), 6.06 (v br m, 2H, NH<sub>2</sub>), 4.28 (m, 2H, NCH<sub>2</sub>Ph), 3.32 (br q, 1H, <sup>1</sup>*J*<sub>HB</sub> = 82 Hz, B*H*), 1.57 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  148.6 (br d, *o*-ArCF, <sup>1</sup>*J*<sub>CF</sub> = 240 Hz), 138.9 (br d, *p*-ArCF, <sup>1</sup>*J*<sub>CF</sub> = 246 Hz), 137.2 (br d, *m*-ArCF, <sup>1</sup>*J*<sub>CF</sub> = 243 Hz), 131.3 (s, ArCH), 130.5 (s, ArCH), 129.7 (s, *ipso* ArC), 129.4 (s, ArCH), 62.7 (s, NC(CH<sub>3</sub>)<sub>3</sub>) 48.5 (s, NCH<sub>2</sub>Ph), 26.7 (s, NC(CH<sub>3</sub>)<sub>3</sub>). <sup>11</sup>B NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  -21.4 (d, <sup>1</sup>*J*<sub>BH</sub> = 82 Hz). <sup>19</sup>F NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  -131.9 (d, 6F, <sup>3</sup>*J*<sub>FF</sub> = 21 Hz, *o*-ArF), -160.3 (t, 4F, <sup>3</sup>*J*<sub>FF</sub> = 21 Hz, *p*-ArF), -163.9 (m, 6F, *m*-ArF). *Anal. Calc'd*: C 51.43 H 2.83 N 2.07; *Found*: C 51.22 H 2.87 N 2.51.

# NMR scale generation of [DippNH=CtBu(Me)][HB(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>] (4):

In a J-Young NMR tube, B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (8 mg, 15 µmol) and DippN=C*t*Bu(Me) (4 mg, 15 µmol) were weighed and then <sup>15</sup> dissolved in C<sub>6</sub>D<sub>5</sub>Br (0.5 ml). The tube was placed on an H<sub>2</sub>/vacuum line and degassed (freeze-pump-thaw cycle x 3). The reaction was cooled to -196°C (liquid N<sub>2</sub>) and 1 atm H<sub>2</sub> was introduced. The tube was sealed and allowed to warm to room temperature. The reaction was heated to 80°C for 3 days. <sup>1</sup>H NMR (C<sub>6</sub>D<sub>5</sub>Br):  $\delta$  10.50 (br, 1H, N*H*<sup>+</sup>), 7.07 (br, 3H, overlapping Ar*H*), 3.85 (v. br, 1H, B*H*), 2.31 (br, 2H, C*H*Me<sub>2</sub>), 1.82 (br, 3H, C*H*<sub>3</sub>), 1.08 (br, 12H, CH(C*H*<sub>3</sub>)<sub>2</sub>), 0.97 (br, 9H, *t*Bu*H*). <sup>19</sup>F NMR (C<sub>6</sub>D<sub>5</sub>Br):  $\delta$  -132.9 (m, 6F, *o*-Ar*F*), -162.7 (br m, 3F, *p*-Ar*F*), -166.0 (m, 6F, *m*-Ar*F*). <sup>11</sup>B NMR (C<sub>6</sub>D<sub>5</sub>Br): <sup>20</sup>  $\delta$  -24.4 (d, <sup>1</sup>J<sub>BH</sub> = 80 Hz).

25