Electronic Supplementary Information

of the manuscript:

A rigid sublimable naphthalenediimide cyclophane as model compound for UHV STM experiments

Sandro Gabutti,^a Marco Knutzen,^b Markus Neuburger,^a Guillaume Schull,^b Richard Berndt^{*b} and Marcel Mayor^{*a,c}

Received 21st December 2007

5 Synthetic protocols and analytical data

General: All chemicals were directly used for the synthesis without purification. The solvents for chromatography and extractions were once distilled before use. ¹H-NMR and ¹³C-NMR were recorded at 298 K on a *Bruker DPX-NMR* (400 MHz)

- ¹⁰ spectrometer. Chemical shifts (δ) are reported in ppm relative to residual solvent peaks and coupling constants (*J*) are in Hertz (Hz). NMR solvents were obtained from *Cambridge Isotope Laboratories, Inc.* (Andover, MA, USA). CDCl₃ was filtered through basic alumina before use. The multiplicity's are written
- 15 as: s = singulett, d = doublet, t = triplet, m = multiplet and br = broad. The solvents for spectroscopic studies were of spectroscopic grade and used as received. UV/Vis absorption spectra were recorded on a *Agilent 8453* diode array spectrophotometer. The IR spectra were recorded on a FT-IR *RX1*
- ²⁰ from Perkin Elmer; wavenumbers measured in cm⁻¹. The elementary analysis were measured on a *Analysator 240* from Perkin-Elmer. The mass spectra were recorded on a esquire 3000 plus (Bruker) for Electron Spray Ionisation (ESI) and / or on a *finnigan MAT 95Q* for Electron Impact (EI) and on a *finnigan*
- ²⁵ MAT 8400 for Fast Atom Bombardment (FAB). As matrix m-Nitro-Benzenealcohol (NBA) or glycine (GLY) was used; measured in m/z (%). Melting points were measured on a SMP3 from Stuart in °C. TLC was carried out on *Silica gel 60 F₂₅₄* glass plates with a thickness of 0.25 mm from Merck. The detection
- ³⁰ was observed through fluorescence at 254 nm with a UV-lamp from Camag. For column chromatography *silica gel 60* (40-63 μm) from Merck, was used with distilled solvents.

5-tert-Butyl-1,3-bis(bromomethyl)benzene (3):

³⁵ A suspension of 5-*tert*.-Butyl-1,3-xylene (2) (32.45 g, 200 mmol), NBS (80.45 g, 452 mmol) and AIBN (0.2 g, 1.2 mmol) in 400 ml methyl formate was
^a irradiated with a 500-W bulb for 3h. The solvent

was evaporated and the residue was dissolved in 300 ml CH₂Cl₂. ⁴⁰ The organic phase was washed twice with concentrated NaHCO₃ solution and water, then dried over Na₂SO₄ and concentrated under reduced pressure. Recrystallization of the solid residue

^c Forschungszentrum Karlsruhe GmbH, Institute for Nanotechnology, P. O. Box 3640, D-76021 Karlsruhe, Germany.

from hexane gave the desired 5-*tert*-Butyl-1,3-bis(bromomethyl)benzene (**3**) as colorless crystals (30.77 g, 48 %). R_f =0.66 ⁴⁵ (Hex/EtOAc 3:1); ¹H-NMR (400MHz, CDCl₃): δ =7.33 (d, 2H, ⁴J_{HH}=1.5 Hz, 4-H, 6-H), 7.25 (t, 1H, ⁴J_{HH}=1.5 Hz, 2-H), 4.48 (s, 4H, BrCH₂ Ph), 1.32 ppm (s, 9H, C(CH₃)₃); ¹³C-NMR (400MHz, CDCl₃): δ =152.5, 137.9, 126.8, 126.2, 34.7, 33.4, 31.2 ppm; M.p.: 113°C.

5-tert-Butyl-1,3-bis(phthalimidomethyl)benzene (4):

A mixture of 5-*tert*-Butyl-1,3bis(bromomethyl)benzene (**3**) (8.47 g, 27 mmol), potassium phthalimide (10.78 g, 58 mmol) and K_2CO_3 (21.95 g, 159 mmol) in 200 ml of anhydrous CH₃CN was heated under reflux for 5h. The reaction mixture was cooled to

60 room temperature and quenched with 200 ml water. After extraction with EtOAc, the combined organic phases were washed with brine, dried over Na2SO4 and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (Hex/EtOAc 3:1 to 1:3) to provide 65 5-tert-Butyl-1,3-bis(phthalimidomethyl)benzene (4) as a white solid (10.31 g, 86 %). R_f=0.62 (Hex/EtOAc 2:3); ¹H-NMR (400MHz, CDCl₃): δ=7.84-7.82, 7.71-7.68 (m, 8H, Pht-H), 7.38 (d, 2H, ⁴J_{HH}=1.5 Hz, 4-H, 6-H), 7.32 (t, 1H, ⁴J_{HH}=1.5 Hz, 2-H), 4.80 (s, 4H, Pht-CH₂-Ph), 1.27 ppm (s, 9H, C(CH₃)₃); ¹³C-NMR ⁷⁰ (400MHz, CDCl₃): δ=168.0, 152.2, 136.4, 133.9, 132.1, 126.1, 125.4, 123.3, 41.7, 34.6, 31.2 ppm; ESI-MS: m/z: 475 [M⁺+Na]; EI-MS: m/z: 452 [M⁺], 437 [C₂₈H₂₅N₂O₃⁺], 395 [C₂₄H₁₅N₂O₄⁺], 305 $[C_{20}H_{19}NO_2^+]$, 290 $[C_{20}H_{20}NO^+]$, 160 $[C_{12}H_{16}^+]$; elemental analysis calcd. (%) for $C_{28}H_{24}N_2O_4$: C, 74.32; H, 5.35; N, 6.19; 75 found: C, 74.17; H, 5.42; N, 6.05; M.p.: 183-184°C.

1,3-Bis(aminomethyl)-5-tert-butylbenzene (5):^[1] Hydrazine monohydrate (31 ml, 638 mmol) was slowly added to a suspension of 5-*tert*-Butyl-1,3-⁸⁰ bis(phthalimidomethyl) benzene (4) (11.1 g, 25 mmol) in 300 ml MeOH. The resulting solution was refluxed for 2h. After cooling to room

temperature the reaction mixture was quenched with 200 ml 5 M NaOH solution and extracted with CH_2Cl_2 (4 x 100 ml). The solvent was evaporated and the remaining yellow oil was distilled under reduced pressure (1 mbar) to afford 1,3-Bis(aminomethyl)-5-*tert*-butylbenzene (5) as an air-sensitive colorless oil, which was stored under argon (3.88 g, 82 %). ¹H-NMR (400MHz, CDCl₃): δ =7.20 (d, 2H, ⁴J_{HH}=1.5 Hz, 4-H, 6-H), 7.10 (t, 1H,

This journal is © The Royal Society of Chemistry 2008

^a University of Basel, Department of Chemistry, St. Johannsring 19, CH-4056 Basel, Switzerland, Fax: +41 61 267 1016; Tel: +41 61 267 1006; E-mail: marcel.mayor@unibas.ch

^b University of Kiel, Department of Physics, Leibnitzstrasse 19, D-24118 Kiel, Germany, Fax: +49 431 880 2510; Tel: +49 431 880 3946; E-mail: berndt@physik.uni-kiel.de

⁴J_{HH}=1.5 Hz, 2-H), 3.85 (s, 4H, NH₂-CH₂-Ph), 1.32 ppm (s, 9H, C(CH₃)₃); ¹³C-NMR (400MHz, CDCl₃): δ =151.7, 143.2, 122.9, 122.6, 46.7, 34.6, 31.3 ppm; ESI-MS: m/z: 385 [2xM⁺+H]; 215 $[M^++Na]$ 193 $[M^++H]$; EI-MS: m/z: 191 $[M^+]$, 162 $[C_{11}H_{16}N^+]$, ⁵ 135 [C₈H₁₁N₂⁺], 57 [C₄H₉⁺].

1,5(1,4,5,8)-Dinaphthalenetetracarboxylic acid diimide-3,7(3,5)-Di-1-tert-butyl-10 benzenacyclooctaphane-nodan (1):

The yellow suspension of a) Naphthalene-1,4,5,8-tetracarboxylic acid dianhydride (6) (0.87 g, 3.2 mmol) and 1,3-Bis(aminomethyl)-5*s tert*-butylbenzene (5) (0.62 g, 3.2 mmol) in 0.2 ml Et₃N and 170 ml i-PrOH was refluxed for 3 d. The reaction mixture was cooled to room temperature and filtered. The solvent 20 was evaporated and the residue was purified by column chromatography

on silica gel (CH2Cl2/EtOAc 10:1) to provide the symmetric NDI cyclophane 1 as a white solid (32.1 mg, 1.2 %).

- b) Naphthalene-1,4,5,8-tetracarboxylic acid dianhydride 25 (6) (1.93 g, 7.2 mmol) was solved at 120°C in 200 ml DMF with 20 ml CH₃COOH. Then 50 ml of a solution of 1,3-Bis(aminomethyl)-5-tert-butylbenzene (5) (0.55 g, 2.8 mmol) in 50 ml DMF was dropped in through a dropping funnel over 1h. This reaction mixture was refluxed for 4d. Then the reaction 30 mixture was cooled to room temperature and filtered. The solvent
- was evaporated and the residue was purified by column chromatography on silica gel (CH2Cl2/EtOAc 10:1) to provide the symmetric NDI cyclophane as a white solid (44.5 mg, 3.4 %).
- The yellow suspension of Naphthalene-1,4,5,8c) 35 tetracarboxylic acid dianhydride (6) (61 mg, 0.23 mmol) and 9 (149 mg, 0.18 mmol) in 1 ml Et₃N and 450 ml *i*-PrOH was refluxed for 3 d. The reaction mixture was cooled to room temperature and filtered. The solvent was evaporated and the residue was purified by column chromatography on silica gel

40 (CH₂Cl₂/EtOAc 10:1) to provide the symmetric NDI cyclophane 1 as a white solid (59 mg, 40 %). $R_{f}=0.4$ (CH₂Cl₂/EtOAc 10:1); UV/Vis (CH₃CN): λ_{max} (ϵ) = 232

(50 332), 343 (24 351), 358 (35 057), 379 nm (30 707 mol⁻¹ dm³ cm⁻¹); IR (v/cm⁻¹): 3429, 3077, 2961, 1710 (vC=O), 1671 ⁴⁵ (vC=O), 1581, 1453, 1336, 1244, 1181, 1006, 772; ¹H-NMR

- (400MHz, CDCl₃): δ=8.60 (s, 8H, Napht.), 7.44 (d, 4H, ⁴J_{HH}=1.5 Hz, 2-H, 6-H), 7.31 (t, 1H, ⁴J_{HH}=1.5 Hz, 4-H), 5.34 (s, 8H, NDI-CH₂-Ph), 1.35 ppm (s, 18H, C(CH₃)₃); ¹³C-NMR (400MHz, CDCl₃): δ=162.2, 151.3, 137.5, 130.7, 126.2, 126.1, 125.9, 124.4,
- 50 43.4, 34.7, 31.3 ppm; ESI-MS: m/z 2568 [3xM⁺+Na], 1719 $[2xM^++Na]$, 871 $[M^++Na]$; FAB-MS: m/z 849 $[M^+]$, 793 $[C_{48}H_{31}N_4O_8^+]$; elemental analysis calcd. (%) for $C_{53}H_{42}Cl_2N_4O_8$: C, 68.17; H, 4.53; N, 6.00; found: C, 68.59; H, 4.96; N, 5.59; M.p.: >349°C.

0°C over 1 h. This reaction mixture was then warmed up to room temperature and quenched with water. After extraction with 65 CH₂Cl₂, evaporation of the solvent and drying one isolated 1-tert-Butoxycarbonyl-1,3-bis(aminomethyl)-5-tert-butylbenzene (7) as a yellow oil (0.7 g, 47%). Further purification by extraction gave a colorless oil (22%). IR (v/cm⁻¹): 3344, 2956, 2867, 1694 (vC=O), 1517, 1372, 1261, 1167, 906, 728; ¹H-NMR (400MHz,

70 CDCl₃): δ=7.23 (m, 1H, 6-H), 7.18 (m, 1H, 4-H), 7.06 (m, 1H, 2-H), 4.30 (d, 2H, ³J_{HH}=5.6 Hz, NHBoc-CH₂-Ph), 3.85 (s, 2H, NH₂-CH₂-Ph), 1.47 (s, 9H, Boc C(CH₃)₃), 1.31 ppm (s, 9H, C(CH₃)₃); ¹³C-NMR (400MHz, CDCl₃): δ =155.9, 152.0, 138.8, 123.5, 123.3, 123.2, 110.0, 46.5, 44.9, 34.7, 31.4, 28.4 ppm; ESI-MS: 75 m/z 585 [2xM⁺+H], 293 [M⁺+H]; FAB-MS: m/z 293 [M⁺], 220 $[C_{13}H_{20}N_2O^+]$, 176 $[C_{12}H_{19}N^+]$, 57 $[C_4H_9^+]$.

N,N'-Di-(1'-tert-Butoxycark	onyl-1',3'-bis(aminomethyl)-5'-tert-
bi	utylbenzene)-naphthalene-1,4,5,8-

⁸⁰ tetracarboxylic acid bisimide (8): suspension of 1-tert-А Butoxycarbonyl-1,3-bis(aminomethyl)-5-tert-butylbenzene (7) (353 mg, 1.2 Naphthalene-1,4,5,8mmol). tetracarboxylic acid dianhydride (6) (162 mg, 0.6 mmol) and 1 ml Et₃N in 70 ml i-PrOH was refluxed under an argon atmosphere for 3 days. After cooling to room temperature the 90 solvent was evaporated and the residue purified was by column chromatography on silica gel (Hex/EtOAc 2:1) to provide the

protected NDI semicircle 8 as a yellow solid (217 mg, 44%). 95 Rf=0.3 (EtOAc/Hex 1:2); IR (v/cm⁻¹): 3397, 2966, 1705 (vC=O), 1667 (vC=O), 1505, 1453, 1367, 1326, 1245, 1172, 910, 734; UV/Vis (CH₃CN): λ_{max} (ϵ) =235 (65 453), 342 (26 023), 359 (43 156), 379 nm (52 026 mol⁻¹ dm³ cm⁻¹); ¹H-NMR (400MHz, CDCl3): 8=8.66 (s, 4H, Napht.), 7.53, 7.26, 7.24 (s, 6H, 2-H, 4-¹⁰⁰ H, 6-H), 5.35 (s, 4H, NDI-CH₂-Ph), 4.27 (d, 4H, ³J_{HH}=5.6 Hz, NHBoc-CH₂-Ph), 1.43 (s, 18H, Boc C(CH₃)₃), 1.31 ppm (s, 18H, C(CH₃)₃); ¹³C-NMR (400MHz, CDCl₃): δ=162.4, 155.9, 151.9, 138.9, 136.4, 130.9, 126.3, 126.2, 125.8, 125.6, 124.4, 79.3, 44.8, 44.0, 34.7, 31.3, 28.3 ppm; ESI-MS: m/z 855 [M⁺+K], 839 105 [M⁺+Na]; FAB-MS: m/z 817 [M⁺], 601 [C₃₅H₂₉N₄O₆⁺], 57 $[C_4H_9^+]$; elemental analysis calcd. (%) for $C_{48}H_{56}N_4O_8$: C, 70.57; H, 6.91; N, 6.86; found: C, 70.03; H, 7.01; N, 6.50.

N,N'-Di-(1',3'-Bis(aminomethyl)-5'-tert-butylbenzene)-

 ${\stackrel{{\dot N}H_3}{\Phi}}$

110 naphthalene-1,4,5,8-tetracarboxylic acid bisimide (9):

The protected NDI semicircle 8 (217 mg, 0.26 mmol) was solved in CH₂Cl₂ and 5 ml trifluoroacetic acid was dropped to the сғ₃соо stirred solution at room temperature. This reaction mixture was stirred for 3 h under an argon atmosphere. After evaporation of CF3COO the solvent one isolated the deprotected NDI semicircle 9 as a yellow salt in ¹²⁰ quantitative yield. ¹H-NMR (400MHz, DMSO): δ=8.73 (s, 4H, Napht.), 8.19 (br s, 6H, NH₃⁺), 7.51, 7.43, 7.21 (s, 6H, 2-H, 4-H, 6-H), 5.30 (s, 4H, NDI-CH₂-Ph), 3.96 (br s, 4H, NH₂-CH₂-Ph), 1.29 ppm (s, 18H,

¹²⁵ C(CH₃)₃); ¹³C-NMR (400MHz, DMSO): δ=162.7, 151.3, 137.1, 134.0, 130.8, 126.3, 124.8, 124.8, 124.3, 43.5, 42.3, 34.5, 31.0 ppm; ; ESI-MS: m/z 617 [M⁺+H]; FAB-MS: m/z 617 [M⁺+H], 600 $[C_{35}H_{29}N_4O_6^+]$; elemental analysis calcd. (%) for

⁵ 2,7-Bis(4-tertbutylphenyl)benzo[lmn][3,8]phenanthroline-1,3,6,8-tetrone (11):^[2] Naphthalene-1,4,5,8-tetracarboxylic acid dianhydride (6) (118 mg, 0.44 mmol), 4-tert-¹⁰ butylaniline (0.18 ml, 1.12 mmol) and 5 ml acetic acid were refluxed for 24 h. After cooling to room temperature the reaction mixture was quenched with water, extracted with CH₂Cl₂ and dried over Na₂SO₄. The solvent was evaporated and the residue ¹⁵ was purified by column chromatography on silica gel (CH₂Cl₂) to provide the linear NDI model compound 11 as a yellow solid (86 mg, 37%). R_f=0.4 (CH₂Cl₂); UV/Vis (CH₃CN): λ_{max} (ε) = 235

- $\begin{array}{c} (45\ 732),\ 341\ (17\ 066),\ 357\ (27\ 428),\ 377\ nm\ (31\\ ^{20}\ 016\ mol^{-1}\ dm^3\ cm^{-1});\ IR\ (v/cm^{-1}):\ 3400,\ 3069,\ 2956,\ 2856,\ 1706\\ (vC=O),\ 1672\ (vC=O),\ 1578,\ 1511,\ 1444,\ 1350,\ 1250,\ 1194,\\ 1111,\ 978,\ 839,\ 761,\ 711,\ 556;\ ^{1}H-NMR\ (400MHz,\ CDCl_3):\\ \delta=8.84\ (s,\ 4H,\ Napht.),\ 7.60\ (d,\ 4H,\ ^{3}J_{HH}=8.6\ Hz,\ Phe),\ 7.27\ (d,\\ 4H,\ ^{3}J_{HH}=8.6\ Hz,\ Phe),\ 1.40\ ppm\ (s,\ 18H,\ 6CH_3);\ ^{13}C-NMR\end{array}$
- ²⁵ (400MHz, CDCl₃): δ=163.0, 152.0, 131.7, 131.4, 127.7, 127.1, 127.0, 126.6, 34.8, 31.3 ppm; ESI-MS: m/z 531 [M⁺+H], 553 [M⁺+Na]; EI-MS: m/z 530 [M⁺], 515 [C₃₃H₂₇N₂O₄⁺]; elemental analysis calcd. (%) for C₃₄H₃₀N₂O₄: C, 76.96; H, 5.70; N, 5.28; found: C, 76.93; H, 5.74; N, 5.10; M.p.: >349°C.

30

Solid state structures of the cyclophane 1

As mentioned in the main text, single crystals suitable for x-ray analysis of the cyclophane 1 were obtained by slow evaporation of solutions either from CH_2Cl_2 or from technical grade xylene.

- ³⁵ In both cases, the arrangement of the cyclophane framework was very comparable. As displayed in the figures SI-1 and SI-2, the planes of both NDI chromophores are tilted with respect to each other opening a cavity to one side. The interlinking *tert*.butyl phenyl spacers are both pointing towards the side of the open
- ⁴⁰ cavity resulting in the crescent type structure of the cyclophane 1. The entry of the cavity of 1 is partially filled by a solvent molecule. As displayed in figure SI-1, crystals obtained from CH₂Cl₂ comprise a CH₂Cl₂ molecule at the cavities entry.
- Single crystals obtained from technical xylene (figure SI-2) ⁴⁵ comprise a *para*-xylene molecule partially penetrating the cavity. Furthermore, an additional solvent molecule is present at a general position in the asymmetric unit cell of the molecule. This position is occupied either with meta-xylene (0.4-occupancy) or with 3-ethyltoluene (0.6-occupancy). This additional solvent ⁵⁰ molecule is not displayed in figure SI-2.

Fig. SI-1 Solid state structure of the cyclophane **1** obtained by evaporation of a CH₂Cl₂ solution comprising the partially penetrating CH₂Cl₂ molecule. A) top view, B) front viev.

Fig. SI-2 Solid state structure of the cyclophane **1** obtained by evaporation of a solution of **1** in technical grade xylene, comprising the partially penetratin *para*-xylene molecule. A) top view, B) front viev.

60

55

UHV STM investigations

The experiments were performed with a low-temperature STM operated at 5.7 K in ultrahigh vacuum (below 10⁻¹⁰ mbar). The Au (111) samples as well as etched W tips were prepared by ⁵ argon-ion bombardment and annealing. Cyclophane 1 was deposited from a tantalum crucible maintained at 300°C and at a rate of approximately 0,2 ML/min as monitored by a quartz microbalance. During deposition a residual gas pressure in the 10⁻⁸ mbar range was maintained and the sample was kept at room ¹⁰ temperature. The data shown correspond to coverages of

approximately 0.05 monolayer. All images were recorded in a

To Å

Fig. SI-3 Self-assembled monolayers obtained by sublimation of the NDI-model compound 11; A) large area self assembly in parallel stripes;B) High resolution image comprising overlaid molecules 11. Intermolecular hydrogen bonds are indicated by dotted lines.

constant-current mode.

To demonstrate the deposition of the cyclophane 1 without disruption, the resulting monolayers are compared with the

¹⁵ monolayers obtained for the model compound **11** consisting of a single NDI chromophore.

As displayed in figure SI-3, the NDI molecule **11** self assembles in densely packed, regular parallel rows with a distance of about 1.5 nm. In figure SI-3 B) the molecular structure of **11** is overlaid ²⁰ suggesting a pair of hydrogen bonds between neighbouring molecules stabilizing the arrangement in stripes. The spatial proximity of the carbonyl oxygen and the naphthalene hydrogen of the neighbouring NDI chromophore indicate the formation of two hydrogen bonds between two neighbours in a row.

Also the cyclophane 1 self assembles in parallel stripes on the Au(111) surface with a pair of hydrogen bonds stabilizing the arrangement in rows (figure 2b of the main text and figure SI-4). However, comparing the surface structure emerging from the self assembly of the cyclophane 1 and the one obtained by the model 30 compound 11 displays numerous phenomenological differences.

Fig. SI-4 Self-assembled monolayers obtained by sublimation of the cyclophane 1; A) large area self assembly in parallel stripes; B) High resolution image comprising overlaid molecules 1. Intermolecular hydrogen bonds are indicated by dotted lines; C) Topographical high resolution image of the same area as displayed in B).

While the molecular structure forming the self assembled pattern is linear in the case of **11** (figure SI-3B), it is crescent-shaped in the case of **1** (figure SI-4 B and C) resembling the solid state ³⁵ structure of **1** (figures SI-1 and SI-2). The perfectly regular parallel rows with a periodicity of 1.5 nm in the case of **11** arise from the intercalation of hydrogen-bond stabilized ribbons of the molecule rod **11**. In contrast to that, the parallel rows of **1** display a periodicity of 2.7 nm. As already reported in the main text and displayed in further details in figures SI-4 B) and SI-4 C), the

- s stripes consists of two rows of intercalated cyclophane molecules which are rotated by about 120° with respect to each other. Each row is stabilized by a pair of intermolecular hydrogen bonds, formed between the carbonyl oxygens and the naphthalene hydrogens of the surface immobilized NDI chromophores (dotted
- ¹⁰ lines in Figure SI-4 B). The intercalation of both rows as well as the densely packed arrangement of the parallel stripes seems to be driven by maximisation of the surface coverage.

The reconstruction of the underlying Au surface can still be observed in figure SI-5 indicating that the interaction between the

¹⁵ molecule and the substrate is weak, similar to the case of supramolecular polymers on Au(111).³ A stronger interaction and charge transfer between the molecule and the Au(111) would lead to lifting of the reconstruction as observed, e.g., in the case of C60 on Au(111).⁴

Fig. SI-5 Topographical picture of the self-assembled monolayers obtained by sublimation of the cyclophane 1 displaying the reconstruction of the underlying Au(111) surface.

20

References

- 1 G. L. Succaw, T. J. R. Weakley, F. Han, K. M. Doxsee, *Crystal Growth & Design*, 2005, 5, 2288.
- 2 H. Langhals, H. Jaschke, Chem. Eur. J., 2006, 12, 2815.
- 25 3 F. Vonau, D. Aubel, L. Bouteiller, G. Reiter, L. Simon, *Phys. Rev. Lett.*, 2007, **99**, 086103.
 - 4 E. I. Altman, R. J. Colton, Surf. Sci., 1992, 279, 49.

30

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

