Supplementary information for

Catalytic selective bisarylation of imines with anisole, phenol, thioanisole and

analogues

Cong-Rong Liu, Man-Bo Li, Cui-Feng Yang and Shi-Kai Tian*

Joint Laboratory of Green Synthetic Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China

General information:

¹H and ¹³C NMR Spectra were recorded on a Bruker AC-300 FT (300 MHz and 75 MHz, respectively) using tetramethylsilane as internal reference. The chemical shifts (δ) and coupling constants (*J*) were expressed in ppm and Hz, respectively. The IR spectra were recorded on a Perkin-Elmer 2000FTIR spectrometer. The high resolution mass spectra were recorded on a LC-TOF spectrometer (Micromass). The melting points were uncorrected. The chemicals were purchased from Meryer, Acros and the Sinopharm Chemical Reagent Co., and used as received. Compounds **1a-1n**, **2b**, **2f**, **2g**, **2k** and **2m** were prepared according to literature procedures.¹

General procedure for the reaction of N-tosyl imines with aromatic compounds (anisole, phenol, thioanoisole and analogues in Table 1-3):

To a solution of N-tosyl imine **1** (1.0 mmol) in CH_2Cl_2 (0.20 mL) were added aromatic compound **2** (3.0 mmol), TMSCl (21.7 mg, 25.2 μ L, 0.20 mmol) and $Bi_2(SO_4)_3$ (14.1 mg, 2 mol %). The resulting mixture was stirred at room temperature for 0.3-48 h (as indicated in Table 1-3), and concentrated. The residue was purified by silica gel column chromatography, eluting with petroleum ether/EtOAc (200:1 to 10:1), to give product **3**.

Analytical Data for Products

Bis(4-methoxyphenyl)phenylmethane (3aa),^{2a} white solid, m.p. 99-101 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.31-7.14 (m, 3H), 7.09 (d, J = 7.2 Hz, 2H), 7.01 (d, J = 8.7 Hz, 4H), 6.81 (d, J = 8.7 Hz, 4H), 5.44 (s, 1H), 3.77 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 158.1, 144.7, 136.6, 130.4, 129.4, 128.4, 126.3, 113.8, 55.3.

(2-Methoxyphenyl)(4-methoxyphenyl)phenylmethane (3aa'),^{2b} see Note 8, white solid, m.p. 102-104 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.30-7.11 (m, 4H), 7.07 (d, J = 8.1 Hz, 2H), 6.98 (d, J = 8.1 Hz, 2H), 6.88-6.75 (m, 5H), 5.86 (s, 1H), 3.75 (s, 3H), 3.68 (s, 3H).

Bis[(2-acetoxyethoxy)phenyl]phenylmethane (3ab), colorless oil; ¹H NMR (300 MHz, CDCl₃): δ 7.30-7.12 (m, 3H), 7.08 (d, J = 6.9 Hz, 2H), 7.01 (d, J = 8.7 Hz, 4H), 6.83 (d, J = 8.7 Hz, 4H), 5.44 (s, 1H), 4.40 (t, J = 4.7 Hz, 4H), 4.14 (t, J = 4.7 Hz, 4H), 2.08 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 171.1, 157.1, 144.5, 137.1, 130.5, 129.4, 128.4, 126.4, 114.5, 66.1, 63.0, 55.3, 21.0; IR (film): v 3029, 2954, 1739, 1609, 1509, 1455 cm⁻¹; HRMS (EI): Calcd for C₂₇H₂₈O₆ (M) : 448.1886. Found: 448.1881.

Bis[(2-hydroxyethoxy)phenyl]phenylmethane (3ac), colorless oil; ¹H NMR (300 MHz, CDCl₃): δ 7.30-7.13 (m, 3H), 7.08 (d, J = 7.8 Hz, 2H), 7.00 (d, J = 8.7 Hz, 4H), 6.81 (d, J = 8.7 Hz, 4H), 5.43 (S, 1H), 4.02 (t, J = 4.4 Hz, 4H), 3.90 (t, J = 4.4 Hz, 4H), 2.39 (s, br., 2H); ¹³C NMR (75 MHz, CDCl₃): δ 157.2, 144.5, 137.0, 130.5, 129.4, 128.4, 126.3, 114.5, 69.3, 61.6, 55.3; IR (film): v 3397, 3029, 2932, 1609, 1509, 1455 cm⁻¹; HRMS (EI): Calcd for C₂₃H₂₄O₄ (M) :364.1675. Found: 364.1668.

4,4'-Benzylidenediphenol(3ad),^{2a} yellow solid, m.p. 161-162 °C; ¹H NMR (300 MHz, CD₃COCD₃): δ 8.16 (s, br., 2H), 7.30-7.08 (m, 5H), 6.94 (d, *J* = 8.4 Hz, 4H), 6.77 (d, *J* = 8.4 Hz, 4H), 5.42 (s, 1H); ¹³C NMR (75 MHz, CD₃COCD₃): δ 156.5, 146.1, 136.3, 131.0, 130.0, 128.9, 126.7, 115.8, 56.0.

Bis(4-methylsulfanylphenyl)phenylmethane (**3ae**),³ white solid; m.p. 64-65 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.31-7.20 (m, 3H), 7.19 (d, J = 8.4 Hz, 4H), 7.09 (d, J = 8.1 Hz, 2H), 7.02 (d, J = 8.4 Hz, 4H), 5.45 (s, 1H), 2.45 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 143.7, 140.9, 136.4, 130.0, 129.4, 128.5, 126.8, 126.5, 55.9, 16.1.

Bis(4-methoxy-3-methylphenyl)phenylmethane (**3af**),⁴ yellowish solid, m.p. 98-100 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.30-7.06 (m, 5H), 6.90 (s, 2H), 6.85 (d, *J* = 8.4 Hz, 2H), 6.71 (d, *J* = 8.4 Hz, 2H), 5.37 (s, 1H), 3.79 (s, 6H), 2.15 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 156.3, 145.1, 136.2, 131.8, 129.5, 128.3, 127.6, 126.4, 126.1, 109.7, 55.5, 55.4, 16.4.

Bis(3,4-dimethoxyphenyl)phenylmethane(3ag),⁵ white solid, m.p. 122-124 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.32-7.08 (m, 5H), 6.78 (d, *J* = 8.4 Hz, 2H), 6.67 (s, 2H), 6.60 (d, *J* = 8.4 Hz, 2H), 5.44 (s, 1H), 3.85 (s, 6H), 3.76 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 148.9, 147.6, 144.4, 136.8, 129.4, 128.3, 126.4, 121.5, 112.9, 111.0, 56.0, 55.9.

2,2'-Dimethyl-4,4'-benzylidenediphenol (3ah),⁴ white solid, m.p. 106-108 °C; ¹H NMR (300 MHz, CD₃COCD₃): δ 7.97 (s, br., 2H), 7.30-7.05 (m, 5H), 6.85 (s, 2H), 6.75-6.67 (m, 4H), 5.32 (s, 1H), 2.11 (s, 6H); ¹³C NMR (75 MHz, CD₃COCD₃): δ 154.5, 146.3, 136.4, 132.5, 130.1, 130.0, 128.9, 126.6, 124.6, 115.2, 56.2, 16.3.

2,2'-Diisopropyl-4,4'-benzylidenediphenol (**3ai**), yellow solid, m.p. 122-123 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.30-7.14 (m, 3H), 7.09 (d, *J* = 7.2 Hz, 2H), 6.94 (s, 2H), 6.75-6.71 (m, 2H), 6.20 (d, *J* = 8.1 Hz, 2H), 5.39 (s, 1H), 4.61 (s, br., 2H), 3.21-3.08 (m, 2H), 1.16 (d, *J* = 6.9 Hz, 12H); ¹³C NMR (75 MHz, CDCl₃): δ 151.1, 145.2, 137.0, 134.2, 129.5, 128.3, 127.7, 127.6, 126.1, 115.1, 55.9, 27.3, 22.7; IR (film): v 3418, 3025, 2963, 1606, 1501, 1452, 1428 cm⁻¹; HRMS (EI): Calcd for C₂₅H₂₈O₂ (M): 360.2089. Found: 360.2087.

2,2'-Dichloro-4,4'-benzylidenediphenol (3aj), yellow oil; ¹H NMR (300 MHz, CDCl₃): δ 7.34-7.16 (m, 3H), 7.10-6.98 (m, 4H), 6.96-6.85 (m, 4H), 5.56 (s, br., 2H), 5.36 (s,1H); ¹³C NMR (75 MHz, CDCl₃): δ 150.0, 143.1, 137.1, 129.6, 129.4, 129.3, 128.7, 126.8, 120.0, 116.3, 54.9; IR (film): v 3524, 3029, 1606, 1582, 1497, 1451 cm⁻¹; HRMS (EI): Calcd for C₁₉H₁₄Cl₂O₂ (M) : 344.0371. Found: 344.0367.

Bis(2-methoxy-5-methylphenyl)phenylmethane (3ak),⁶ white solid, m.p. 106-107 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.28-7.08 (m, 3H), 7.05 (d, *J* = 7.2 Hz, 2H), 6.98 (d, *J* = 8.1 Hz, 2H), 6.76 (d, *J* = 8.1 Hz, 2H), 6.61 (s, 2H), 6.15 (s, 1H), 3.65 (s, 6H), 2.19 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 155.4, 144.3, 132.6, 130.9, 130.0, 129.3, 128.0, 127.7, 125.8, 111.1, 56.1, 43.2, 20.9.

4,4'-Dimethyl-2,2'-benzylidenediphenol (3al),⁷ white solid, m.p. 160-162 °C; ¹H NMR (300 MHz,

CDCl₃): δ 7.35-7.20 (m, 3H), 7.15 (d, *J* = 7.8 Hz, 2H), 6.96 (d, *J* = 7.8 Hz, 2H), 6.80-6.66 (m, 4H), 5.84 (s, 1H), 2.20 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 151.3, 141.6, 130.7, 130.4, 129.5, 129.4, 128.8, 126.9, 126.8, 116.3, 44.8, 21.2.

Bis(4-methoxy-1-naphthyl)phenylmethane (3am),⁸ white solid, m.p. 97-99 °C; ¹H NMR (300 MHz, CDCl₃): δ 8.32 (d, J = 8.1 Hz, 2H), 7.89 (d, J = 8.1 Hz, 2H), 7.50-7.10 (m, 8H), 6.79 (d, J = 8.1 Hz, 2H), 6.73 (s, 1H), 6.63 (d, J = 8.1 Hz, 2H), 3.95 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 154.6, 144.2, 132.8, 132.2, 130.0, 128.5, 127.9, 126.8, 126.4, 126.2, 124.9, 124.2, 122.6, 103.2, 55.5, 48.9.

Bis(2,4,6-trimethoxyphenyl)phenylmethane (3an),⁹ white solid, m.p. 186-187 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.18-7.08 (m, 2H), 7.06-6.96 (m, 3H), 6.21 (s, 1H), 6.10 (s, 4H), 3.77 (s, 6H), 3.49 (s, 12H); ¹³C NMR (75 MHz, CDCl₃): δ 160.0, 159.3, 145.8, 127.9, 127.1, 124.3, 114.6, 92.1, 56.3, 55.3, 37.3.

Bis(4-methoxyphenyl)(p-tolyl)methane (3ba),^{2a} white solid, m.p. 55-56 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.11-6.97 (m, 8H), 6.82 (d, J = 8.4 Hz, 4H), 5.42 (s, 1H), 3.78 (s, 6H), 2.32 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 158.0, 141.8, 136.8, 130.4, 129.3, 129.1, 113.7, 55.3, 54.9, 21.1.

Bis(4-methoxyphenyl)(4-chlorophenyl)methane (3ca),^{2a} white solid, m.p. 69-70 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.23 (d, J = 8.4 Hz, 2H), 7.05-6.95 (m, 6H), 6.82 (d, J = 8.7 Hz, 4H), 5.41 (s, 1H), 3.78(s, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 158.3, 143.3, 136.0, 132.1, 130.8, 130.3, 128.5, 113.9, 55.3, 54.7.

4,4'-[(4-Chlorophenyl)methylene]diphenol (**3cd**),^{2a} yellow solid, m.p. 125-127 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.23 (d, J = 8.4 Hz, 2H), 7.01 (d, J = 8.1 Hz, 2H), 6.92 (d, J = 8.4 Hz, 4H), 6.74 (d, J = 8.4 Hz, 4H), 5.37 (s, 1H), 4.81 (s, br., 2H); ¹³C NMR (75 MHz, CDCl₃): δ 154.2, 143.2, 136.2, 132.1, 130.8, 130.5, 128.5, 115.4, 54.7.

Bis(4-methylsulfanylphenyl)(4-chlorophenyl)methane (3ce),³ colorless oil; ¹H NMR (300 MHz, CDCl₃): δ 7.30-7.10 (m, 6H), 7.04-6.95 (m, 6H), 5.41 (s, 1H), 2.45 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 142.3, 140.3, 136.7, 132.4, 131.0, 129.9, 128.6, 126.7, 55.3, 16.0.

Bis(4-methoxyphenyl)(4-nitrophenyl)methane (3da),^{2a} white solid, m.p. 45-46 °C; ¹H NMR (300 MHz, CDCl₃): δ 8.13 (d, J = 8.7 Hz, 2H), 7.27 (d, J = 8.4 Hz, 2H), 6.98 (d, J = 8.4 Hz, 4H), 6.83 (d, J = 8.7 Hz, 4H), 5.53 (s, 1H), 3.79 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 158.5, 152.5, 146.5, 134.9, 130.3,

130.2, 123.6, 114.1, 55.4, 55.2.

Methyl 4-[bis(4-methoxyphenyl)]methylbenzoate (3ea),^{2a} white solid, m.p. 117-119 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.94 (d, J = 8.1 Hz, 2H), 7.17 (d, J = 8.1 Hz, 2H), 6.99 (d, J = 8.4 Hz, 4H), 6.82 (d, J = 8.4 Hz, 4H), 5.48 (s, 1H), 3.88 (s, 3H), 3.77 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 167.1, 158.3, 150.2, 135.7, 130.4, 129.7, 129.4, 128.3, 113.9, 55.3, 52.1.

4,4',4''-methanetriyltriphenol (**3fd**),¹⁰ white solid, m.p. 235-237 °C; ¹H NMR (300 MHz, CD₃COCD₃): δ 8.11 (s, br., 3H), 6.93 (d, *J* = 8.4 Hz, 6H), 6.75 (d, *J* = 8.4 Hz, 6H), 5.32 (s, 1H). ¹³C NMR (75 MHz, CD₃COCD₃): δ 156.4, 137.0, 131.0, 115.7, 55.2.

Bis(4-methoxyphenyl)(3-methoxyphenyl)methane (**3ga**), colorless oil; ¹H NMR (300 MHz, CDCl₃): δ 7.25-7.16 (m, 1H), 7.01 (d, *J* = 8.7 Hz, 4H), 6.81 (d, *J* = 8.7 Hz, 4H), 6.77-6.60 (m, 3H), 5.40 (s, 1H), 3.77 (s, 6H), 3.74 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) : δ 159.7, 158.1, 146.4, 136.4, 130.4, 129.3, 122.0, 115.6, 113.8, 111.3, 55.3, 55.2; IR (film): v 2999, 2933, 1605, 1507, 1461 cm⁻¹; HRMS (EI): Calcd for C₂₂H₂₂O₃ (M): 334.1569. Found: 334.1565.

Bis(4-methoxyphenyl)(3-nitrophenyl)methane (3ha),¹¹ white solid, m.p. 69-71 °C; ¹H NMR (300 MHz, CDCl₃): δ 8.10-8.00 (m, 1H), 7.98 (s, 1H), 7.49-7.40 (m, 2H), 7.00 (d, *J* = 8.7 Hz, 4H), 6.84 (d, *J* = 8.7 Hz, 4H), 5.53 (s, 1H), 3.78 (s, 6 H); ¹³C NMR (75 MHz, CDCl₃): δ 158.5, 148.5, 147.1, 135.5, 135.0, 130.3, 129.2, 124.1, 121.5, 114.1, 55.4, 55.0.

Bis(4-methoxyphenyl)(2-methoxyphenyl)methane (3ia),¹² white solid, m.p. 111-113 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.25-7.10 (m, 1H), 6.99 (d, *J* = 8.7 Hz, 4H), 6.90-6.70 (m, 7H), 5.81 (s, 1H), 3.77 (s, 6H), 3.71 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 157.9, 157.2, 136.5, 133.4, 130.4, 130.3, 127.5, 120.4, 113.6, 110.8, 55.7, 55.3, 48.0.

Bis(4-methoxyphenyl)(2-nitrophenyl)methane (3ja),¹³ colorless oil; ¹H NMR (300 MHz, CDCl₃): δ 7.82 (d, J = 8.1 Hz, 1H), 7.43 (t, J = 7.5 Hz, 1H), 7.34 (t, J = 7.5 Hz, 1H), 7.09 (d, J = 7.8 Hz, 1H), 6.95 (d, J = 8.7 Hz, 4H), 6.81 (d, J = 8.7 Hz, 4H), 6.16 (s, 1H), 3.77 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 158.4, 149.9, 139.0, 134.5, 132.4, 131.9, 130.5, 127.4, 124.7, 113.9, 55.3, 49.9.

4,4'-[(2,4-dichlorophenyl)methylene]diphenol (3kd), white solid, m.p. 156-158 °C; ¹H NMR (300 MHz, CD₃COCD₃): δ 8.23 (s, br., 2H), 7.47 (s, 1H), 7.32 (d, *J* = 8.4 Hz, 1H), 6.99 (d, *J* = 8.4 Hz, 1H), 6.90 (d, *J* = 8.4 Hz, 4H), 6.79 (d, *J* = 8.4 Hz, 4H), 5.75 (s, 1H); ¹³C NMR (75 MHz, CD₃COCD₃): δ 157.0, 142.7, 134.2, 133.1, 133.0, 131.1, 129.9, 127.8, 116.1, 52.3; IR (film): v 3366, 1611, 1511, 1466 cm⁻¹; HRMS (EI): Calcd for C₁₉H₁₄Cl₂O₂ (M): 344.0371. Found: 344.0375.

Bis(4-methylsulfanylphenyl)(4-cholophenyl)methane (3ke), colorless oil; ¹H NMR (300 MHz, CDCl₃): δ 7.39 (s, 1H), 7.28-7.12 (m, 4H), 7.12 (s, 1H), 6.95 (d, *J* = 8.1 Hz, 4H), 6.85 (d, *J* = 8.4 Hz, 1H), 5.78 (s, 1H), 2.46 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 140.2, 139.0, 137.0, 135.3, 133.1, 131.9, 130.0, 129.7, 127.1, 126.8, 52.1, 15.9; IR (film): v 3020, 2920, 1585, 1560, 1492, 1467 cm⁻¹; HRMS(EI): Calcd for C₂₁H₁₈Cl₂S₂ (M): 404.0227. Found: 404.0220.

1,1-Bis(4-methoxyphenyl)propane (3la),^{2a} white solid, m.p. 40-41 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.12 (d, J = 8.7 Hz, 4H), 6.81 (d, J = 8.7 Hz, 4H), 3.76 (s, 6H), 3.70 (t, J = 7.8 Hz, 1H), 2.06-1.93 (m, 2H), 0.87 (t, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 157.9, 137.9, 128.8, 113.8, 55.3, 51.6, 29.0, 12.9.

1,1-Bis(4-methoxyphenyl)-2-methylpropane (3ma),¹⁴ colorless oil; ¹H NMR (300 MHz, CDCl₃): δ 7.16 (d, J = 8.7 Hz, 4H), 6.79 (d, J = 8.4 Hz, 4H), 3.77 (s, 6H), 3.31 (d, J = 10.5 Hz, 1H), 2.43-2.30 (m, 1H), 0.85 (d, J = 6.3 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 157.8, 137.7, 128.8, 113.9, 59.2, 55.2, 32.2, 22.0.

Bis(4-methoxyphenyl)cyclohexylmethane (3na), colorless oil; ¹H NMR (300 MHz, CDCl₃): δ 7.15 (d, J = 8.7 Hz, 4H), 6.79 (d, J = 8.7 Hz, 4H), 3.74 (s, 6H), 3.38 (d, J = 10.7 Hz, 1H), 2.08-1.92 (m, 1H), 1.78-1.49 (m, 5H), 1.33-1.06 (m, 3H), 0.95-0.75 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 157.8, 137.2, 129.0, 113.9, 57.8, 55.3, 41.7, 32.3, 26.7, 26.5; IR (film): v 2931, 1608, 1582, 1530, 1509, 1463 cm⁻¹; HRMS(EI): Calcd for C₂₁H₂₆O₂ (M): 310.1933. Found: 310.1927.

The reaction of N-tosyl imine 1a with mercapto-substituted arenes (Note 10):

The following two reactions were performed according to the general procedure for the reaction of N-tosyl imines with aromatic compounds.

Benzaldehyde bis-(2-methylphenyl)dithioacetal, white solid, m.p. 65-67 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.40-7.00 (m, 13H), 5.28 (s, 1H), 2.29 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 140.3, 140.1, 134.1, 133.3, 130.4, 128.5, 128.1, 128.0, 127.9, 126.5, 60.1, 20.7; IR (film): v 2943, 1607, 1497 cm⁻¹; HRMS (EI): Calcd for C₂₁H₂₀S₂ (M): 336.1006. Found: 336.1009.

Benzaldehyde bis-(4-chlorophenyl)dithioacetal,¹⁵ white solid, m.p. 59-61 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.35-7.11 (m, 13H), 5.34 (s, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 139.0, 134.4, 134.3, 132.6, 129.2, 128.7, 128.5, 128.0, 60.9.

Reference

- 1a-1k: (a) M. Yamanaka, A. Nishida and M. Nakagawa, J. Org. Chem., 2003, 68, 3112. 1l-1n: (b) A.-S. Cavallo, M. Roje, R. Welter and S. Vitomir, J. Org. Chem., 2004, 69, 1409. 2b: (c) R.-R. Gallucci and R.-C. Going, J. Org. Chem., 1982, 47, 351. 2f and 2k: (d) G.-K. David and H. Nobuyoshi, Bull. Chem. Soc. Jpn., 1993, 66, 1583. 2g: (e) E.-J. Vanden and M. Isabelle, Synth. Commun., 2001, 31, 1. 2m: (f) L. Andre, S. Jean and Z.-F. Vaziri, Bull. Soc. Chim. Fr., 1987, 6, 1027.
- 2. (a) S. Podder, J. Choudhury, U. K. Roy and S. Roy, *J. Org. Chem.*, 2007, **72**, 3100. (b) I. Shiina, M. Suzuki and K. Yokoyama, *Tetrahedron Letters*, 2002, **43**, 6395.
- 3. X. Wang, Y.-K. Wang, D.-M. Du and J.-X. Xu, J. Mol. Catal. A: Chem., 2006, 255, 31.
- 4. R. Orndorff and M. McNulty, J. Am. Chem. Soc., 1927, 49, 996.
- 5. J. M. Aubry, C. Schmitz, J. Rigaudy and N.-K. Cuong, Tetrahedron, 1983, 39, 623.
- 6. W. Feuerstein and A. Lipp, Chem. Ber., 1902, 35, 3255.
- 7. P. Rashidi-Ranjbar, A. Khoramabadi-Zad and R. Mahmood, *Phosphorus, Sulfur Silicon Relat. Elem.*, 2000, **159**, 229.
- 8. U. Lenze and H.-J. Kallmayer, Pharmazie, 1995, 50, 36.
- 9. N. Vijay, K. G. Abhilash and N. Vidya, Org. Lett., 2005, 6, 5857.
- 10. J.-M. Burns, D.-L. Wharry and T.-H. Koch, J. Am. Chem. Soc., 1981, 103, 849.

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2008

- 11. J. E. Driver and S. F. Mok, J. Chem. Soc., 1955, 3914.
- 12. M. Gomberg and H. R. Snown, J. Am. Chem. Soc., 1925, 47, 198.
- 13. R. N. Carde, G. Jones, W. H. McKinley and C. Price, J. Chem. Soc. Perkin Trans. 1, 1978, 1211.
- 14. H. Stamm, A. Onistschenko, B. Buchholz and T. Mall, J. Org. Chem. 1989, 54, 193.
- 15. M. Ali and D. P. N. Satchell, J. Chem. Soc., Perkin Trans. 2, 1993, 10, 1825.