Electronic Supplementary Information

Cerium(IV)-containing oxomolybdenum cluster with a unique Ce₆Mo₉O₃₈ core structure

Xiao-Yi Yi, Herman H. Y. Sung, Ian D. Williams and Wa-Hung Leung*

Contents

1. Complete experimental procedures and characterization data for complexes 1-5.

2. ¹H and ³¹P NMR spectra of complex 3 (Figures S1 and S2)

1. Complete experimental procedures and characterization data for complexes 1-5

General considerations

Unless otherwise stated, all manipulations were carried out in air. NMR spectra were recorded on a Varian Mercury 300 spectrometer operating at 300 and 121.5 MHz for ¹H and ³¹P, respectively. Chemical shifts (δ , ppm) were reported with reference to SiMe₄ (¹H) and H₃PO₄ (³¹P), respectively. Infrared spectra were recorded on a Perkin-Elmer 16 PC FT-IR spectrophotometer and mass spectra on a Finnigan TSQ 7000 spectrometer. Elemental analyses were performed by Medac Ltd., Surrey, U. K. The ligand NaL_{OEt}¹ was prepared according to a literature method.

Preparation of [Ce(L_{OEt})₂(NO₃)₂] 1

To a solution (10 mL) of NaL_{OEt} (198 mg, 0.35 mmol) in water (10 mL) was added $[NH_3]_2[Ce(NO_3)_6]$ (97.2 mg, 0.18 mmol) in water (5 mL) dropwise over 5 min. The orange precipitate was collected, washed with water, and dried *in vacuo*. X-ray quality crystals were obtained by slow evaporation of a saturated CH₂Cl₂-hexane solution. Yield: 220 mg (93%). ¹H NMR (CDCl₃): δ 1.30 (t, 36H, CH₃), 4.08-4.12 (m, 24H, OCH₂), 5.12 (s, 10H, C₅H₅). ³¹P {¹H} NMR (CDCl₃): δ 121.1 (s). Anal. Calc. for C₃₄H₇₀CeCo₂N₂O₂₄P₆: C, 30.60; H, 5.29; N, 2.10. Found: C, 30.21; H, 5.42; N, 2.18. MS (FAB): *m/z* 1272 (M⁺ - NO₃), 1210 (M⁺ - 2NO₃). IR (KBr, cm⁻¹): 1292 [v(NO₃)].

Preparation of [Ce(L_{OEt})₂(Cr₂O₇)] 2

To a solution of **1** (75 mg, 0.056 mmol) in water (18 mL) was added Na₂Cr₂O₇·2H₂O (18 mg, 0.060 mmol) in water (2 mL), and the mixture was stirred for 10 min. The orange solid was collected and recrystallized from CH₂Cl₂-hexane to give orange crystals which were suitable for X-ray diffraction. Yield: 72 mg (90%). ¹H NMR (CDCl₃): δ 1.26 (t, 36H, CH₃), 4.24-4.28 (m, 24H, OCH₂), 5.08 (s, 10H, C₅H₅). ³¹P {¹H} NMR (CDCl₃): δ 118.9 (s). IR (KBr, cm⁻¹): 861 sh, 964 sh [v(Cr=O)]. Anal. Calc. for C₃₄H₇₀CeCo₂Cr₂O₂₅P₆: C, 28.62; H, 4.95. Found: C, 28.58; H, 4.89.

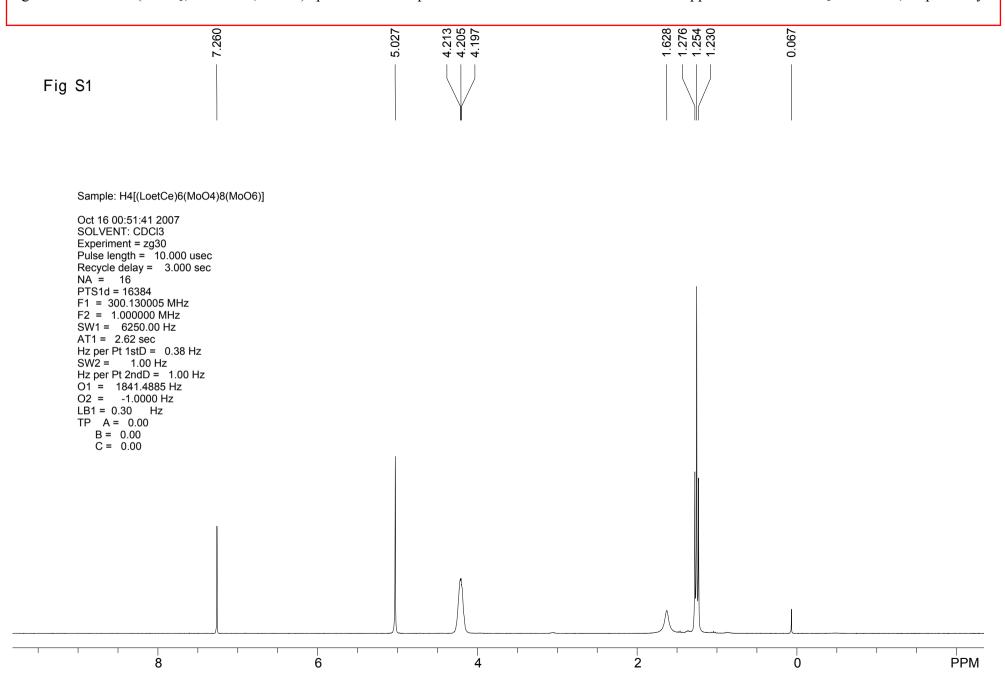
Preparation of [H₄(L_{OEt}Ce)₆Mo₉O₃₈] 3

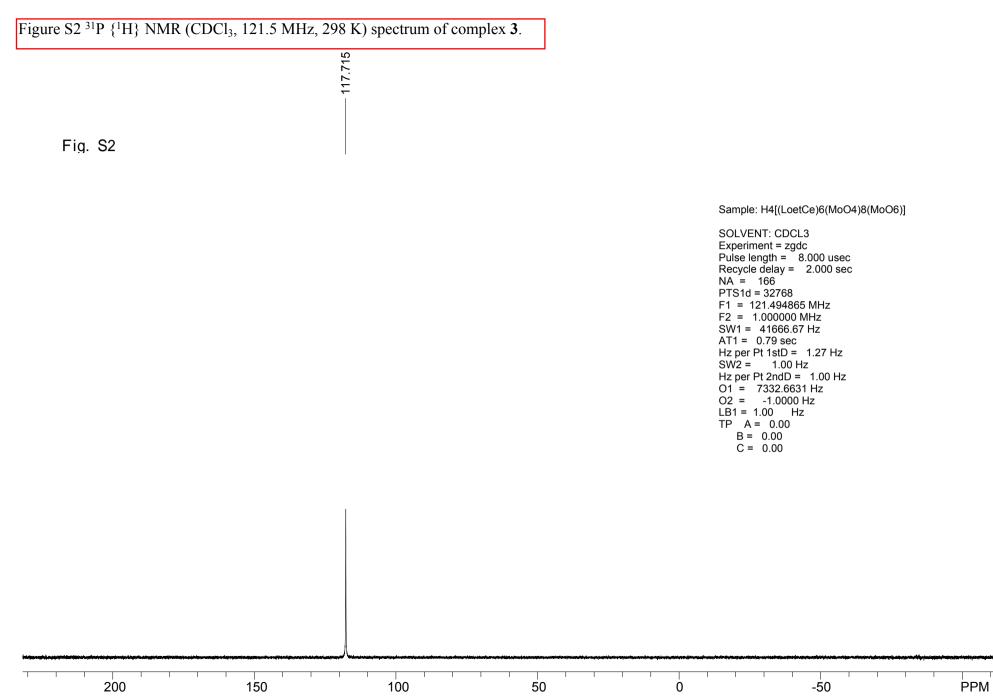
To a solution of **1** (120 mg, 0.090 mmol) in water (30 mL) was added (NH₄)₆Mo₇O₂₄·4H₂O (37 mg, 0.30 mmol) in water (3 mL), and the mixture was stirred for 10 min. The yellow precipitate was collected, and re-dissolved in CH₂Cl₂-thf-hexane (v:v:v = 10:2:2), dried over with anhydrous Na₂SO₄. Slow evaporation of the filtrate gave orange crystals of **3** (yield: 45 mg, 57 %). The mother liquor was left to stand in air overnight to give yellow crystals identified as [MoL_{OEt}(O)₂]₂(μ -O) **4** (yield: 28 mg, 46 %), which could be synthesised directly from (NH₄)₆Mo₇O₂₄·4H₂O and NaL_{OEt} (see below). ¹H NMR (CDCl₃): δ 1.26 (t, 108H, CH₃), 4.20 (m, 72H, OCH₂), 5.03 (s, 30H, C₅H₅). ³¹P {¹H} NMR (CDCl₃): δ 117.8 (s). IR (KBr, cm⁻¹): 845 [v(Mo=O)]. MS (ESI): *m*/*z* 5510.1219 [M⁺ - OH]. Anal. Calc. for C₁₀₂H₂₁₄Co₆Ce₆Mo₉O₉₂P₁₈: C, 22.16; H, 3.90; P, 10.54. Found: C, 22.78; H, 3.86; P, 10.54.

Preparation of [MoLOEt(O)2]2(µ-O) 4

To a solution of $(NH_4)_6Mo_7O_{24}$ (150 mg, 0.12 mmol) in 1.8 M H₂SO₄ (30 mL) was added the solution of NaL_{OEt} (250 mg, 0.25 mmol) in water (30 mL) dropwise, and the yellow solution was stirred at room temperature for 20 min. The precipitate was collected, re-dissolved in CH₂Cl₂ and dried over anhydrous Na₂SO₄. Slow evaporation of the solvent afforded yellow crystals that were characterized as $[MoL_{OEt}(O)_2]_2(\mu-O)_2$ **4** by an X-ray diffraction study.² Yield: 80 mg (56 %). ¹H NMR (CDCl₃): δ 1.27 (m, 36H, CH₃), 4.17 (m, 24H, OCH₂), 5.03 (s, 10H, C₅H₅). ³¹P {¹H} NMR (CDCl₃): δ 113.9 (*pseudo* d), 123.8 (*pseudo* t). IR (KBr, cm⁻¹): 902 [v(Mo=O)], 772, 631 [v(Mo-O_b)]. MS (FAB): 1342 (M⁺ + 1).

Preparation of [H₄(L_{OEt}Zr)₆Mo₉O₃₈] 5


 $[Zr(L_{OEt})(CH_3CO_2)_3]$ was prepared by refluxing $[L_{OEt}ZrF_3]^3$ with trimethylsilyl acetate in CH₂Cl₂ under nitrogen and recrystallized from hexane. To a solution of $[Zr(L_{OEt})(CH_3CO_2)_3]$ (100 mg) in water (30 mL) was added (NH₄)₆Mo₇O₂₄·4H₂O (18 mg) in water (3 mL), and the milky suspension was stirred overnight. The yellow precipitate was collected, re-dissolved in


CH₂Cl₂, and dried over anhydrous Na₂SO₄, and the solvent was evaporated to dryness. Recrystallization from CHCl₃-hexane afforded yellow crystals which were identified as $[H_4(L_{OEt}Zr)_6Mo_9O_{38}]$ **5** by an X-ray diffraction study. Yield: 10 mg (7 %). ¹H NMR (CDCl₃): δ 1.31 (t, 108H, CH₃), 4.14 (m, 72H, OCH₂), 5.12 (s, 30H, C₅H₅). ³¹P {¹H} NMR (CDCl₃): δ 121.4 (s). IR (KBr, cm⁻¹): 860 [v(Mo=O)].

References

- 1 W. Kläui, Z. Naturforsch. 1979, 34 B, 1403.
- 2 X.-Y. Yi, I. D. Williams and W.-H. Leung, unpublished results.
- 3 (a) T. C. H. Lam, E. Y. Y. Chan, W.-L. Mak, S. M. F. Lo, I. D. Williams, W.-T. Wong and W.-H. Leung, *Inorg. Chem.*, 2003, 42, 1842. (b) Q.-F. Zhang, T. C. H. Lam, X.-Y. Yi, E. Y. Y. Chan, W.-Y. Wong, H. H. Y. Sung, I. D. Williams and W.-H. Leung, *Chem.-Eur. J.*, 2005, 11, 101.

Figure S1 ¹H NMR (CDCl₃, 300 MHz, 298 K) spectrum of compound **3**. Resonances at ca. δ 7.26 and 1.6 ppm are due to CHCl₃ and water, respectively.

