Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

Electronic Supporting Information for

Molecular recognition in a heteromolecular radical pair system with complementary multipoint hydrogen bonding

Hidenori Murata, Paul M. Lahti,* Safo Aboaku

Experimental procedures.	Page S1	
Experimental and simulated EPR spectra of DAPPN.	Page S3	
ESI-MS of 10 micromolar methanol solution, 1:1 Ur6IN:DAPPN.	Page S5	
FAB-MS (positive mode mode) from a single crystal of DAPPN	Page S4	
Computed spin density map of 1:1 Ur6IN:DAPPN.	Page S6	
Computed spin population data for DAPPN.	Page S7	

Experimental Procedures.

2,6-Di-tert-butoxycarbonylamino-4-iodo-pyridine was prepared according to the procedure in Pauvert, M.; Laine, P.; Jonas, M.; Wiest, O., J. Org. Chem., **2004**, *69*, 543-548.

2,6-Di-n-butyrylamino-4-iodo-pyridine (DAPP-I). Trifluoroacetic acid (5.3 mL) was added to a solution of 2,6-di-*tert*-butoxycarbonylamino-4-iodopyridine (1.50 g, 3.45 mmol) in dichloromethane and refluxed for 2 h. The solution was chilled and triethylamine (19 mL) was added followed by *n*-butyryl chloride (1.62 g, 15.2 mmol). The mixture was stirred at room temperature overnight. To the mixture, brine was added and the solution was extracted with dichloromethane. The organic layer was dried with MgSO₄, and evaporated to give the crude product. Chromatography on silica gel with ethyl acetate/hexane (5/5) as the eluent yielded **DAPP-I** (0.983 g, 76%) as a white powder. Mp: 117–118 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.30 (s, 2H), 7.84 (brs, 2H), 2.29 (t, 4H, *J* = 7.5 Hz), 1.68 (m, 4H), 0.93 (t, 6H, *J* = 7.5 Hz). ¹³C NMR (CDCl₃, ppm): δ 171.8, 149.6, 118.5, 109.1, 39.6, 18.8, 13.8. IR (KBr pellet, cm⁻¹): 3246 (NH str), 1668 (C=O str). MS (EI): found m/z = 375, calculated for C₁₃H₁₈IN₃O₂ m/z = 375.2. Elemental analysis calculated for C₁₃H₁₈IN₃O₂: C, 41.61; H, 4.84; N, 11.20. Found: C 43.52, H 5.28, N 10.88.

Tris[4-(N-tert-butyl-N-[tert-butyldimethylsiloxyl]amino)phenyl]boroxin (PNN-Si). This compound was prepared according to the procedure in Field, L. M.; Lahti, P. M., *Chem. Mater.*, **2003**, *15*, 2861-2863.

4-(4'-[N-tert-Butyl-N-(tert-butyldimethylsiloxy)amino])-2,6-di-n-butyrylaminopyridine (DAPPN-Si). A flask containing 2,6-di-n-butyrylamino-4-iodopyridine (0.500 g, 1.33 mmol) and palladium acetate (14.9 mg, 66.5 μ mol) was evacuated and back filled with argon twice. 3.6 mL of deaerated THF was added by syringe and the mixture was stirred for about 5 min. A solution of tris[4-(*N*-tert-butyl-*N*-[tert-butyldimethylsiloxyl]amino)phenyl]boroxin (0.517 g, 1.60 mmol) in 3.6 mL of deairated THF was added, followed by 2.8 mL of a 1.2 M aqueous solution of potassium carbonate. The reaction mixture was heated to reflux and allowed to stir overnight under argon. The organic layer was then separated and the aqueous layer was extracted with dichloromethane. The organic layers were combined, dried with MgSO₄, filtered and concentrated in vacuo. Chromatography on silica gel with ethyl acetate/hexane (3/7) as the eluent yielded **DAPPN-Si** (0.596 g, 84%) as a white powder. Mp: 180 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.20 (s, 2H), 7.69 (brs, 2H), 7.69 (s, 2H), 7.57 (d, 2H, *J* = 8.8 Hz), 7.26 (d, 2H, *J* = 7.6 Hz), 2.35 (t, 4H, J = 7.5 Hz), 1.74 (m, 4H), 1.08 (s, 9H), 0.98 (t, 6H, J = 7.5 Hz), 0.89 (s, 9H), -0.14 (s, 6H). ¹³C NMR (CDCl₃, ppm): δ 171.7, 153.5, 152.6, 150.1, 134.4, 126.5, 125.5, 107.4, 61.3, 39.9, 26.4, 26.3, 18.9, 18.1, 13.9, -4.5. IR (KBr pellet, cm⁻¹): 3410 (NH str), 1655 (C=O str). MS (EI): found m/z = 526, calculated for C₂₉H₄₆N₄O₃Si m/z = 526.3. Elemental analysis calculated for C₂₉H₄₆N₄O₃Si: C, 66.12; H, 8.80; N, 10.64. Found: C 65.97, H 8.97, N 10.51.

4-(4'-[*N*-tert-Butyl-*N*-hydroxylamino])-2,6-di-n-butyrylaminopyridine (**D**APPNH). A 1.0 M THF solution of TBAF (2.6 mL, 2.6 mmol) was added dropwise to a solution of **D**APPN-Si (0.596 mg, 1.13 mmol) in dry THF (6.9 mL). The reaction mixture protected from UV was stirred at room temperature for 12 h. The reaction mixture was concentrated in vacuo. Chromatography on silica gel with ethyl acetate/hexane (3/7) as the eluent yielded **D**APPNH (0.324 g, 70%) as a orange powder. Mp: 162–163 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ8.20 (s, 2H), 7.62 (d, 2H, J = 7.6 Hz), 7.55 (brs, 2H), 7.31 (d, 2H, J = 7.6 Hz), 5.66 (brs, 1H), 2.37 (t, 4H, J = 6.6 Hz), 1.76 (m, 4H), 1.15 (s, 9H), 1.01 (t, 6H, J = 7.3 Hz). ¹³C NMR (methanol-*d*, ppm): δ 156.4, 152.3, 150.4, 140.0, 127.5, 127.3, 122.3, 120.4, 118.9, 114.8, 114.4, 55.4. IR (KBr pellet, cm⁻¹): 3427 (NH str), 3224 (OH str), 1701 (C=O str). MS (EI): found m/z = 412, calculated for C₂₃H₃₂N₄O₃ m/z = 412.5. Elemental analysis calculated for C₂₃H₃₂N₄O₃: C, 66.96; H, 7.82; N, 13.58. Found: C 67.18, H 7.92, N 12.56.

4-(4'-[*N*-tert-Butyl-N-aminoxyl])-2,6-di-n-butyrylaminopyridine (**D**APPN). **D**APPNH (0.324 g, 785 μ mol) and freshly prepared silver oxide (0.910 g, 3.93 mmol) were stirred in degassed chloroform (35 mL), protected from UV and under argon, at room temperature for 2 h. The reaction was stopped by rapid filtration through a pad of cotton, washed with chloroform. Concentration under reduced pressure gave a crude product. Chromatography on silica gel with ethyl acetate/hexane (5/5) as the eluent yielded **D**APPN (0.316 g, 98%) as a bright red powder. Mp: 84–86 °C. IR (KBr pellet, cm⁻¹): 3424 (NH str), 1676 (C=O str). MS (EI): found m/z = 412, calculated for C₂₃H₃₁N₄O₃ m/z = 411.5. Elemental analysis calculated for C₂₃H₃₁N₄O₃: C, 67.13; H, 7.59; N, 13.61. Found: C 67.93, H 7.86, N 12.07. [A two-year old sample of **D**APPN was still 97.2% pure by HPLC (C18 column, 1.2 mL/min, 7:3 MeOH:H₂O): R_t = 8.4 min).]

Preparation of Ur6IN·DAPPN Solid Mixture

Ur6IN (0.8 mg, 4.8μ mol) and **DAPPN** (1.3 mg, 4.8μ mol) were dissolved in toluene (3.3 mL). The solution was slowly evaporated to yield the Ur6IN·DAPPN solid mixture, upon which solid-state EPR measurements were directly performed without further treatment.

Experimental and lineshape simulated EPR spectra of DAPPN in toluene. Hfc analysis with program Winsim2002, <u>http://www.niehs.nih.gov/research/resources/software/tools/index.cfm</u>					
based on work described in D.R. Duling. J. Magn. Res., Series B 1994, 104, 105-110.					
Time: 16:4 .000 88 .53, lw3= 0.360					
Date: 11/14/07 Lorentzian : 0 G-shift : -0.0 in Number 5 2 5 2 1= 0.354, w2= 0.5					
Species number: Rel. conc. : 100.000 Line width : 0.500 Nuclei Coupling St 1 2.161 0.0909 0. Nitroxide: aN= 11.524, lw					
	458				
ciences Simulation Parameter Calculation type: Nitro Number of Species: 1 Domain: CW	33				
02 • Tools = Tools Health, USA Health, USA GHz mw	and a Gauss)				
Winsim v.1.0, 20 Public EPR Software National Institutes of National Institutes of http://epr.niehs.nih.gr Rec. Gain: MW Freq.: MW Prewer:	Magnetic Fi				
pectral Parameters: eld Center: 3433,400 G can Range: 56,000 G ata Points: 2048 od. Amp.: G od. Freq: KHz	Experiment Experiment 3420:50				
i ω ∣ μ ω ⊡ ≥ ≥ Ο	0.53 0.27 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23				

S3

ſ

FAB Mass spectrum (positive mode mode) from a single crystal of DAPPN

ESI Mass spectrum of 10 micromolar methanol solution of 1:1 **Ur6IN**:**DAPPN**, positive ion formation method. Instrument is ThermoQuest LCQ-DECA.

Computed spin density map of 1:1 Ur6IN:DAPPN model. Computed using Spartan 2002 for SGI computer with idealized geometry of the molecular fragments (methyl groups removed from IN radical unit and from nitroxide *t*-butyl group), using a semiempirical triplet state PM3 computation. The qualitative spin density distribution is in accord with Figure 1 in the main text. Blue = positive spin density, red = negative spin density; less intense colors indicate smaller spin populations mapped onto the electron density surface.

C12

нзв

Computed spin population data for DAPPN: computed using Spartan 2002 for SGI at UB3LYP/6-31G* level.

АТОМ	CHARGE	SPIN	
1 C	0.599048	-0.000303	
2 C	0.507546	-0.009167	
3 C	0.500844	-0.009030	
4 C	-0.217465	0.024959	H2B
5 C	-0.230396	0.026020	210
6 C	0.120864	-0.025483	C7
7 C	0.088841	0.130891	,#25
8 C	-0.180286	-0.071024	
9 C	-0.181385	-0.074588	H23
10 C	-0.194632	0.130163	78
11 C	-0.168042	0.129405	022
12 C	0.319364	-0.111320	C14 M9
13 C	-0.326449	-0.029790	P13 H39
14 C	-0.539880	0.000015	N 1
15 C	0.596927	-0.000311	
16 C	-0.543399	0.000024	
17 N	-0.680524	-0.000036	
18 N	-0.604447	0.019344	
19 N	-0.073999	0.339423	
20 N	-0.675371	0.000071	
21 0	-0.503011	-0.000887	
22 0	-0.413701	0.507753	
23 0	-0.506245	-0.000569	
24 H	0.181792	-0.001131	
25 H	0.193658	-0.001088	
26 H	0.163021	0.002681	
27 H	0.150950	0.002801	
28 H	0.139494	-0.006045	
29 H	0.169467	-0.006377	
30 H	0.175505	0.019093	
31 H	0.197327	0.000824	
32 H	0.174016	0.013774	
33 H	0.198431	-0.000014	
34 H	0.153824	-0.000003	
35 H	0.187225	-0.000016	
36 H	0.176372	-0.000010	
37 H	0.199720	0.00002	
38 H	0.168943	-0.000005	
39 H	0.338790	-0.000030	
40 H	0.337262	-0.000020	