Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

SUPPLEMENTARY INFORMATION

One-pot synthesized MoC imbedded in

ordered mesoporous carbon as a catalyst for N_2H_4 decomposition

Hui Wang, Aiqin Wang, Xiaodong Wang and Tao Zhang*

State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China E-mail: <u>taozhang@dicp.ac.cn</u> Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

Sample	Mo content ^a	$\mathbf{S}_{\mathrm{BET}}{}^{\mathrm{b}}$	V_M^{c}	V_T^{d}	${\mathsf D_P}^e$
	(Wt %)	(m^2/g)	(cm^3/g)	(cm^3/g)	(nm)
OMC	0	758	0.15	0.86	5.5
MoC-OMC	4.0	700	0.14	0.86	6.5
Mo ₂ C/OMC	3.9	707	0.15	0.78	5.6

Table S1 Physical properties of the three samples.

^a Mo content was determined by ICP. ^b Brunauer-Emmet-Teller (BET) surface area. ^c Micropore volume determined by t-plot. ^d Total pore volume calculated as the amount of nitrogen adsorbed at a relative pressure of 0.99. ^e pore diameter calculated by the Barrett-Joyner-Halenda (BJH) method using desorption branches.

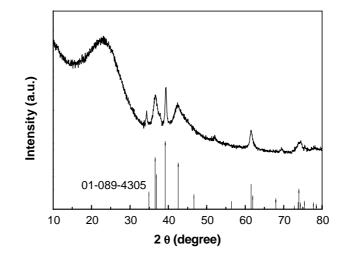


Fig.S1

Fig. S1 XRD pattern of the MoC-OMC obtained by adding 0.4 g (NH₄)₆Mo₇O₂₄·4H₂O to the reaction system.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

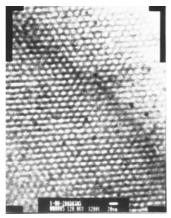


Fig.S2

Fig. S2 TEM image of the MoC-OMC viewed along [001] orientation

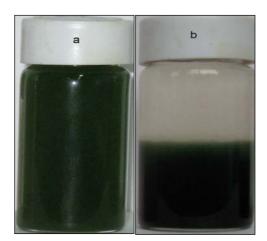


Fig.S3

Fig. S3 photographs of the reaction system (a) at the beginning of the polymerization;

(b) after standing at RT for 24 h.