Supporting Information

Conformationally armed glycosyl donors: Reactivity quantification, new donors and one pot reactions.

5 Christian Marcus Pedersen, Lavinia G. Marinescu, and Mikael Bols

Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark.

General Information: ${ }^{13} \mathrm{C}-,{ }^{1} \mathrm{H}$ - and H,H-COSY NMR were recorded on a Varian Mercury 400 $(400 \mathrm{MHz})$ NMR Instruments. The spectra were referenced to solvent residues. ES-MS was recorded 10 on a Micromass LC-TOF instrument and MALDI-TOF MS was recorded on a Bruker Deltronics mass spectrometer using cinnamic acid (HCCA) based matrix. Optical rotations were measured on a PE-314 polarimeter at $20 \pm 1^{\circ} \mathrm{C}$. Chromatography was performed in Merck 60 silica. TLC was performed on Merck silica $60 \mathrm{E}_{254}$ coated glass plates and developed using Ce-mol ($10 \mathrm{~g} \mathrm{Ce}(\mathrm{IV}) \mathrm{SO}_{4}$ and 15 g $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{MoO}_{4}$ in $1 \mathrm{~L} 10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ med $)$ or phosphomolybic acid $\left(\mathrm{MoO}_{3}-\mathrm{H}_{3} \mathrm{PO}_{4} \mathrm{xH}_{2} \mathrm{O} 5 \%\right.$ in EtOH$)$ and 15 subsequent heating.

Figure S1. Glycosylation reactivities of different types of donors.

20

Determining the relative rate of glycosylation: Each reaction was performed on 6 samples of 2 mL ; each sample contained a solution of the appropriate donor in dichloromethane (different

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2008
concentrations), $\mathrm{TfOH}(0.1 \mathrm{eq}), \mathrm{MeOH}$ (80 eq.). NIS (10 eq.) was added to these samples and the reaction was followed by UV at 505 nm and typically monitored for 5 to 30 min at room temperature. For the background reaction were prepared 6 samples of dichloromethane containing the same amount of TfOH, MeOH and NIS but no donor. Velocities were determined as the slope of the progress curve 5 of each reaction and subtracting the background velocities from the total velocities of the appropriate donor sample. $k_{\text {glyc }}$ was determined as the slope from the plot of $v_{\text {glyc }}$ vs. donor concentrations. The extinction coefficient for iodine in dichloromethane at room temperature and 505 [nm] was $\varepsilon=0.8$ $\left[\mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right]$.

10

General procedure for NIS / TfOH activated cross couplings:

When not otherwise noticed equivalent amounts of the glycosyl donor and acceptor were coevaporated with toluene 3 times followed by drying under vacuum together with powdered $4 \AA \mathrm{~ms}$. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the mixture was stirred under argon atm. for 2 h at rt . followed by cooling to $1585^{\circ} \mathrm{C}$ where NIS (1.1 eq.) was added by an in situ addition system followed by a catalytical amount of $\mathrm{TfOH}(5 \mu \mathrm{l})$, which was inJected by syrringe. The reaction was stirred one hour at $-85^{\circ} \mathrm{C}$ and allowed to reach -50 to $-60^{\circ} \mathrm{C}$, when the donor was "superarmed" and up to rt . with less reactive donors, where it was quenched by addition of $\mathrm{Et}_{3} \mathrm{~N}$. The mixture was diluted with EtOAc and filtered through celite. The organic phase was washed with NaHSO_{3} (sat.) and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in 20 vacuo to give a crude product which was purified further by flash chromatography (pentane:EtOAc 25:1 to $10: 1$).

Data for compounds $\mathbf{1 - 8}$ can be found in reference 5 .

Phenyl-2,4-di-O-benzyl-3,6-O-di- ${ }^{\text {- }}$ Busilylene-1-thio- α-D-glucopyranoside (9)

25

Phenyl 2,4-di-O-benzyl-3,6-di-O-acetyl-1-thio- α-D-glucopyranoside ($190 \mathrm{mg}, 0.42 \mathrm{mmol}$) was dissolved in DMF (5 mL) and 2,6-lutidine ($180 \mathrm{mg}, 1.68 \mathrm{mmol}$) was added together with TBDPS triflate ($203 \mathrm{mg}, 0.46 \mathrm{mmol}$) and stirred over night. TLC showed full conversion of SM and 2 products. After additional 24 h . the reaction was quenched by MeOH , diluted with EtOAc, washed 30 thoroughly with water, $\mathrm{HCl}(1 \mathrm{M}, 10 \mathrm{~mL}), \mathrm{NaHCO}_{3}(\mathrm{sat}, 10 \mathrm{~mL})$, brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give a crude product which could be purified by flash chromatography

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2008
(pentane : EtOAc 10:1) to give the title product ($45 \mathrm{mg}, 18 \%$) and the Si-O-Me derivative ($151 \mathrm{mg}, 58$ \%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.44(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.10(\mathrm{~m}, 11 \mathrm{H}), 5.96(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-1), 4.78(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J$ $5=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{bs}, 1 \mathrm{H}), 4.37(\mathrm{bs}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=1.7 \mathrm{~Hz}, 12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.89(\mathrm{~m}, 3 \mathrm{H})$, $0.84(\mathrm{~s}, 9 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 138.2,138.0,137.4,130.6,128.8,128.4$, $128.3,127.9,127.7,127.6,126.5,84.8,78.0,75.4,73.6,73.2,71.2,70.0,68.3,28.4,28.1,21.8,21.2$ HRMS(ES) m / z calcd. for $\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{O}_{5} \mathrm{SSiNa}$: $615.2576, \mathrm{~m} / \mathrm{z}$ found: 615.2570

10 Phenyl 6-O-(2,4-di-O-benzyl-3,6-di-O-di-butylsilylene-D-glucopyranosyl)-2,3,4-tri-O-benzyl-1-thio- β-D-glucopyranoside (10)

Standard procedure was giving 55% of an inseparable mixture of anomers (α / β 3:1).
$\alpha:{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 139.2,139.0,138.9,138.2,138.1,134.4,132.2,131.9,129-126$ 15 (16C), 96.9 (C-1'), 87.8, 86.6, 80.9, 78.6, 77.2, 77.2, 75.5, 75.3, 74.6 (2 C), 74.4, 72.1, 71.5, 70.6, 68.1, 67.6, 28.2, 28.1, 21.9, 21.5
$\beta:{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 138.7$, 138.6, 138.3, 138.2, 137.8, 133.8, 132.2, 128.9, 102.2 (C$\left.1^{\prime}\right), 87.3,86.8,83.5,80.3,79.0,78.1,77.1,75.8,75.5,75.3,74.9,72.8,72.5,71.7,68.5,67.3,28.3$, 27.9, 21.8, 21.7

20 HRMS(ES) m / z calcd. for $\mathrm{C}_{61} \mathrm{H}_{72} \mathrm{O}_{10}$ SSiNa: 1047.4513, m / z found: 1047.4507

Benzyl 4-O-(2,3,4-tri-O-tbutyldimethylsilyl-6-deoxy- α-L-mannoside)-2-deoxy-2-N-acetyl-3-O-acetyl-6-O-benzyl- β-D-glucopyranoside (13)

251.5 eq donor and 1.0 eq acceptor were cross-coupled under the standard conditions. The crude product was purified by flash chromatography to give 175 mg (quantitative) of the disaccharide as α / β mixture. Due to the multiple conformations in slow equilibrium it was not possible to obtain sharp NMR spectres. In order to analyse the disaccharide it was desilylated and acetylated following the standard procedure.

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2008

HRMS(ES) m / z calcd. for $\mathrm{C}_{49} \mathrm{H}_{81} \mathrm{NO}_{11} \mathrm{Si}_{3} \mathrm{Na}: 954.5015, \mathrm{~m} / \mathrm{z}$ found: 954.4988

Phenyl 4-O-(2,3,4-tri-O-benzyl-6-O-(2,3,4-tri-O-tbutyldimethylsilyl-6-O-benzyl- β-D-glyco-pyranosyl)- α-D-glucopyranosyl)-2,3-di-O-acetyl-6-O-benzyl-1-thio- β-D-glucopyranoside (16)

The "super armed" donor $\mathbf{1 4}(140 \mathrm{mg}, 0.20 \mathrm{mmol})$, the armed acceptor $\mathbf{4}(98 \mathrm{mg}, 0.18 \mathrm{mmol})$ and the disarmed acceptor $\mathbf{1 5}(96 \mathrm{mg}, 0.22 \mathrm{mmol})$ were coevaporated with toluene (3 times) and dried under vacuum overnight together with powdered $4 \AA \mathrm{~ms}$ and NIS ($89 \mathrm{mg}, 0.40 \mathrm{mmol}$) in a seperate container. The sugar building blocks were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and stirred 2 h at rt before it 10 was cooled to $-88^{\circ} \mathrm{C}$, where NIS was added together with $\mathrm{TfOH}(5 \mu \mathrm{~L})$. The reaction was slowly warmed to $-50{ }^{\circ} \mathrm{C}$ where it was quenched by addition of $\mathrm{Et}_{3} \mathrm{~N}$, filtered and diluted with EtOAc. The organic phase was washed with $\mathrm{HCl}(1 \mathrm{M}), \mathrm{NaHSO}_{3}$ (sat), NaHCO_{3} (sat.) and brine followed by drying $\left(\mathrm{MgSO}_{4}\right)$ and concentration in vacuo to give the crude product, which was purified by flash chromatography (pentane/EtOAc 50:1 to $15: 1$) to give the title product together with the trisaccharide 15 missing a TBS group and a small portion lacking two TBS groups (adjusted yield $163 \mathrm{mg}, 64 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.50(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.15(\mathrm{~m}, 28 \mathrm{H}), 5.28(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.93$ (d, J $=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}$, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-4.51(\mathrm{~m}, 3 \mathrm{H}), 4.49(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J$ $=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=3.8 \mathrm{~Hz}, 11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{t}, J$ $20=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.70(\mathrm{~m}, 4 \mathrm{H}), 3.59(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{dd}, J=4.9 \mathrm{~Hz}, 9.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.34(\mathrm{bd}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 18 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.04$ $(\mathrm{s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 9 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 170.2,169.6,139.1,138.6,138.5$, $138.4,138.0,133.1,132.2,128.9,128.5,128.5$ (2 C), 128.4, 128.4, 128.3, 128.2, 128.1, 127.9 (2 C), $127.9,127.7,127.6,127.6,127.6,127.4,103.5\left(J_{\mathrm{CH}}=161 \mathrm{~Hz}, \mathrm{C}-1 "\right), 98.0\left(J_{\mathrm{CH}}=166 \mathrm{~Hz}, \mathrm{C}-1{ }^{\prime}\right), 85.4$ 25 (C-1), 81.2, 80.2, 80.1, 79.5, 78.6, 78.2, 77.0, 75.5, 75.4, 75.3, 74.8, 73.2, 73.1, 73.0, 71.8, 71.4, 70.8, $70.7,69.5,69.0,26.0,25.9,25.9,21.0,20.9,18.1,18.0,18.0,-3.8,-4.1,-4.3,-4.5,-4.5,-4.7$
HRMS(ES) m / z calcd. for $\mathrm{C}_{81} \mathrm{H}_{122} \mathrm{O}_{17} \mathrm{SSi}_{3} \mathrm{Na}$: $1495.6826, \mathrm{~m} / \mathrm{z}$ found: 1495.6313

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2008
p-Methylphenyl 6-O-benzyl-3,4-tetra-O-'butyldimethylsilyl-2-deoxy-2-[[(2,2,2-trichloroethoxy) carbonyl]amino]-1-thio- β-D-glucopyranoside (17)

p-Methylphenyl 2-deoxy-2-[[(2,2,2-trichloroethoxy)carbonyl]amino]-6-O-benzyl-1-thio- β-D-gluco5 pyranoside ($0.540 \mathrm{mg}, 0.98 \mathrm{mmol}$) was together with DMAP (40 mg) dissolved in pyridine (5 mL) and cooled to $0{ }^{\circ} \mathrm{C}$, where after TBSOTf ($1.04 \mathrm{~g}, 0.40 \mathrm{mmol}, 0.9 \mathrm{~mL}$) was added by syringe. The reaction mixture was heated to $60^{\circ} \mathrm{C}$ overnight and worked up. A regioisomeric mixture was isolated and the reaction procedure was repeated. After aqueous workup the crude product was purified by flash chromatography to give app. 20% of the desired product together with a mixture of product and 10 byproducts.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.36(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.09(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.80(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=$ $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=8.7 \mathrm{~Hz}, 8.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.09 (m, 2 H), 3.97 (dd, $J=5.4 \mathrm{~Hz}, 8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.93 (bd, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.87 (bs, 1 H), 2.32 ($\mathrm{s}, 3$ $15 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 6 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 153.7,138.4,137.2,132.6,131.8,129.7,128.3,127.6$ (2 C), $95.6,85.0,79.7,74.7,73.3,71.5,71.2$, $69.5,54.5,25.9,21.2,18.2,17.9,-4.7,-4.8,-4.8,-4.9$
HRMS(ES) m / z calcd. for $\mathrm{C}_{35} \mathrm{H}_{54} \mathrm{Cl}_{3} \mathrm{NO}_{6} \mathrm{SSi}_{2} \mathrm{Na}$: $800.2174, \mathrm{~m} / \mathrm{z}$ found: 800.2202

20 Phenyl 6-O-(2-deoxy-2-[[(2,2,2-trichloroethoxy)carbonyl]amino]-6-O-benzyl-3,4-di-O${ }^{t}$ butyldimethylsilyl- β-D-glucopyranosyl)-2,3,4-tri-O-benzyl-1-thio- β-D-glucopyranoside (18)

Following the standard procedure 18 was obtained (85%, only β).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.39(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.19(\mathrm{~m}, 18 \mathrm{H}), 7.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.33$ (d, J $25=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=11.2 \mathrm{~Hz}), 4.87(\mathrm{~d}, J=$ $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{bs}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=11.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.09(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dbb}, J=6.4 \mathrm{~Hz}, 8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{dd}, J=5.9 \mathrm{~Hz}, 9.0$

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2008
$\mathrm{Hz}, 1 \mathrm{H}), 3.80(\mathrm{bs}, 1 \mathrm{H}), 3.68(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{dd}, J=4.4 \mathrm{~Hz}, 10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3$ H), $0.92(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 6 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 153.8,138.8,138.8,138.2,138.2,137.4,131.9,131.0,129.8,128.6$, $128.5,128.5,128.4,128.3,128.2,128.1,128.1,128.0,127.9,127.8,127.6,127.4,127.3,100.4,95.6$, $588.8,86.9,81.4,78.5,77.6,77.0,75.6,75.6,75.2,74.7,72.9,71.3,70.3,69.3,68.0,52.7,26.0,25.9$, 21.2, 18.1, 18.0, -4.6, -4.7, -4.8, -4.8, HRMS(ES) m / z calcd. for $\mathrm{C}_{61} \mathrm{H}_{80} \mathrm{Cl}_{3} \mathrm{NO}_{11} \mathrm{SSi}_{2} \mathrm{Na}$: $1218.3954, \mathrm{~m} / \mathrm{z}$ found: 1218.4012
${ }^{3} J_{\mathrm{CH}}=154 \mathrm{~Hz}$ of the desilylated disaccharide.

10 Phenyl 6-O-acetyl-3,4-di-O-di- ${ }^{\text {t}}$ Butyldimethylsilyl-2-deoxy-2-[(2,2,2-trichloroethoxy)carbonyl] amino]-1-thio-D-glucopyranoside (19)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.53(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 3 \mathrm{H}), 6.44(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}, 1 \mathrm{H}$, NH), $5.22(\mathrm{~d}, ~ J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.76(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.75-4.65(\mathrm{~m}, 2 \mathrm{H}), 4.63(\mathrm{~d}, J=11.9$ $15 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=2.6 \mathrm{~Hz}, 2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=3.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 0.94(2 \mathrm{~s}, 18 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.3,153.6,136.4,131.0,128.9,127.1,95.5,84.4,78.0,74.7,70.6,69.2,64.7,54.3$, $25.8,25.8,20.8,18.1,17.9,-4.8$ (2 C), -4.9, -5.0
HRMS(ES) m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{48} \mathrm{Cl}_{3} \mathrm{NO}_{7} \mathrm{SSi}_{2} \mathrm{Na}$: 738.1653, m / z found: 738.1635
20
Phenyl 4-O-(6-O-acetyl-2-deoxy-2-[(2,2,2-trichloroethoxy)carbonyl]amino]-3,4-di-O-
${ }^{t}$ Butyldimethylsilyl - β-D-glucopyranosyl)-2,3,6-tri-O-benzyl-1-thio- β-D-glucopyranoside (20)

Standard procedure was giving 67% of the β-disaccharide.
$25{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.55(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.19(\mathrm{~m}, 18 \mathrm{H}), 5.59(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}$, $J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.76$ $(\mathrm{d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~m}, 2 \mathrm{H}), 4.27(\mathrm{dd}, J$ $=8.4 \mathrm{~Hz}, 8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=6.0 \mathrm{~Hz}, 10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~m}, 2 \mathrm{H})$,

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2008
$3.78(\mathrm{~m}, 3 \mathrm{H}), 3.71(\mathrm{t}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=9.1 \mathrm{~Hz}, 9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{bd}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H})$, 1.99 (s, 3 H), 0.89 (s, 9 H), 0.86 (s, 9 H), 0.12 (s, 3 H), 0.08 (s, 6 H), 0.03 (s, 3 H); ${ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 170.3,153.7,138.9,138.4,138.3,133.6,132.3,128.9,128.4,128.4,128.3,128.2$, $128.0,127.8,127.6,127.5,127.5,109.9,102.0,95.7,87.4,85.0,80.6,79.2,78.6,77.7,75.4,74.9$, $574.6,73.3,70.1,68.3,65.2,57.1,25.9,25.8,20.9,18.1,17.9,-4.6,-4.7,-4.8,-5.0$ $\operatorname{MS}(E S) \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{56} \mathrm{H}_{76} \mathrm{Cl}_{3} \mathrm{NO}_{12} \mathrm{SSi}_{2} \mathrm{Na}$: $1170.3590, \mathrm{~m} / \mathrm{z}$ found: 1170.3611

