Synthesis of 2

1.384 g of $[Fe_2{\mu-SCH_2N(^{i}Pr)CH_2S}(CO)_6]$ was heated in refluxing toluene with 2 eq of 1,10phenanthroline monohydrate (1.163 g) until gas evolution stopped. After filtration, the solvent was removed *in vacuo* and the product was purified by column chromatography on silica gel with CH₂Cl₂ as eluent and washed with pentane. Suitable single crystals for X-Ray diffraction were grown at room temperature from hexane/CH₂Cl₂ solution. Yield : 0.378 g, 22 %. IR (CH₂Cl₂) : v_{CO} 2008, 1938, 1895 cm⁻¹, RMN ¹H : (300 MHz, CD₂Cl₂) : 9.00 (d, 2H, J_{HH} = 4.3 Hz, phen), 8.24 (d, 2H, J_{HH} = 6.8 Hz, phen), 7.89 (s, 2H, phen), 7,60 (dd, 2H, J_{HH} = 5.5 Hz, J_{HH} = 6.2 Hz, phen), 3.33 (d, 2H, J_{HH} = 11 Hz, N(CH₂)₂S₂), 2.88 (spt, 1H, J_{HH} = 6.5 Hz, NCH(CH₃)₂), 2.76 (d, 2H, J_{HH} = 11 Hz, N(CH₂)₂S₂), 0.95 (d, 6H, J_{HH} = 6.6 Hz, NCH(CH₃)₂) ; RMN ¹³C{¹H} (300 MHz, CD₂Cl₂) : 217.2 (s, CO), 214.4 (s, CO), {151.1, 148.0, 132.8, 130.0, 127.0, 122.7} (phen), 18.9 (s, NCH(CH₃)₂), 50.3 (s, N(CH₂)₂S₂), 56.5 (s, NCH(CH₃)₂)

Table 1

Isomer a (≈70%)	Isomer b (≈30%)
8.94 (d, 2H, J_{HH} = 5.2 Hz ,phen)	$8.91 (d, 2H, J_{HH} = 4.8 Hz , phen)$
$8.69 (d, 2H, J_{HH} = 8.1 Hz , phen)$	$8.69 (d, 2H, J_{HH} = 8.1 Hz , phen)$
8.22 (s, 2H, phen)	8.22 (s, 2H, phen)
7.93 (dd, 2H, nr, phen)	7.93 (dd, 2H, nr, phen)
4.25 (d, 2H, J_{HH} = 12.0 Hz , N(CH ₂) ₂ S ₂)	4.43 (d, 2H, $J_{\rm HH}$ = 12.2 Hz , $N(C{\rm H}_2)_2S_2)$
$3.96 \text{ (spt, 1H, } J_{HH} = 6.7 \text{ Hz, } NCH(CH_3)_2)$	$3.96 \text{ (spt, 1H, } J_{HH} = 6.7 \text{ Hz, } NCH(CH_3)_2)$
3.12 (d, 2H, J_{HH} = 12.0 Hz , N(CH ₂) ₂ S ₂)	3.34 (d, 2H, $J_{\rm HH}$ = 12.2 Hz , $N(C{\rm H}_2)_2S_2)$
1.49 (d, 6H, J_{HH} = 6.85 Hz, NCH(CH ₃) ₂)	1.48 (d, 6H, J_{HH} = 6.6 Hz, NCH(CH ₃) ₂)

Figure b : Acid-dependence of the reduction current for $[Fe_2(CO)_4(\kappa^2-dppe)\{\mu-SCH_2N(^iPr)CH_2S\}]$ (1) and for $[Fe_2(CO)_6\{\mu-SCH_2N(^iPr)CH_2S\}]$; the concentrations of complex (k2-dppe = 1 and hexaCO = $[Fe_2(CO)_6\{\mu-SCH_2N(^iPr)CH_2S\}]$) are indicated on the diagram; the currents (i_p^{red}) were measured by cyclic voltammetry at a scan rate of 0.2 V s⁻¹ at the peak potential of process A for both complexes; the data for $[Fe_2(CO)_6\{\mu-SCH_2N(^iPr)CH_2S\}]$ were taken from reference 24.