SUPPORTING INFORMATION

Three-Metal-Center Spin Interactions through the Intercalation of Metal Azaporphines and Porphines into an Organic Pillared Coordination Box

Kosuke Ono, Michito Yoshizawa, Tatsuhisa Kato, and Makoto Fujita

Contents

- Materials and instrumentations.
- Synthesis and physical data of 1⊃(6a)₃: ¹H-NMR, ¹³C-NMR, HSQC, HMBC, NOESY, DOSY, UV-vis, and CSI-MS spectra.
- Physical data of $1 \supseteq (6b)_3$: CSI-MS and UV-vis spectra.
- UV-vis spectrum of **6b**
- Synthesis and physical data of 1⊃(5a•6a•5a): ¹H-NMR, ¹³C-NMR, HSQC, HMBC, NOESY, DOSY, UV-vis, and CSI-MS spectra.
- Physical data of 1⊃(5b•6c•5b): CSI-MS and UV-vis spectra.
- Physical data of $1\supset(5b-6d-5b)$: CSI-MS and UV-vis spectra.
- Physical data of 1⊃(5b•6a•5b): CSI-MS and UV-vis spectra.
- Physical data of $1\supset(5a\cdot6d\cdot5a)$: CSI-MS and UV-vis spectra.
- ESR spectra of $1 \supseteq (6b)_3$, $1 \supseteq (5b \cdot 6c \cdot 5b)$, $1 \supseteq (5b \cdot 6d \cdot 5b)$, $1 \supseteq (5b \cdot 6a \cdot 5b)$, and $1 \supseteq (5a \cdot 6d \cdot 5a)$.
- X-ray crystal data and structure of $1 \supset (6a)_3$.

■ Materials and instrumentations.

NMR spectra were recorded on a Bruker DRX-500 (500 MHz) spectrometer. TMS (CDCl₃ solution) in a capillary served as external standard (δ 0 ppm). CSI-MS (cold-spray ionization mass spectroscopy) data were measured on a four-sector (BE/BE) tandem mass spectrometer (JMS-700C, JEOL) equipped with the CSI source. IR measurements (ATR) were carried out using a DIGILAB Scimitar FTS-2000 instrument. UV-visible and ESR spectral data were recorded on a SHIMADZU UV-3150 and JEOL JMS-RE1X, respectively. Melting points were determined on a Yanaco MF-500 V micro melting point apparatus. Solvents and reagents were purchased from TCI Co., Ltd., WAKO Pure Chemical Industries Ltd., and Sigma-Aldrich Co. Deuteration H₂O was acquired from Cambridge Isotope Laboratories, Inc. and used as supplied for the complexation reactions and NMR measurements. Tetrazaporphine (**6a**) was prepared from maleinitrile (ref. *J. Chem. Soc.*, **1952**, 4839–4846).

Synthesis of $1\supset(6a)_3$ **.**

Typical procedure: (en)Pd(NO₃)₂ (**4**, 17.43 mg; 60.0 µmol), tris(4-pyridyl)triazine (**2**, 6.25 mg; 20.0 µmol), 1,4-bis(2,6-dimethyl-4-pyridyl)benzene (**3**, 8.65 mg; 15.0 µmol), and tetrazaporphine (**6a**, 12.56 mg; 40.0 µmol, 4 eq. per **1**) was suspended in a D₂O solution (1.0 mL) and the mixture was stirred at 100 °C for 2 h. After filtration of the dark purple solution, the ¹H NMR spectrum revealed the selective formation of $1\Box(6a)_3$ complex. The solution was evaporated and dried by vacuum freeze-drying equipment to give a purple solid of $1\Box(6a)_3$ complex (37.9 mg; 9.08 µmol) in 91% yield.

Physical data of $1 \supseteq (6a)_3$: ¹H NMR (500 MHz, D₂O, 27 °C): δ 8.95 (s, 12H, 1), 8.65 (s, 12H, 1), 8.27 (d, J = 5.0 Hz, 12H, 1), 7.26 (s, 16H, 6a), 7.20 (s, 8H, 6a), 5.91 (d, J = 5.0 Hz, 12H, 1), 3.80 (s, 36H, 1), 2.91 (br, 12H, 1), 2.72 (br, 12H, 1); ¹³C NMR (125 MHz, D₂O, 27 °C): δ 163.8 (C_q , 1), 160.8 (C_q , 1), 151.7 (CH, 1), 150.9 (C_q , 1), 140.6 (C_q , 1), 137.6 (C_q , 1), 132.8

(C_a, **6a**), 129.2 (CH, **1**), 128.1 (CH, **6a**), 122.8 (CH, **1**), 122.3 (CH, **1**), 47.7 (CH₂, **1**), 46.2 $(CH_2, 1)$, 26.1 $(CH_3, 1)$; DOSY-NMR (cm^2/s) : D = -9.85; IR (ATR, cm⁻¹): 3429 (br), 3213 (br), 3102 (br), 1615, 1519, 1329, 1157, 1053, 828; m.p.: ~200 °C (decomposed); CSI-MS $(H_2O:DMF = 20:1): m/z \ 4170.7 \ [1 \supset (6a)_3 - 3 \cdot NO_3^{-1}]^{3+}, \ 1327.3 \ [1 \supset (6a)_3 - 3 \cdot NO_3^{-1} + DMF]^{3+},$ $[1 \supset (6a)_3 - 3 \cdot NO_3 + 2 \cdot DMF]^{3+}$ 1377.0 $[1 \supset (6a)_3 - 4 \cdot NO_3 + DMF]^{4+},$ 998.2 1352.8 1035.0 $[1 \supset (6a)_3 - 4 \cdot NO_3 + 2 \cdot DMF]^{4+},$ 1017.5 $[1 \supset (6a)_3 - 4 \cdot NO_3 + 3 \cdot DMF]^{4+},$ $[1 \supset (6a)_3 - 4 \cdot NO_3 + 4 \cdot DMF]^{4+},$ $[1 \supset (6a)_3 - 4 \cdot NO_3 + 5 \cdot DMF]^{4+},$ 1053.3 1071.7 $[1 \supset (6a)_3 - 5 \cdot NO_3 + 2 \cdot DMF]^{5+}$ 802.0 $[1 \supset (6a)_3 - 5 \cdot NO_3 + 3 \cdot DMF]^{5+},$ 816.9 $[1 \supset (6a)_3 - 5 \cdot NO_3 + 4 \cdot DMF]^{5+}$ $[1 \supset (6a)_3 - 5 \cdot NO_3 + 5 \cdot DMF]^{5+}$ 830.2 845.0 $[1 \supset (6a)_3 - 5 \circ NO_3^- + 6 \circ DMF]^{5+},$ $[1 \supset (6a)_3 - 6 \circ NO_3 + 2 \circ DMF]^{6+}$ 859.4 657.8 $[1 \supset (6a)_3 - 6 \cdot NO_3 + 3 \cdot DMF]^{6+}$. $[1 \supset (6a)_3 - 6 \cdot NO_3 + 8 \cdot DMF]^{6+}$. 669.5 730.6 $[1 \supset (6a)_3 - 6 \cdot NO_3 + 10 \cdot DMF]^{6+}$ $[1 \supset (6a)_3 - 7 \bullet NO_3^- + 5 \bullet DMF]^{7+},$ 587.0 755.8 $[1 \supset (6a)_3 - 7 \cdot NO_3 + 6 \cdot DMF]^{7+}$ $[1 \supset (6a)_3 - 7 \bullet NO_3 + 7 \bullet DMF]^{7+},$ 596.8 606.6 $[1 \supset (6a)_3 - 7 \cdot NO_3 + 8 \cdot DMF]^{7+}$ 617.4 $[1 \supset (6a)_3 - 7 \cdot NO_3 + 9 \cdot DMF]^{7+}$ 627.7 $[1 \supset (6a)_3 - 7 \cdot NO_3 + 10 \cdot DMF]^{7+}$ $[1 \supset (6a)_3 - 7 \bullet NO_3 + 11 \bullet DMF]^{7+}$ 638.2 648.5 $[1 \supset (6a)_3 - 8 \bullet NO_3 + 7 \bullet DMF]^{8+},$ $[1 \supset (6a)_3 - 8 \bullet NO_3 + 8 \bullet DMF]^{8+}$ 523.2 533.3 $[1 \supseteq (6a)_3 - 8 \bullet NO_3 + 11 \bullet DMF]^{8+}$, 560.1 $[1 \supseteq (6a)_3 - 8 \bullet NO_3 + 12 \bullet DMF]^{8+}$, 568.5; UV-vis (H₂O,

nm): $\lambda_{\text{max}} 621 \ (\varepsilon = 1.5 \times 10^4), 544 \ (\varepsilon = 2.0 \times 10^4).$

$CSI-MS \qquad (H_2O:DMF =$	20:1): <i>m</i> / <i>z</i>	4360.5 $[1 \supset (6b)_3 - 3 \bullet NO_3^{-}]^{3+},$	1390.5
$[1 \supset (6b)_3 - 3 \bullet NO_3^- + DMF]^{3+},$	1415.7	$[1 \supset (6b)_3 - 4 \bullet NO_3 + 2 \bullet DMF]^{4+},$	1064.5
$[1\supset(\mathbf{6b})_3-4\bullet\mathbf{NO}_3^-+3\bullet\mathbf{DMF}]^{4+},$	1082.3	$[1\supset(\mathbf{6b})_{3}-4\bullet\mathrm{NO}_{3}^{-}+4\bullet\mathrm{DMF}]^{4+},$	1100.5
$[1 \supset (6b)_3 - 5 \bullet NO_3^- + DMF]^{5+},$	825.6	$[1 \supseteq (6b)_3 - 5 \bullet NO_3 + 4 \bullet DMF]^{5+},$	869.2
$[1\supset(\mathbf{6b})_3-5\bullet\mathbf{NO}_3^-+5\bullet\mathbf{DMF}]^{5+},$	882.9	$[1 \supset (6b)_3 - 5 \bullet NO_3^- + 6 \bullet DMF]^{5+},$	898.1
$[1\supset(\mathbf{6b})_3-5\bullet\mathbf{NO}_3^-+7\bullet\mathbf{DMF}]^{5+},$	912.3	$[1 \supset (6b)_3 - 5 \bullet NO_3^- + 8 \bullet DMF]^{5+},$	926.1
$[1 \supset (6b)_3 - 5 \bullet NO_3^- + 9 \bullet DMF]^{5+},$	941.4	$[1 \supset (6b)_3 - 6 \bullet NO_3 + 7 \bullet DMF]^{6+},$	750.4
$[1 \supset (6b)_3 - 6 \bullet NO_3^- + 8 \bullet DMF]^{6+},$	761.9	$[1 \supset (6b)_3 - 6 \bullet NO_3^- + 9 \bullet DMF]^{6+},$	774.3
$[1\supset(\mathbf{6b})_3-6\bullet\mathbf{NO}_3^-+10\bullet\mathbf{DMF}]^{6+},$	786.5	$[1 \supset (6b)_3 - 6 \circ NO_3^- + 11 \circ DMF]^{6+},$	798.5
$[1 \supset (6b)_3 - 7 \bullet NO_3^- + 8 \bullet DMF]^{7+},$	644.6	$[1 \supset (6b)_3 - 7 \bullet NO_3^- + 9 \bullet DMF]^{7+},$	654.9
$[1 \supset (6b)_3 - 7 \bullet NO_3^- + 10 \bullet DMF]^{7+},$	665.5	$[1 \supset (6b)_3 - 7 \bullet NO_3^- + 11 \bullet DMF]^{7+},$	675.6
$[1 \supset (6b)_3 - 7 \bullet NO_3^- + 12 \bullet DMF]^{7+},$	686.1	$[1 \supset (6b)_3 - 6 \circ NO_3^- + 13 \circ DMF]^{7+},$	696.5
$[1 \supset (6b)_3 - 7 \bullet NO_3^- + 14 \bullet DMF]^{7+},$	707.1	$[1 \supset (6b)_{3} - 8 \bullet NO_{3}^{-} + 8 \bullet DMF]^{8+},$	556.7

 $[1 \supseteq (6b)_3 - 8 \cdot NO_3 + 9 \cdot DMF]^{8+}$, 564.3; IR (ATR, cm⁻¹): 3424 (br), 3206 (br), 3103 (br), 1679, 1615, 1524, 1331(br), 1196, 1057, 1130, 1057, 987; m.p.: ~200 °C (decomposed); UV-vis (H₂O, nm): λ_{max} 555 ($\varepsilon = 1.9 \times 10^4$).

S9

UV spectrum of $1 \supset (6b)_3$:

UV-vis (H₂O, nm): λ_{max} 576 ($\varepsilon = 8.8 \times 10^4$), 529 ($\varepsilon = 1.2 \times 10^4$), 336 ($\varepsilon = 3.9 \times 10^4$).

Synthesis of 1 \supset (**5a**•**6a**•**5a**).

Typical procedure: (en)Pd(NO₃)₂ (**4**, 17.43 mg; 60.0 μ mol), tris(4-pyridyl)triazine (**2**, 6.25 mg; 20.0 μ mol), 1,4-bis(2,6-dimethyl-4-pyridyl)benzene (**3**, 8.65 mg; 15.0 μ mol), tetrazaporphine (**6a**, 3.14 mg; 10.0 μ mol, 1 eq. per **1**), and porphine (**5a**, 7.75 mg; 25 μ mol, 2.5 eq. per **1**) was suspended in a D₂O solution (1.0 mL) and the mixture was stirred at 100 °C for 2 h. After decantation of the solution, ¹H NMR spectrum of the resolved dark red-purple precipitation revealed the selective formation of **1** \supset (**5a**•**6a**•**5a**) complex. The solution was evaporated and dried by vacuum freeze-drying equipment to give a red-purple solid of **1** \supset (**5a**•**6a**•**5a**) complex (13.2 mg; 3.17 μ mol) in 31% yield.

Physical data of **1**⊃(**5a•6a•5a**): ¹H NMR (500 MHz, D₂O, 27 °C): δ 8.98 (s, 12H, 1), 8.77 (s,

12H, 1), 8.10 (d, J = 5.0Hz, 12H, 1), 7.53 (s, 8H, 5a), 7.31 (s, 16H, 5a), 6.65 (s, 8H, 6a), 5.49 $(d, J = 5.0Hz, 12H, 1), 3.86 (s, 36H, 1), 2.91 (br, 12H, 1), 2.71 (br, 12H, 1); {}^{13}C NMR (125)$ MHz, D_2O , 27 °C): δ 162.6 (C_a , **1**), 160.9 (C_a , **1**), 151.7 (C_a , **3a**), 151.2 (C_a , **1**), 150.7 (CH, **1**), 140.8 (C_a, **1**), 137.5 (C_a, **1**), 132.1 (CH, **6a**), 129.2 (CH, **1**), 128.2 (C_a, **6a**), 122.7 (CH, **1**), 122.3 (CH, 1), 121.7 (CH, 5a), 100.6 (CH, 5a), 47.4 (CH₂, 1), 46.2 (CH₂, 1), 26.1 (CH₃, 1); DOSY-NMR (cm²/s): D = -9.85; IR (ATR, cm⁻¹): 3452 (br), 3206 (br), 3107 (br), 1659, 1613, 1514, 1329, 1139, 1055, 949; m.p.: ~200 °C (decomposed); CSI-MS (H₂O:DMF = 20:1): m/z $[1 \supset (5a \cdot 6a \cdot 5a) - 3 \cdot NO_3^{-1}]^{3+},$ 1327.4 $[1 \supset (5a \cdot 6a \cdot 5a) - 4 \cdot NO_3 + 2 \cdot DMF]^{4+},$ 1017.3 4168.0 $[1 \supset (3a \cdot 2a \cdot 3a) - 4 \cdot NO_3^{-} + 3 \cdot DMF]^{4+},$ $[1 \supset (5a \cdot 6a \cdot 5a) - 4 \cdot NO_3 + 4 \cdot DMF]^{4+},$ 1035.2 1053.7 $[1 \supset (3a \cdot 2a \cdot 3a) - 4 \cdot NO_3^{-} + 5 \cdot DMF]^{4+},$ 1071.9 $[1 \supset (5a \cdot 6a \cdot 5a) - 4 \cdot NO_3^{-} + 6 \cdot DMF]^{4+},$ 1089.4 $[1 \supset (3a \cdot 2a \cdot 3a) - 5 \cdot NO_3^{-} + 3 \cdot DMF]^{5+},$ 816.2 $[1 \supset (5a \cdot 6a \cdot 5a) - 5 \cdot NO_3^{-} + 4 \cdot DMF]^{5+},$ 830.6 $[1 \supset (3a \cdot 2a \cdot 3a) - 5 \cdot NO_3^{-} + 5 \cdot DMF]^{5+},$ $[1 \supset (5a \cdot 6a \cdot 5a) - 5 \cdot NO_3^{-} + 6 \cdot DMF]^{5+},$ 845.0 860.1 $[1 \supset (5a \cdot 6a \cdot 5a) - 5 \cdot NO_3^{-} + 8 \cdot DMF]^{5+},$ $[1 \supset (3a \cdot 2a \cdot 3a) - 5 \cdot NO_3 + 7 \cdot DMF]^{5+},$ 874.1 889.1 $[1 \supset (3a \cdot 2a \cdot 3a) - 5 \cdot NO_3 + 9 \cdot DMF]^{5+},$ $[1 \supset (5a \cdot 6a \cdot 5a) - 5 \cdot NO_3 + 10 \cdot DMF]^{5+},$ 904.1 917.1 $[1 \supset (3a \cdot 2a \cdot 3a) - 5 \cdot NO_3 + 11 \cdot DMF]^{5+},$ 933.2 $[1 \supset (5a \cdot 6a \cdot 5a) - 6 \cdot NO_3^{-1}]^{6+},$ 633.2 $[1 \supset (5a \cdot 6a \cdot 5a) - 6 \cdot NO_3 + DMF]^{6+},$ 644.5 $[1 \supset (5a \cdot 6a \cdot 5a) - 6 \cdot NO_3^{-} + 2 \cdot DMF]^{6+},$ 656.2 $[1 \supset (5a \cdot 6a \cdot 5a) - 6 \cdot NO_3 + 3 \cdot DMF]^{6+},$ 669.5 $[1 \supset (5a \cdot 6a \cdot 5a) - 6 \cdot NO_3 + 4 \cdot DMF]^{6+},$ 680.8 $[1 \supset (5a \cdot 6a \cdot 5a) - 6 \cdot NO_3^{-} + 5 \cdot DMF]^{6+},$ $[1 \supset (5a \cdot 6a \cdot 5a) - 6 \cdot NO_3^{-} + 6 \cdot DMF]^{6+},$ 706.2 694.0 $[1 \supset (5a \cdot 6a \cdot 5a) - 6 \cdot NO_3^{-} + 7 \cdot DMF]^{6+},$ 718.2 $[1 \supset (5a \cdot 6a \cdot 5a) - 6 \cdot NO_3^{-} + 8 \cdot DMF]^{6+},$ 730.7 $[1 \supseteq (5a \cdot 6a \cdot 5a) - 6 \cdot NO_3 + 9 \cdot DMF]^{6+},$ $[1 \supset (5a \cdot 6a \cdot 5a) - 6 \cdot NO_3 + 10 \cdot DMF]^{6+},$ 742.9 755.1 $[1 \supset (5a \cdot 6a \cdot 5a) - 7 \cdot NO_3^{-} + 3 \cdot DMF]^{7+},$ 564.5 $[1 \supset (5a \cdot 6a \cdot 5a) - 7 \cdot NO_3^{-} + 6 \cdot DMF]^{7+},$ 596.5 $[1 \supset (5a \cdot 6a \cdot 5a) - 7 \cdot NO_3^{-} + 7 \cdot DMF]^{7+},$ 605.9 $[1 \supset (5a \cdot 6a \cdot 5a) - 7 \cdot NO_3^{-} + 8 \cdot DMF]^{7+},$ 617.5 $[1 \supset (5a \cdot 6a \cdot 5a) - 7 \cdot NO_3 + 9 \cdot DMF]^{7+},$ $[1 \supset (5a \cdot 6a \cdot 5a) - 7 \cdot NO_3^{-} + 10 \cdot DMF]^{7+},$ 628.1 638.5 $[1 \supset (5a \cdot 6a \cdot 5a) - 7 \cdot NO_3 + 11 \cdot DMF]^{7+},$ 649.0 $[1 \supset (5a \cdot 6a \cdot 5a) - 7 \cdot NO_3 + 12 \cdot DMF]^{7+},$ 659.3; UV-vis (H₂O, nm): λ_{max} 619 ($\varepsilon = 6.8 \times 10^3$), 554 ($\varepsilon = 9.1 \times 10^3$), 491 ($\varepsilon = 1.1 \times 10^4$), 398 ($\varepsilon =$ 8.4×10^4).

S13

■ Physical data of **1**⊃(**5b•6c•5b**):

$CSI-MS (H_2O:DMF = 20:1)$: <i>m/z</i> 439	5.5 $[1 \supset (5b \cdot 6c \cdot 5b) - 3 \cdot NO_3^{-} + DMF]^{3+},$	1427.5
$[1 \supseteq (\mathbf{5b} \bullet \mathbf{6c} \bullet \mathbf{5b}) - 3 \bullet \mathrm{NO}_3^- + 2 \bullet \mathrm{DMF}]^3$	+, 1452.4	[1 ⊃(5b•6c•5b)−3•NO ₃ ⁻ +3•DMF] ³⁺ ,	1475.6
$[1 \supseteq (\mathbf{5b} \bullet \mathbf{6c} \bullet \mathbf{5b}) - 3 \bullet \mathrm{NO}_3^- + 4 \bullet \mathrm{DMF}]^3$	⁺ , 1499	$1 \supset (5b \cdot 6c \cdot 5b) - 4 \cdot NO_3^{-1}^{4+},$	1036.9
$[1 \supseteq (\mathbf{5b} \bullet \mathbf{6c} \bullet \mathbf{5b}) - 4 \bullet \mathrm{NO}_3^- + 2 \bullet \mathrm{DMF}]^4$	+, 1073.9	[1 ⊃(5b•6c•5b)–4•NO ₃ ⁻ +3•DMF] ⁴⁺ ,	1092.2
$[1 \supseteq (\mathbf{5b} \bullet \mathbf{6c} \bullet \mathbf{5b}) - 4 \bullet \mathrm{NO}_3^- + 4 \bullet \mathrm{DMF}]^4$	⁺ , 1110.3	[1 ⊃(5b•6c•5b)–4•NO ₃ ⁻ +5•DMF] ⁴⁺ ,	1129.2
$[1 \supseteq (\mathbf{5b} \bullet \mathbf{6c} \bullet \mathbf{5b}) - 4 \bullet \mathrm{NO}_3^- + 6 \bullet \mathrm{DMF}]^4$	+, 1146.2	$[1 \supset (5b \cdot 6c \cdot 5b) - 4 \cdot NO_3 + 7 \cdot DMF]^{4+},$	1163.5
$[1 \supseteq (\mathbf{5b} \bullet \mathbf{6c} \bullet \mathbf{5b}) - 4 \bullet \mathrm{NO}_3^- + 8 \bullet \mathrm{DMF}]^4$	+, 1182.4	[1 ⊃(5b•6d•5b)–4•NO ₃ ⁻ +9•DMF] ⁴⁺ ,	1202.1
$[1 \supset (5b \cdot 6c \cdot 5b) - 5 \cdot NO_3^{-}]^{5+},$	816.9	$[1 \supset (\mathbf{5b} \bullet \mathbf{6c} \bullet \mathbf{5b}) - 5 \bullet \mathbf{NO}_3^- + 4 \bullet \mathbf{DMF}]^{5+},$	876.4
$[1 \supseteq (\mathbf{5b} \bullet \mathbf{6c} \bullet \mathbf{5b}) - 5 \bullet \mathbf{NO}_3^- + 5 \bullet \mathbf{DMF}]^5$	*, 890.6	$[1 \supset (5b \cdot 6c \cdot 5b) - 5 \cdot NO_3 + 6 \cdot DMF]^{5+},$	905.4
$[1 \supseteq (\mathbf{5b} \bullet \mathbf{6c} \bullet \mathbf{5b}) - 5 \bullet \mathbf{NO}_3^- + 7 \bullet \mathbf{DMF}]^5$	+, 919.8	$[1 \supset (5b \cdot 6c \cdot 5b) - 5 \cdot NO_3 + 8 \cdot DMF]^{5+},$	934.7
$[1 \supseteq (\mathbf{5b} \bullet \mathbf{6c} \bullet \mathbf{5b}) - 5 \bullet \mathbf{NO}_3^- + 9 \bullet \mathbf{DMF}]^5$	*, 949.2	$[1 \supset (5b \cdot 6c \cdot 5b) - 5 \cdot NO_3^{-} + 10 \cdot DMF]^{5+},$	963.6
$[1 \supset (\mathbf{5b} \bullet \mathbf{6c} \bullet \mathbf{5b}) - 6 \bullet \mathbf{NO}_3^- + 6 \bullet \mathbf{DMF}]^6$	*, 744.6	$[1 \supset (5b \cdot 6c \cdot 5b) - 6 \cdot NO_3 + 7 \cdot DMF]^{6+},$	756.8
$[1 \supseteq (\mathbf{5b} \bullet \mathbf{6c} \bullet \mathbf{5b}) - 6 \bullet \mathbf{NO}_3^- + 8 \bullet \mathbf{DMF}]^6$	*, 767.8	[1⊃(5b•6c•5b)–6•NO ₃ ⁻ +9•DMF] ⁶⁺ ,	780.7
$[1 \supset (5b \bullet 6c \bullet 5b) - 6 \bullet NO_3 + 10 \bullet DMF]$] ⁶⁺ , 792.6	[1 ⊃(5b•6c•5b)–6•NO ₃ ⁻ +11•DMF] ⁶⁺ ,	805.3
$[1 \supset (5b \bullet 6c \bullet 5b) - 6 \bullet NO_3^- + 12 \bullet DMF]$] ⁶⁺ , 816.8	[1⊃(5b•6c•5b) –6•NO ₃ ⁻ +13•DMF] ⁶⁺ ,	828.8
$[1 \supset (5b \bullet 6c \bullet 5b) - 6 \bullet NO_3 + 14 \bullet DMF]$] ⁶⁺ , 841.5	[1 ⊃(5b•6c•5b)–6•NO ₃ ⁻ +15•DMF] ⁶⁺ ,	852.7
$[1 \supset (5b \bullet 6c \bullet 5b) - 7 \bullet NO_3 + 10 \bullet DMF]$] ⁷⁺ , 670.7	[1 ⊃(5b•6c•5b)−7•NO ₃ ⁻ +11•DMF] ⁷⁺ ,	681.0
$[1 \supset (5b \bullet 6c \bullet 5b) - 7 \bullet NO_3 + 12 \bullet DMF]$] ⁷⁺ , 691.1	[1 ⊃(5b•6c•5b)−7•NO ₃ ⁻ +13•DMF] ⁷⁺ ,	702.1
[1 ⊃(5b•6c•5b)–7•NO ₃ ⁻ +14•DMF]] ⁷⁺ , 712.7	[1 ⊃(5b•6c•5b)−7•NO ₃ ⁻ +15•DMF] ⁷⁺ ,	722.3
[1 ⊃(5b•6c•5b)–7•NO ₃ ⁻ +16•DMF]] ⁷⁺ , 733.0	[1 ⊃(5b•6c•5b)–8•NO ₃ ⁻ +16•DMF] ⁸⁺ ,	634.7
$[1 \supseteq (5b \bullet 6c \bullet 5b) - 8 \bullet NO_3 + 17 \bullet DMF]$] ⁸⁺ , 642.9	[1 ⊃(5b•6c•5b)–8•NO ₃ ⁻ +18•DMF] ⁸⁺ ,	652.3
$[1 \supset (5b \cdot 6c \cdot 5b) - 8 \cdot NO_3 + 19 \cdot DMF]$] ⁸⁺ , 661.6; IF	R (ATR, cm ⁻¹): 3412 (br), 3206 (br), 31	04 (br),
1614, 1519, 1331(br), 1152, 1057	, 996, 827, 8	04; m.p.: ~200 °C (decomposed); UV-vi	is (H ₂ O,
nm): λ_{max} 548 ($\varepsilon = 1.3 \times 10^4$), 523	$(\varepsilon = 1.2 \times 10^{\circ})$	$(10^4), 396 \ (\varepsilon = 9.5 \times 10^4).$	

UV-vis (H₂O, r.t., 0.1 mM, I = 1 mm)

Physical data of 1 \supset (5b \cdot 6d \cdot 5b):

$CSI-MS (H_2O:DMF = 2)$	20:1): m/z 2	348.0 [1 ⊃(5b•6d	• 5b) -3 •NO ₃ ⁻ +DMF] ³⁺ ,	1411.2
$[1 \supset (5b \cdot 6d \cdot 5b) - 4 \cdot NO_3^- + DN_3^-]$	$[F]^{4+}$, 1042.	4 [1⊃(5 b•6d•5 b])-4•NO ₃ ⁻ +2•DMF] ⁴⁺ ,	1060.8
$[1 \supset (5b \cdot 6d \cdot 5b) - 4 \cdot NO_3 + 3 \cdot D]$	MF] ⁴⁺ , 1079	9.8 [1⊃(5b•6d•5 k	b) $-4 \cdot NO_3^{-} + 5 \cdot DMF]^{4+}$,	1115.6
$[1 \supset (\mathbf{5b} \cdot \mathbf{6d} \cdot \mathbf{5b}) - 5 \cdot \mathbf{NO}_3^- + 3 \cdot \mathbf{D}]$	MF] ⁵⁺ , 850	.8 [1⊃(5 b•6d•5]	b) $-5 \cdot NO_3^{-} + 4 \cdot DMF$] ⁵⁺ ,	865.1
$[1 \supseteq (\mathbf{5b} \cdot \mathbf{6b} \cdot \mathbf{5b}) - 5 \cdot \mathbf{NO}_3^- + 5 \cdot \mathbf{D}]$	MF] ⁵⁺ , 879	.9 [1 ⊃(5b•6b•5]	b) $-5 \cdot NO_3^{-} + 6 \cdot DMF]^{5+}$,	894.3
$[1 \supset (5b \cdot 6b \cdot 5b) - 5 \cdot NO_3^- + 7 \cdot D]$	$MF]^{5+}$, 908	.9 [1 ⊃(5b•6b•5]	b) $-6 \cdot NO_3^{-} + 5 \cdot DMF]^{6+}$,	724.6
$[1 \supseteq (\mathbf{5b} \cdot \mathbf{6b} \cdot \mathbf{5b}) - 6 \cdot \mathbf{NO}_3^- + 6 \cdot \mathbf{D}]$	MF] ⁶⁺ , 735	.1 [1 ⊃(5b•6b•5]	b) $-6 \cdot NO_3^{-} + 7 \cdot DMF]^{6+}$,	746.9
$[1 \supseteq (\mathbf{5b} \cdot \mathbf{6b} \cdot \mathbf{5b}) - 6 \cdot \mathbf{NO}_3^- + 8 \cdot \mathbf{D}]$	MF] ⁶⁺ , 759	.1 [1 ⊃(5b•6b•5]	b) $-6 \cdot NO_3^{-} + 9 \cdot DMF]^{6+}$,	771.5
$[1 \supset (5b \cdot 6b \cdot 5b) - 6 \cdot NO_3^{-} + 10 \cdot]$	$DMF]^{6+}$, 783	8.9 [1 ⊃(5b•6b•5 k	$(-6 \cdot NO_3^{-} + 11 \cdot DMF]^{6+},$	795.6
$[1 \supset (5b \cdot 6b \cdot 5b) - 6 \cdot NO_3^{-} + 12 \cdot]$	$DMF]^{6+}$, 80	8.0 [1 ⊃(5b•6b•5	5b) $-7 \cdot NO_3^{-} + 3 \cdot DMF]^{7+}$,	590.8
$[1 \supset (5b \cdot 6b \cdot 5b) - 7 \cdot NO_3^- + 4 \cdot D]$	MF] ⁷⁺ , 599	.4 [1 ⊃(5b•6b•5]	b) $-7 \bullet NO_3^{-} + 8 \bullet DMF]^{7+}$,	642.1
$[1 \supseteq (\mathbf{5b} \cdot \mathbf{6b} \cdot \mathbf{5b}) - 7 \cdot \mathrm{NO}_3^- + 9 \cdot \mathrm{D}]$	MF] ⁷⁺ , 652	.4 [1 ⊃(5b•6b•5 b	$-7 \cdot NO_3^{-} + 10 \cdot DMF]^{7+},$	662.8
$[1 \supset (5b \cdot 6b \cdot 5b) - 7 \cdot NO_3^{-} + 11 \cdot 3]$	DMF] ⁷⁺ , 674	l.2 [1⊃(5b•6b•5h	$-7 \cdot NO_3^{-} + 12 \cdot DMF]^{7+},$	683.9
$[1 \supset (5b \cdot 6b \cdot 5b) - 7 \cdot NO_3^{-} + 13 \cdot]$	DMF] ⁷⁺ , 693	8.8 [1 ⊃(5b•6b•5 k	$-7 \cdot NO_3^{-} + 15 \cdot DMF]^{7+},$	715.1
$[1 \supset (5b \cdot 6b \cdot 5b) - 8 \cdot NO_3^- + 9 \cdot D]$	MF] ⁸⁺ , 563.9;	IR (ATR, cm^{-1}): 3	3425 (br), 3211 (br), 3	108 (br),
1613, 1524, 1519, 1331(br)	, 1153, 1059,	994; m.p.: ~200 °C	C (decomposed); UV-v	is (H ₂ O,
nm): λ_{max} 547 ($\varepsilon = 1.1 \times 10^4$)	$,521 (\varepsilon = 1.2 > $	$< 10^4$), 395 ($\varepsilon = 9.8$	$\times 10^4$).	

UV-vis (H₂O, r.t., 0.1 mM, I = 1 mm)

CSI-MS (l	H ₂ O:DMF	= 20:1):	<i>m/z</i> 4291	.1 $[1 \supset (5b \cdot 6a \cdot 5b) - 3 \cdot NO_3 + DMF]^{3+},$	1392.5
[1⊃(5b•6a•	5b)-3•NO ₃ ⁻	$(+2 \bullet DMF]^{3+}$,	1417.3	$[1 \supset (5b \cdot 6a \cdot 5b) - 3 \cdot NO_3 + 3 \cdot DMF]^{3+},$	1442.5
[1⊃(5b•6a•	5b)–4•NO ₃ ⁻	+DMF] ⁴⁺ ,	1030.0	$[1 \supset (5b \cdot 6a \cdot 5b) - 4 \cdot NO_3^{-} + 2 \cdot DMF]^{4+},$	1047.8
[1⊃(5b•6a•	5b)–4•NO ₃ ⁻	+3•DMF] ⁴⁺ ,	1066.1	$[1 \supset (5b \bullet 6a \bullet 5b) - 4 \bullet NO_3^- + 4 \bullet DMF]^{4+},$	1084.8
[1⊃(5b•6a•	5b)–4•NO ₃ ⁻	+5•DMF] ⁴⁺ ,	1102.9	$[1 \supset (5b \cdot 6a \cdot 5b) - 4 \cdot NO_3^- + 6 \cdot DMF]^{4+},$	1120.8
[1⊃(5b•6a•	5b)–4•NO ₃ ⁻	+7•DMF] ⁴⁺ ,	1138.2	$[1 \supset (\mathbf{5b} \bullet \mathbf{6a} \bullet \mathbf{5b}) - 4 \bullet \mathrm{NO}_3^- + 8 \bullet \mathrm{DMF}]^{4+},$	1156.3
[1⊃(5b•6a•	5b)–4•NO ₃ ⁻	$(+9\bullet DMF]^{4+}$,	1172.3	$[1 \supset (5b \bullet 6a \bullet 5b) - 4 \bullet NO_3^{-} + 10 \bullet DMF]^{4+},$	1193.1
[1⊃(5b•6a•	5b)-5•NO ₃ ⁻	$[+4 \bullet DMF]^{5+},$	855.6	[1 ⊃(5b•6a•5b)–5•NO ₃ ⁻ +5•DMF] ⁵⁺ ,	870.1
[1⊃(5b•6a•	5b)-5•NO ₃ ⁻	$[+6\bullet DMF]^{5+}$,	884.6	[1 ⊃(5b•6a•5b)–5•NO ₃ ⁻ +7•DMF] ⁵⁺ ,	899.0
[1⊃(5b•6a•	5b)-5•NO ₃ ⁻	$[+8 \bullet DMF]^{5+},$	913.5	[1 ⊃(5b•6a•5b)–5•NO ₃ ⁻ +9•DMF] ⁵⁺ ,	928.0
[1⊃(5b•6a•	5b)-5•NO ₃ ⁻	+10•DMF] ⁵⁺	, 942.3	$[1 \supset (5b \cdot 6a \cdot 5b) - 5 \cdot NO_3^{-} + 11 \cdot DMF]^{5+},$	957.2
[1⊃(5b•6a•	5b)-5•NO ₃ ⁻	+12•DMF] ⁵⁺	, 972.2	$[1 \supset (5b \cdot 6a \cdot 5b) - 6 \cdot NO_3^{-} + 6 \cdot DMF]^{6+},$	726.9
[1⊃(5b•6a•	5b)–6•NO ₃ ⁻	+7•DMF] ⁶⁺ ,	739.3	[1 ⊃(5b•6a•5b)–6•NO ₃ ⁻ +8•DMF] ⁶⁺ ,	751.0
[1⊃(5b•6a•	5b)–6•NO ₃ ⁻	+9•DMF] ⁶⁺ ,	763.3	[1 ⊃(5b•6a•5b)–6•NO ₃ ⁻ +10•DMF] ⁶⁺ ,	775.2
[1⊃(5b•6a•	5b)–6•NO ₃ ⁻	+11•DMF] ⁶⁺	, 787.7	$[1 \supset (5b \cdot 6a \cdot 5b) - 6 \cdot NO_3^- + 12 \cdot DMF]^{6+},$	799.9
[1⊃(5b•6a•	5b)–6•NO ₃ ⁻	+13•DMF] ⁶⁺	, 812.1	$[1 \supset (5b \cdot 6a \cdot 5b) - 6 \cdot NO_3^- + 14 \cdot DMF]^{6+},$	823.2
[1⊃(5b•6a•	5b)-7•NO ₃ ⁻	+8•DMF] ⁷⁺ ,	634.8	[1 ⊃(5 b• 6 a• 5 b)−7•NO ₃ ⁻ +9•DMF] ⁷⁺ ,	645.6
[1⊃(5b•6a•	5b)-7•NO ₃ ⁻	+10•DMF] ⁷⁺	, 656.0	$[1 \supset (5b \cdot 6a \cdot 5b) - 7 \cdot NO_3^{-} + 11 \cdot DMF]^{7+},$	666.5
[1⊃(5b•6a•	5b)-7•NO ₃ ⁻	+12•DMF] ⁷⁺	, 676.9	[1 ⊃(5b•6a•5b)− 7• NO ₃ ⁻ +13•DMF] ⁷⁺ ,	687.3
[1⊃(5b•6a•	5b)–7•NO ₃ ⁻	+14•DMF] ⁷⁺	, 697.5	$[1 \supset (5b \cdot 6a \cdot 5b) - 8 \cdot NO_3^{-} + 13 \cdot DMF]^{8+},$	593.8
[1⊃(5b•6a•	5b)-8•NO ₃ ⁻	+14•DMF] ⁸⁺	, 602.8	$[1 \supset (5b \cdot 6a \cdot 5b) - 8 \cdot NO_3^- + 16 \cdot DMF]^{8+},$	621.0
[1⊃(5b•6a•	5b)-8•NO ₃ ⁻	+17•DMF] ⁸⁺	, 630.0	$[1 \supset (5b \cdot 6a \cdot 5b) - 8 \cdot NO_3^- + 18 \cdot DMF]^{8+},$	639.3
[1⊃(5b•6a•	5b)-8•NO ₃ ⁻	+18•DMF] ⁸⁺	, 647.8; IR	(ATR, cm ⁻¹): 3406 (br), 3204 (br), 310	02 (br),
1614, 1519,	1454, 132	7(br), 1152,	1057, 995,	937, 827, 805; m.p.: ~200 °C (decom	posed);
UV-vis (H ₂ C	$(D, nm): \lambda_{max}$	$_{x} 621 \ (\varepsilon = 7.8)$	8×10^3), 54	48 ($\varepsilon = 1.2 \times 10^4$), 516 ($\varepsilon = 1.2 \times 10^4$), 3	94 (ε =
8.4×10^4).					

UV-vis (H₂O, r.t., 0.1mM, I = 1 mm)

Physical data of $1 \supset (5a \cdot 6d \cdot 5a)$:

CSI-MS	(H ₂ O:DN	ЛF	=	20:1):	m/z	4224.9	[1⊃(5a•6	6 d•5 a)-3•	$NO_3^{-}]^{3+}$,	1346.4
[1⊃(5a•6d	l•5a)−3•N	O ₃ ⁻ +1	DMF] ³⁺ ,	1371.5	[1 ⊃(5 a	a•6d•5a)-4	•NO ₃ ⁻ +D	MF] ⁴⁺ ,	1013.2
[1⊃(5a•6 d	l•5a)–4∙N	$O_3^{-}+2$	2•DN	1[F] ⁴⁺ ,	1031.3	[1⊃(5 a	•6d•5a)-4•	•NO ₃ ⁻ +3•]	DMF] ⁴⁺ ,	1049.0
[1⊃(5a•6 d	l•5a)–4•N	O ₃ ⁻ +4	4•DN	1[F] ⁴⁺ ,	1067.2	[1⊃(5 a	•6d•5a)-4•	$NO_3^{-}+50$	DMF] ⁴⁺ ,	1085.9
[1⊃(5a•6 d	l•5a)–4∙N	O ₃ ⁻ +0	6•DN	1[F] ⁴⁺ ,	1104.6	[1⊃(5 a	•6d•5a)-4•	$NO_3^{-}+70$	DMF] ⁴⁺ ,	1122.1
[1⊃(5a•6 d	l•5a)–4∙N	$O_3^{-}+8$	8•DN	1[F] ⁴⁺ ,	1141.2	[1⊃(5 a	a•6d•5a)-5	$5 \cdot NO_3^- + 2$	•DMF] ⁵⁺ ,	813.1
[1⊃(5a•6 d	l•5a)−5•N	O ₃ ⁻ +.	3•DN	1[F] ⁵⁺ ,	826.4	[1⊃(5 a	• 6d•5 a)-5	•NO ₃ ⁻ +4•	•DMF] ⁵⁺ ,	841.7
[1⊃(5a•6 d	l•5a)−5•N	O ₃ ⁻ +.	5•DN	1[F] ⁵⁺ ,	856.3	[1⊃(5 a	• 6d•5 a)-5	•NO ₃ ⁻ +6•	•DMF] ⁵⁺ ,	871.2
[1⊃(5a•6 d	l•5a)−5•N	$O_3^{-}+2$	7•DN	ſF] ⁵⁺ ,	885.7	[1⊃(5 a	• 6d•5 a)-5	•NO ₃ ⁻ +8•	•DMF] ⁵⁺ ,	900.0
[1⊃(5a•6 d	l•5a)–6•N	$O_3^{-}]^{6}$	+,	641	.3	[1⊃(5a•	6d•5a)-6•1	$NO_3^- + DM$	IF] ⁶⁺ ,	653.6
[1⊃(5a•6 d	l•5a)–6•N	O ₃ ⁻ +2	2•DN	1[F] ⁶⁺ ,	665.5	[1⊃(5 a	• 6d•5 a)–6	•NO ₃ ⁻ +3•	•DMF] ⁶⁺ ,	677.7
[1⊃(5a•6 d	l•5a)–6•N	O ₃ ⁻ +4	4•DN	1[F] ⁶⁺ ,	691.1	[1⊃(5 a	• 6d•5 a)–6	•NO ₃ ⁻ +5•	•DMF] ⁶⁺ ,	703.3
[1⊃(5a•6 d	l•5a)–6•N	O ₃ ⁻ +0	6•DN	1[F] ⁶⁺ ,	715.6	[1⊃(5 a	• 6d•5 a)–6	•NO ₃ ⁻ +7•	•DMF] ⁶⁺ ,	727.5
[1⊃(5a•6 d	l•5a)–6•N	O ₃ ⁻ +8	8•DN	1[F] ⁶⁺ ,	739.9	[1⊃(5 a	• 6d•5 a)–6	•NO ₃ ⁻ +9•	•DMF] ⁶⁺ ,	752.4
[1⊃(5a•6 d	l•5a)−7•N	O ₃ ⁻ +0	6•DN	1[F] ⁷⁺ ,	603.8	[1⊃(5 a	• 6d•5 a)-7	•NO ₃ ⁻ +8•	•DMF] ⁷⁺ ,	625.7
[1⊃(5a•6d	l•5a)−8•N	$O_3^{-}+8$	8•DN	(IF] ⁸⁺ , 5	39.8 [1 ⊃((5a•6d•5a	$-8 \bullet NO_3^- +$	-9•DMF] ⁸	⁸⁺ , 547.6; II	R (ATR,
cm^{-1}): 341	3 (br), 32	201 (br), .	3098 (t	or), 1659,	1613, 15	514, 1329((br), 1137	, 1055, 98	9, 951;
m.p.: ~200	°C (deco	mpos	sed);	UV-vis	(H ₂ O, nr	m): λ_{\max} 50	65 (ε = 7.8	10^{3}), 4	$-91 (\varepsilon = 9.9)$	10^{3}),
$398 \ (\varepsilon = 9$	$.5 \times 10^4$).									

S23

ESR data of $1 \supset (6b)_3$ (113 K):

The observed spectrum is reproduced by the simulation using the following parameters. Spin quantum number: S = 3/2, g tensor: g = (2.01, 2.01, 2.147), hyperfine coupling tensor of Cu nuclear spin: $A_{Cu} = (1.03, 1.03, 7.17) / \text{mT}$, spin-spin dipole interaction parameters : D = 27.3 / mT, E = 1.5 / mT.

■ ESR spectrum of $1 \supseteq (5b \cdot 6c \cdot 5b)$ (113 K, SW = 100 mT): ESR (H₂O, 113 K)

ESR spectrum of $1 \supseteq (5b \cdot 6d \cdot 5b)$ (113 K, SW = 250 mT):

ESR (H₂O, 113 K)

■ ESR spectrum of $1 \supseteq (5b \cdot 6a \cdot 5b)$ (113 K, SW = 100 mT) ESR (H₂O, 113 K)

ESR spectrum of $1\supset(5a\cdot6d\cdot5a)$ (113 K, SW = 250 mT)

ESR (H₂O, 113 K)

Identification code	3p-1		
Empirical formula	C168 H186 N64.75 O104	.5 Pd6	
Formula weight	5404.12		
Temperature	80(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 20.025(3) Å	$\alpha = 107.593(2)^{\circ}$	
	b = 26.094(4) Å	$\beta = 102.779(2)^{\circ}$	
	c = 26.215(4) Å	$\gamma = 95.762(2)^{\circ}$	
Volume	12526(3) Å ³		
Z	2		
Density (calculated)	1.438 Mg/m ³		
Absorption coefficient	0.525 mm^{-1}		
F(000)	5519		
Crystal size	0.20 x 0.10 x 0.10 mm ³		
Theta range for data collection	1.95 to 27.62°		
Index ranges	-26<=h<=25, -32<=k<=30), -31<=l<=32	
Reflections collected	99554		
Independent reflections	50850 [R(int) = 0.0302]		
Completeness to theta = 27.62°	87.3 %		
Absorption correction	None		
Refinement method	Full-matrix least-squares of	on F^2	
Data / restraints / parameters	50850 / 1141 / 3085		
Goodness-of-fit on F ²	1.023		
Final R indices [I>2sigma(I)]	R1 = 0.0752, wR2 = 0.202	28	
R indices (all data)	R1 = 0.1319, wR2 = 0.2556		
Largest diff. peak and hole	1.762 and -0.995 e.Å ⁻³		
CCDC No.	666139		

Table S1. Crystal data and structure refinement for $1^{\circ}\square(6a)_{3}$.

Figure S2. ORTEP drawing (30% probability ellipsoids) of $1' \supseteq (6a)_2$: crystal structure of $1' \supseteq (6a)_2$ without NO₃⁻ ions and oxygen atoms.