Preparation of silyl substituted crotylzinc reagents and their highly diastereoselective addition to carbonyl compounds

Matthew D. Helm, Peter Mayer and Paul Knochel*

Department Chemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377, München (Germany). Paul.Knochel@cup.uni-muenchen.de

1. General

All reactions were carried out under argon using standard Schlenk techniques. Melting points are uncorrected. ¹H and ¹³C NMR spectra were recorded on a Bruker AMX 300 or AMX 600 instrument. Chemical shifts are given as ppm relative to the residual solvent peak (chloroform-*d1*:7.26 ppm/77.0 ppm). IR spectra were recorded on a Perkin Elmer 1420 Infrared Spectrometer. Mass spectra were recorded on a Finnigan Mat 95 Q spectrometer. Column chromatography purification was performed on Merck silica gel 60 (230-400 mesh ASTM). THF was dried with sodium/benzophenone and distilled. Yields refer to isolated yields of compounds estimated to be > 95% pure as determined by ¹H-NMR and capillary GC.

2. Formation of silyl substituted allylic chlorides

Formation of [1-(1-chloro-ethyl)-vinyl]-trimethyl-silane (1a) and (1-chloromethyl-propenyl)-trimethyl-silane (1b)

To a solution of 3-trimethylsilanyl-but-3-en-2-ol¹ (28.9 g, 200 mmol) in dry diethyl ether (400 mL) at 25 °C was added thionyl chloride (21.9 mL, 300 mmol). The reaction was stirred for 16 hours at 25 °C before being quenched with water. The aqueous layer was extracted three times with diethyl ether, the combined organic fractions dried over MgSO₄ and concentrated *in vacuo*. The crude product was purified by distillation under vacuum to give a mixture of 1-(1-chloro-ethyl)-vinyl]-trimethyl-silane **1a** and (1-chloromethyl-propenyl)-trimethyl-silane **1b** (26.0 g, 80%).²

Formation of [1-(1-chloro-ethyl)-vinyl]-triethyl-silane (13a) and (1-chloromethyl-propenyl)-triethyl-silane (13b)

To a solution of 3-triethylsilanyl-but-3-en-2-ol³ (4 g, 21.5 mmol) in dry diethyl ether (43 mL) at 25 °C was added thionyl chloride (2.35 mL, 32.2 mmol). The reaction was stirred for 16 hours at 25 °C before being quenched with water. The aqueous layer was extracted three times with diethyl ether, the combined organic fractions dried over MgSO₄ and concentrated *in vacuo*. The crude product was purified by chromatography on silica gel using pentane as the

eluent to give a mixture of [1-(1-chloro-ethyl)-vinyl]-triethylsilane **13a** and (1-chloromethyl-propenyl)-triethylsilane **13b** (3.35 g, 76%) as a colourless oil.

¹**H-NMR** (300 MHz; CDCl₃) (major isomer): δ 0.54-0.84 (9H, m, CH₃), 0.90-1.10 (8H, m, CH₂), 1.81 (3H, dt, J = 7 Hz, J = 2 Hz, CH₃), 4.11 (2H, br, CH₂), 6.49 (1H, qt, J = 7 Hz, J = 1 Hz, CH).

¹³C-NMR (75 MHz; CDCl₃): (major isomer): δ 143.8, 134.3, 52.3, 17.6, 7.5, 3.8. IR (neat): 2953 (m), 2912 (m), 2876 (m), 1612 (w), 1457 (w), 1416 (w), 1255 (w) cm⁻¹. MS (EI, 70 eV) m/z = 175 (M⁺-Et), 147, 121, 93. HRMS (EI): calcd. for C₈H₁₆SiCl [M⁺-Et]: 175.0710. Found: 175.0707.

3. Formation of silyl substituted crotyl zinc reagents from silyl substituted allylic chlorides

To a dry 50 mL argon flushed schlenk tube was added lithium chloride (1.27, 30 mmol) the flask was evacuated and the lithium chloride heated under vacuum until thoroughly dry. To this flask was then added zinc dust (6.54g, 100 mmol), the flask was again evacuated and the contents thoroughly dried by heating under vacuum. The cooled flask was purged with argon three times and THF (5 mL) was added before the zinc was activated using 1,2-dibromoethane (5 mol %) and chlorotrimethylsilane (1 mol %).⁴ The allyl chloride (10 mmol) was then added in THF (10 mL) and the suspension vigourously stirred at 25 °C until complete consumption of the allyl chloride was observed (monitored by GC analysis of reaction aliquats). After allowing the excess zinc to settle at the bottom of the flask the allyl zinc reagent was titrated against iodine before use.

2-trimethylsilanyl-but-2-enylzinc chloride 2:

A mixture of [1-(1-chloro-ethyl)-vinyl]-trimethylsilane **1a** and (1-chloromethyl-propenyl)-trimethylsilane **1b** (1.63 g, 10 mmol) was used and the reaction was completed after 18 hours. The concentration of **2** and the yield were determined as follows:

Iodine (254 mg, 1 mmol) was placed into a dry 10 mL round-bottomed flask equipped with a magnetic stirrer bar and septum under argon. Dry THF (5 mL) was added and the solution of **2** in THF was added dropwise until the red colour disappeared. The volume of the solution of **2** added was determined and the following equation used to determine the molarity of the solution: molarity of zinc reagent $\mathbf{2} = 1$ /volume of zinc reagent $\mathbf{2}$.

The concentration of **2** in THF was 0.51 molL^{-1} ; volume = 15.0 mL; yield: 78%.

2-triethylsilanyl-but-2-enylzinc chloride 14:

A mixture of [1-(1-chloro-ethyl)-vinyl]-triethylsilane **13a** and (1-chloromethyl-propenyl)-triethylsilane **13b** (2.05 g, 10 mmol) was used and the reaction was completed after 24 hours. The concentration of **14** in THF was determined as above.

The concentration of 14 in THF was 0.39 molL^{-1} ; volume = 14.5 mL; yield: 57%.

4. Addition of silyl substituted crotyl zinc reagents to aldehydes or ketones

To a solution of the aldehyde or ketone (1 mmol) in THF (2 mL) at -78 °C was added the silyl substituted crotyl zinc reagent (1.1 mmol) as a solution in THF. Upon complete conversion of the aldehyde or ketone (monitored by GC or TLC analysis of reaction aliquats) the reaction was diluted with diethyl ether and a minimum amount of water was added. After drying over magnesium sulfate, the solids were filtered and the solvents were removed *in vacuo* before the crude products were purified by chromatography on silica.

2-methyl-1-phenyl-3-trimethylsilanyl-but-3-en-1-ol 3:

A 0.51 M solution of **2** (2.2 mL, 1.1 mmol) was added to benzaldehyde (0.10 mL, 1 mmol) and the reaction was completed after 1 hour. The crude products were purified by chromatography on silica gel eluting with 5:1 pentane/diethyl ether to give **3** (220 mg, 94%) as colourless oil.

¹**H-NMR** (300 MHz; CDCl₃): δ 0.00 (CH₃, s, 9H), 0.89 (CH₃, d, *J* = 7 Hz, 3H), 1.78 (OH, br, 1H), 2.69 (CH, dq, *J* = 5 Hz, *J* = 7 Hz, 1H), 4.66 (CH, d, *J* = 5 Hz, 1H), 5.51 (CH, d, *J* = 2 Hz, 1H), 5.73 (CH, d, *J* = 2 Hz, 1H), 7.12-7.31 (Ar, m, 5H).

¹³**C-NMR** (75 MHz; CDCl₃): δ -1.3, 13.3, 44.8, 74.9, 125.6, 126.1, 127.0, 128.0, 143.1, 155.2. **IR** (neat): 3418 (br), 3032 (w), 2956 (m), 2895 (w), 1452 (w), 1404 (w) 1247 (m) cm⁻¹. **MS** (EI, 70 eV) m/z = 235 (M⁺+H), 219, 201, 179, 128.

HRMS (EI): calcd. for $C_{14}H_{22}OSi$: 234.1440. Found: 234.1414.

3-methyl-2-trimethylsilanyl-hept-1-en-4-ol 5:

A 0.51 M solution of 2 (2.2 mL, 1.1 mmol) was added to butyraldehyde (0.09 mL, 1 mmol) and the reaction was completed after 1 hour. The crude products were purified by chromatography on silica gel eluting with 10 : 1 pentane/diethyl ether to give 5 (180 mg, 90%) as colourless oil.

¹**H-NMR** (300 MHz; CDCl₃): δ 0.10 (CH₃, s, 9H), 0.93 (CH₃, t, J = 7 Hz, 3H), 1.03 (CH₃, t, J = 7 Hz, 3H), 1.23-1.50 (CH₂, m, 4H), 1.52 (OH, br, 1H), 2.42 (CH, m, 1H), 3.54 (CH, dt, J = 5 Hz, J = 12 Hz, 1H), 5.52 (CH, d, J = 2 Hz, 1H), 5.68 (CH, dd, J = 2 Hz, J = 1 Hz, 1H). ¹³**C-NMR** (75 MHz; CDCl₃): δ -1.1, 13.6, 14.1, 19.5, 37.0, 43.1, 72.6, 124.9, 155.9. **IR** (neat): 3335 (br), 3048 (w), 2957 (s), 2873 (m), 1458 (w), 1404 (w), 1248 (m) cm⁻¹. **MS** (EI, 70 eV) m/z = 185 (M⁺-Me), 167, 145, 129, 113. **HRMS** (EI): calcd. for C₁₁H₂₃OSi [M⁺-H]: 199.1518. Found: 199.1529.

2,4-dimethyl-5-trimethylsilanyl-hex-5-en-3-ol 6:

A 0.51 M solution of **2** (2.2 mL, 1.1 mmol) was added to isobutyraldehyde (0.08 mL, 1 mmol) and the reaction was completed after 1 hour. The crude products were purified by chromatography on silica gel eluting with 10 : 1 pentane/diethyl ether to give **6** (190 mg, 95%) as colourless oil.

¹**H-NMR** (300 MHz; CDCl₃): δ 0.11 (CH₃, s, 9H), 0.91 (CH₃, d, J = 7 Hz, 3H), 0.98 (CH₃, d, J = 7 Hz, 3H), 1.00 (CH₃, d, J = 7 Hz, 3H), 1.54 (OH, br, 1H), 1.71 (CH, m, 1H), 2.66 (CH, m, 1H), 3.15 (CH, dd, J = 4 Hz, J = 7 Hz, 1H), 5.54 (CH, d, J = 2 Hz, 1H), 5.70 (CH, m, 1H). ¹³**C-NMR** (75 MHz; CDCl₃): δ -0.9, 12.6, 18.8, 19.4, 30.5, 40.5, 77.4, 125.3, 156.0. **IR** (neat): 3421 (br), 2957 (s), 1463 (w), 1406 (w), 1248 (m) cm⁻¹. **MS** (EI, 70 eV) m/z = 185 (M⁺-Me), 167, 145, 128, 113. **HRMS**: calcd. for C₁₁H₂₄OSi [M⁺-H]: 199.1518. Found: 199.1532.

1-cyclohexyl-2-methyl-3-trimethylsilanyl-but-3-en-1-ol 7:

A 0.51 M solution of **2** (2.2 mL, 1.1 mmol) was added to cyclohexanecarboxaldehyde (0.12 mL, 1 mmol) and the reaction was completed after 1 hour. The crude products were purified by chromatography on silica gel eluting with 10 : 1 pentane/diethyl ether to give 7 (204 mg, 85%) as colourless oil.

¹**H-NMR** (300 MHz; CDCl₃): δ 0.11 (CH₃, s, 9H), 0.93-1.30 (CH₂, m, 5H), 0.99 (CH₃, d, J = 7 Hz, 3H), 1.39 (CH₂, m, 1H), 1.53 (OH, br, 1H), 1.71 (CH₂, m, 4H), 2.02 (CH, m, 1H), 2.69 (CH, dq, J = 4 Hz, J = 7 Hz, 1H), 3.18 (CH, dd, J = 4 Hz, J = 8 Hz, 1H), 5.56 (CH, d, J = 2 Hz, 1H), 5.71 (CH, dd, J = 1 Hz, J = 2 Hz, 1H).

¹³**C-NMR** (75 MHz; CDCl₃): δ -0.9, 12.2, 26.0, 26.3, 26.5, 29.4, 29.5, 39.5, 40.0, 76.2, 125.3, 156.3.

IR (neat): 3399 (br), 2923 (s), 2852 (m), 1449 (w), 1406 (w), 1247 (m) cm⁻¹.

MS (EI, 70 eV) m/z = 225 (M⁺-Me), 207, 185, 169, 149, 129, 113.

HRMS (EI): calcd. for C₁₄H₂₈OSi: 240.1909. Found: 240.1885.

1-(2-amino-5-chloro-phenyl)-2-methyl-3-trimethylsilanyl-but-3-en-1-ol 8:

A 0.51 M solution of **2** (2.2 mL, 1.1 mmol) was added to 2-amino-5-chlorobenzaldehyde (156 mg, 1 mmol) and the reaction was completed after 1 hour. The crude products were purified by chromatography on silica gel eluting with 3 : 1 pentane/diethyl ether to give **8** (263 mg, 93%) as light yellow solid mp 68-70 °C.

¹**H-NMR** (300 MHz; CDCl₃): δ -0.01 (CH₃, s, 9H), 1.13 (CH₃, d, 3H), 2.97 (CH, dq, J = 7 Hz, J = 7 Hz, 1H), 4.62 (CH, d, J = 7 Hz, 1H), 5.55 (CH, d, J = 2 Hz, 1H), 5.80 (CH, dd, J = 1 Hz, J = 2 Hz, 1H), 6.50-6.56 (Ar, m, 1H), 6.95-7.01 (Ar, m, 2H).

¹³C-NMR (75 MHz; CDCl₃): δ -1.5, 16.3, 41.4, 76.3, 117.9, 122.4, 125.7, 127.7, 128.0, 128.7, 143.4, 155.4. **IR** (neat): 3395 (m), 3215 (br), 2955 (m), 2899 (w), 1618 (w), 1488 (m), 1413 (w), 1357 (w), 1248 (m) cm⁻¹. **MS** (EI, 70 eV) m/z = 283 (M⁺), 266, 250, 156, 128. **HRMS** (EI): calcd. for C₁₄H₂₂NOClSi: 283.1159. Found: 283.1137.

2-methyl-1-(6-nitro-benzo[1,3]dioxol-5-yl)-3-trimethylsilanyl-but-3-en-1-ol 9:

A 0.51 M solution of **2** (2.2 mL, 1.1 mmol) was added to 6-nitropiperonal (195 mg, 1 mmol) and the reaction was completed after 1 hour. The crude products were purified by chromatography on silica gel eluting with 4 : 1 pentane/diethyl ether to give **9** (310 mg, 96%, dr 89 : 11) as yellow oil.

Major diastereoisomer:

¹**H-NMR** (300 MHz; CDCl₃): δ 0.13 (CH₃, s, 9H), 0.93 (CH₃, d, *J* = 7 Hz, 3H), 2.16 (OH, br, 1H), 2.98 (CH, m, 1H), 5.40 (CH, d, *J* = 5 Hz, 1H), 5.61 (CH, d, *J* = 2 Hz, 1H), 5.78 (CH, m, 1H), 6.10 (CH₂, s, 2H), 7.26 (Ar, s, 1H), 7.46 (Ar, s, 1H).

¹³**C-NMR** (75 MHz; CDCl₃): δ -1.2, 14.4, 42.2, 69.9, 102.8, 105.3, 108.2, 126.6, 135.9, 141.9, 146.7, 151.8, 155.2.

IR (neat): 3405 (br), 2957 (m), 1618 (w), 1520 (s), 1504 (s), 1420 (w), 1329 (m), 1246 (s) cm⁻¹.

MS (EI, 70 eV) $m/z = 308 (M^+-Me)$, 290, 268, 196, 165, 148, 129, 113.

HRMS (EI): calcd. for C₁₅H₂₁NO₅Si [M⁺-H]: 322.1111. Found: 322.1101.

Minor diastereoisomer:

¹**H-NMR** (300 MHz; CDCl₃): 0.14 (CH₃, s, 9H), 0.90 (CH₃, d, J = 7 Hz, 3H), 2.16 (OH, br, 1H), 2.98 (CH, m, 1H), 5.45 (CH, d, J = 9 Hz, 1H), 5.66 (CH, d, J = 2 Hz, 1H), 5.80 (CH, m, 1H), 6.10 (CH₂, s, 2H), 7.14 (Ar, s, 1H), 7.39 (Ar, s, 1H). (Could not distinguish ¹³C signals for minor diastereomer).

3-methyl-2-phenyl-4-trimethylsilanyl-pent-4-en-2-ol 10:

A 0.51 M solution of 2 (2.2 mL, 1.1 mmol) was added to acetophenone (0.12 mL, 1 mmol) and the reaction was completed after 1 hour. The crude products were purified by chromatography on silica gel eluting with 20 : 1 pentane/diethyl ether containing 2% triethylamine to give 10 (239 mg, 96%) as a colourless oil.

¹**H-NMR** (600 MHz; CDCl₃): δ 0.13 (CH₃, s, 9H), 0.81 (CH₃, d, *J* = 7 Hz, 3H), 1.46 (CH₃, s, 3H), 1.84 (OH, br, 1H), 2.77 (CH, q, *J* = 7 Hz, 1H), 5.62 (CH, d, *J* = 2 Hz, 1H), 5.94 (CH, d, *J* = 2 Hz, 1H), 7.20-7.25 (Ar, m, 1H), 7.31-7.36 (Ar, m, 2H), 7.41-7.46 (Ar, m, 2H).

¹³**C-NMR** (150 MHz; CDCl₃): δ -0.8, 16.9, 30.5, 47.6, 76.6, 125.0, 126.2, 127.0, 127.9, 147.9, 155.6.

IR (neat): 3486 (w), 2957 (m), 1495 (w), 1445 (w), 1369 (w), 1247 (m) cm⁻¹. **MS** (EI, 70 eV) m/z = 233 (M⁺-Me), 215, 193, 156, 121. HRMS (EI): calcd. for C₁₅H₂₄OSi [M⁺-H]: 247.1518. Found: 247.1519.

2-(4-azido-phenyl)-3-methyl-4-trimethylsilanyl-pent-4-en-2-ol 11:

A 0.51 M solution of **2** (2.2 mL, 1.1 mmol) was added to 1-(4-azido-phenyl)-ethanone⁵ (161 mg, 1 mmol) and the reaction was completed after 1 hour. The crude products were purified by chromatography on silica gel eluting with 10 : 1 pentane/diethyl ether containing 2% triethylamine to give **11** (263 mg, 91%) as a light yellow oil.

¹**H-NMR** (300 MHz; CDCl₃): δ 0.13 (CH₃, s, 9H), 0.81 (CH₃, d, *J* = 7 Hz, 3H), 1.44 (CH₃, s, 3H), 1.84 (OH, br, 1H), 2.73 (CH, q, *J* = 7 Hz, 1H), 5.62 (CH, d, *J* = 2 Hz, 1H), 5.90 (CH, d, *J* = 2 Hz, 1H), 6.97-7.02 (Ar, m, 2H), 7.38-7.45 (Ar, m, 2H).

¹³**C-NMR** (75 Hz; CDCL₃): δ -0.8, 16.9, 30.5, 47.5, 76.4, 118.5, 126.6, 127.1, 138.0, 144.7, 155.5.

IR (neat): 3488 (w), 2958 (m), 2116 (s), 2088 (s), 1604 (w), 1504 (m), 1453 (w), 1411 (w), 1369 (w), 1290 (m), 1247 (m) cm⁻¹.

MS (EI, 70 eV) $m/z = 261 (M^+-N_2), 245, 228, 172, 156, 136.$

HRMS (EI): calcd. For C₁₅H₂₃N₃OSi: 289.1610. Found: 289.1593.

2-(2-bromo-phenyl)-3-methyl-4-trimethylsilanyl-pent-4-en-2-ol 12:

A 0.51 M solution of **2** (2.2 mL, 1.1 mmol) was added to 2'-bromoacetophenone (199 mL, 1 mmol) and the reaction was completed after 1 hour. The crude products were purified by chromatography on silica gel eluting with 10 : 1 pentane/diethyl ether containing 2% triethylamine to give **12** (311 mg, 95%) as colourless oil.

¹**H-NMR** (300 MHz; CDCl₃): δ 0.18 (CH₃, s, 9H), 0.74 (CH₃, d, *J* = Hz, 3H), 1.66 (CH₃, s, 3H), 2.12 (OH, br, 1H), 3.75 (CH, q, *J* = Hz, 1H), 5.69 (CH, d, *J* = Hz, 1H), 6.06 (CH, d, *J* = Hz, 1H), 7.08 (Ar, dt, *J* = 2 Hz *J* = 8 Hz, 1H), 7.31 (Ar, dt, *J* = 2 Hz *J* = 8 Hz, 1H), 7.58 (Ar, dd, *J* = 2 Hz *J* = 8 Hz, 1H), 7.92 (Ar, dd, *J* = 2 Hz *J* = 8 Hz, 1H).

¹³C NMR (75 MHz; CDCl₃): δ -0.6, 17.0, 27.7, 41.9, 77.0, 119.4, 127.2, 127.8, 128.1, 128.9, 135.0, 145.6, 155.9.

IR (neat): 3577 (w), 2957 (w), 1463 (w), 1424 (w), 1370 (w), 1247 (m) cm⁻¹.

MS (EI, 70 eV) $m/z = 313 (M^+-Me), 311, 295, 293, 273, 271, 199, 183, 157.$

HRMS (EI): calcd. for $C_{14}H_{20}OSiBr$ [M⁺-Me] calcd: 311.0467. Found: 311.0436.

calcd. for C₁₃H₁₇OSiBr [M⁺-2Me] calcd: 296.0232. Found: 296.0236.

2-methyl-1-(4-nitro-phenyl)-3-trimethylsilanyl-but-3-en-1-ol 15:

A 0.51 M solution of **2** (2.2 mL, 1.1 mmol) was added to 4-nitrobenzaldehyde (151 mg, 1 mmol) and the reaction was completed after 1 hour. The crude products were purified by chromatography on silica gel eluting with 4 : 1 pentane/diethyl ether to give **15** (249 mg, 89%, dr 89 : 11) as colourless solid. Recrystallisation from ethyl acetate/pentane only the major isomer (200 mg, 71%) as a colourless solid mp 75-76 °C. (see CCDC 673535 and attached .cif file)

Major diastereoisomer:

¹**H-NMR** (600 MHz; CDCl₃): δ 0.11 (CH₃, s, 9H), 0.90 (CH₃, d, J = 7 Hz, 3H), 2.07 (OH, br, 1H), 2.79 (CH, dq, J = 4 Hz, J = 7 Hz, 1H), 4.82 (CH, d, J = 4 Hz, 1H), 5.65 (CH, d, J = 2 Hz, 1H), 5.82 (CH, t, J = 2 Hz, 1H), 7.51 (Ar, d, J = 9 Hz, 2H), 8.19 (Ar, d, J = 9 Hz, 2H). ¹³**C-NMR** (150 MHz; CDCl₃): δ -1.3, 12.7, 44.6, 73.8, 123.3, 126.4, 126.9, 147.0, 150.5,

154.6.

IR (neat): 3543 (m), 3110 (w), 3052 (w), 2957 (m), 2927 (w), 2888 (w), 1603 (w), 1512 (s), 1415 (w), 1343 (s) 1245 (m) cm⁻¹.

MS (EI, 70 eV) m/z = 264 (M⁺-Me), 246, 225, 210, 152, 128, 113.

HRMS (EI): calcd. for C₁₄H₂₁NO₃Si: 279.1291. Found: 279.1276.

Minor diastereoisomer:

¹**H-NMR** (600 MHz; CDCl₃): δ 0.17 (CH₃, s, 9H), 0.83 (CH₃, d, J = 7 Hz, 3H), 2.32 (OH, br, 1H), 2.55 (CH, dq, J = 9 Hz, J = 7 Hz, 1H), 4.65 (CH, d, J = 9 Hz, 1H), 5.70 (CH, d, J = 2 Hz, 1H), 5.89 (CH, d, J = 2 Hz, 1H), 7.54 (Ar, d, J = 9 Hz, 2H), 8.21 (Ar, d, J = 9 Hz, 2H). ¹³**C-NMR** (150 MHz; CDCl₃): δ -1.0, 18.3, 48.3, 123.4, 127.1, 127.9, 147.5, 150.0, 154.9. (1 carbon hidden by solvent or major diastereomer).

2-methyl-1-(4-nitro-phenyl)-3-triethylsilanyl-but-3-en-1-ol 16:

A 0.51 M solution of 14 (2.2 mL, 1.1 mmol) was added to 4-nitrobenzaldehyde (151 mg, 1 mmol) and the reaction was completed after 1 hour. The crude products were purified by chromatography on silica gel eluting with 5:1 pentane/diethyl ether to give 16 (257 mg, 80%, dr 94:6) as a yellow oil.

Major diastereoisomer:

¹**H-NMR** (300 MHz; CDCl₃): δ 0.55-0.74 (CH₂, m, 6H), 0.86 (CH₃, d, J = 7 Hz, 3H), 0.90-0.99 (CH₃, m, 9H), 2.11 (OH, br, 1H), 2.83 (CH, dq, J = 4 Hz, J = 7 Hz, 1H), 4.80 (CH, d, J = 4 Hz, 1H), 5.65 (CH, d, J = 2 Hz, 1H), 5.93 (CH, m, 1H), 7.49-7.56 (Ar, m, 2H), 8.17-8-24 (Ar, m, 2H).

¹³C-NMR (75 MHz; CDCl₃): δ 3.0, 7.3, 12.1, 44.4, 73.2, 123.3, 126.8, 127.6, 147.0, 150.4, 151.8.

IR (EI): 3559 (br), 2954 (m), 2876 (m), 1603 (w), 1518 (s), 1344 (s), 1235 (w) cm⁻¹.

MS (EI, 70 eV) m/z = 292 (M⁺-EtH), 274, 238, 170, 141, 103.

HRMS (EI): calcd. for C₁₇H₂₇NO₃Si: 321.1760. Found: 321.1754.

Minor diastereoisomer:

¹**H-NMR** (300 MHz; CDCl₃): 0.55-0.74 (CH₂, m, 6H), 0.81 (CH₃, d, *J* = 7 Hz, 3H), 0.90-0.99 (CH₃, m, 9H), 2.53 (CH, dq, *J* = 9 Hz, *J* = 7 Hz, 1H), 4.67 (CH, d, *J* = 9 Hz, 1H), 5.68 (CH, d, *J* = 2 Hz, 1H), 5.97 (CH, m, 1H), 7.49-7.56 (Ar, m, 2H), 8.17-8-24 (Ar, m, 2H).

Reaction of 2 with 4-formyl-benzoic acid methyl ester:

A 0.46 M solution of **2** (2.4 mL, 1.1 mmol) was added to 4-formyl-benzoic acid methyl ester (164 mg, 1 mmol) and the reaction was completed after 1 hour. The crude products were purified by chromatography on silica gel eluting with 3 : 1 pentane/diethyl ether to give 4-(1-hydroxy-2-methyl-3-trimethylsilanyl-but-3-enyl)-benzoic acid methyl ester (257 mg, 88%, dr 92 : 8) as colourless oil.

Major diastereoisomer:

¹**H-NMR** (300 MHz; CDCl₃): δ 0.09 (9H, s, CH₃), 0.92 (3H, d, J = 7 Hz, CH₃), 2.00 (1H, br, OH), 2.78 (1H, m, CH), 3.91 (3H, s, CH₃), 4.78 (1H, d, J = 5 Hz, CH), 5.61 (1H, d, J = 2 Hz, CH), 5.81 (1H, dd, J = 1 Hz, J = 2 Hz, CH), 7.41 (2H, d, J = 8 Hz, CH), 8.00 (2H, d, J = 8 Hz, CH)

¹³**C-NMR** (75 MHz; CDCl₃): δ -1.3, 13.0, 44.7, 52.0, 74.3, 126.0, 126.1, 128.8, 129.4, 148.3, 154.9, 167.0.

IR (EI): 3484 (br), 3048 (w), 2953 (w), 2895 (w), 1723 (s), 1706 (s) 1610 (m), 1436 (m), 1414 (m), 1276 (s), 1246 (s) cm⁻¹.

MS (EI, 70 eV) $m/z = 277 (M^+-Me), 261, 237, 165, 128, 113.$

HRMS (EI): calcd. for C₁₆H₂₅O₃Si [M⁺+Me]: 293.1573. Found: 293.1582.

Minor diastereoisomer:

¹**H-NMR** (300 MHz; CDCl₃): ¹**H-NMR** (300 MHz; CDCl₃): δ 0.17 (9H, s, CH₃), 0.81 (3H, d, J = 7 Hz, CH₃), 2.78 (1H, m, CH), 3.96 (3H, s, CH₃), 4.60 (1H, d, J = 9 Hz, CH), 5.67 (1H, d, J = 2 Hz, CH), 5.88 (1H, d, J = 2 Hz, CH), 7.42-7.46 (2H, m, CH), 8.01-8.04 (2H, m, CH). (the two aromatic peaks are partially obscured by the major diastereomer).

Reaction of 2 with 4-acetyl-benzaldehyde:

A 0.46 M solution of 2 (2.4 mL, 1.1 mmol) was added to 4-acetyl-benzaldehyde (148 mg, 1 mmol) and the reaction was completed after 1 hour. The crude products were purified by chromatography on silica gel eluting with 2 : 1 pentane/diethyl ether to give a mixture of isomeric products (260 mg, 94%) as a colourless oil. Analysis of the ¹H-NMR and the GC-MS (see attached data) indicate the formation of the aldehyde allylation products (the γ -addition products) as well as the product of α -addition to the aldehyde (characterised by the quartet at δ 6.07) as the major products with trace quantities of products derived from allylation of the ketone. It is interesting to note this is the only case in which the α -addition product has been observed.

5. Protodesilylation of addition products

To the alcohol (0.5 mmol) in THF (0.6 mL) was added a 60% sodium hydride dispersion in paraffin oil (20 mg, 0.505 mmol) and HMPA (0.4 mL). The reaction was stirred at 25 °C until complete conversion of the starting material was observed. The reaction was quenched with water, extracted three times with Et_2O and the combined organic phase dried over magnesium sulfate. Following removal of the volitiles in vacuo the crude products were purified by chromatography on silica gel using 10 : 1 pentan/Et₂O as the eluent.⁶

Formation of 2-methyl-1-phenyl-but-3-en-1-ol 4:

The reaction using 2-methyl-1-phenyl-3-trimethylsilanyl-but-3-en-1-ol **3** (117 mg, 0.5 mmol) was completed after 2 hours to give 2-methyl-1-phenyl-but-3-en-1-ol **4** (70 mg, 86%) as a colourless oil.

¹**H-NMR** (300 MHz; CDCl₃): δ 1.05 (3H, d, J = 7 Hz, CH₃), 2.06 (1H, br, OH), 2.54-2.67 (1H, m, CH), 4.62 (1H, d, J = 6 Hz, CH), 5.02-5.15 (2H, m, CH), 5.71-5.87 (1H, m, CH), 7.23-7.41 (5H, m, CH).

¹³C-NMR (150 MHz; CDCl₃): δ 14.0, 44.6, 77.3, 115.4, 126.5, 127.3, 128.0, 140.3, 142.5. Previously reported values for **5**:⁸

¹**H-NMR** (CDCl₃): δ 1.01 (3H, d, J = 6.8 Hz), 1.90 (1H, br s), 2.55-2.62 (1H, m), 4.61 (1H, d, J = 5.5 Hz), 5.02-5.08 (2H, m), 5.70-5.81 (1H, m), 7.25-7.34 (5H, m).

¹³C-NMR (CDCl₃): δ 14.0, 44.6, 77.4, 115.5, 126.5, 127.3, 128.0, 140.2, 142.5.

Previously reported values for the *anti*-isomer:⁸

¹**H-NMR** (CDCl₃): δ 0.90 (3H, d, J = 6.8 Hz), 2.16 (1H, br s), 2.45-2.52 (1H, m), 4.34-4.37 (1H, dd, J = 6.8 Hz, J = 2.0 Hz), 5.17-5.23 (2H, m), 5.76-5.88 (1H, ddd, J = 17.2 Hz, J = 10.3 Hz, J = 8.1 Hz), 7.26-7.35 (5H, m).

¹³C-NMR (CDCl₃): δ 16.5, 46.2, 77.8, 116.7, 126.7, 127.5, 128.2, 140.6, 142.4.

Formation of 3-methyl-hept-1-en-4-ol:

The reaction using 3-methyl-2-trimethylsilanyl-hept-1-en-4-ol **5** (100 mg, 0.5 mmol) was completed after 2 hours to give 3-methyl-hept-1-en-4-ol (59 mg, 92%) as a colourless oil.

¹**H-NMR** (200 MHz; CDCl₃): δ 0.88 (3H, d, J = 7 Hz, CH₃), 0.95 (3H, d, J = 7 Hz, CH₃), 1.16-1.56 (4H, m, CH2), 2.23 (1H, apparent sextet from ddq, J = 7 Hz, CH), 3.35-3.51 (1H, m, CH), 4.95-5.09 (2H, m, CH), 5.63-5.86 (2H, m, 1H).

Previously reported values for syn-isomer:⁸

¹**H-NMR** (CDCl₃): δ 0.88 (3H, d, J = 6.8 Hz), 0.98 (3H, d, J = 6.8 Hz), 1.22.1.48 (4H, m), 1.86 (1H, s), 2.22 (1H, dqq, J = 6.5 Hz), 3.43-3.47 (1H, m), 4.93-5.06 (2H, m), 5.66-5.81 (1H, m).

Formation of 2,4-dimethyl-hex-5-en-3-ol:

The reaction using 2,4-dimethyl-5-trimethylsilanyl-hex-5-en-3-ol **6** (100 mg, 0.5 mmol) was completed after 2 hours to give 2,4-dimethyl-hex-5-en-3-ol (52 mg, 82%) as a colourless oil. ¹**H-NMR** (200 MHz; CDCl₃): δ 0.91 (3H, d, J = 7 Hz, CH₃), 0.94 (3H, d, J = 7 Hz, CH₃), 1.04 (3H, d, J = 7 Hz, CH₃), 1.77 (1H, apparent sextet from dtt, J = 7 Hz, CH), 2.39 (1H, apparent sextet from ddq, J = 7 Hz, CH), 3.19 (1H, apparent triplet from dd, J = 7 Hz, CH), 4.96-5.14 (2H, m, CH), 5.68-5.89 (2H, m, 1H).

Previously reported values for syn-isomer:⁹

¹**H-NMR** (CDCl₃): δ 0.92 (3H, d, J = 7 Hz), 0.93 (3H, d, J = 7 Hz), 1.03 (3H, d, J = 7 Hz), 1.60 (1H, br s), 1.71 (1H, octet, J = 7 Hz), 2.37 (1H, sextet, J = 7 Hz), 3.17 (1H, t, J = 7 Hz), 4.88-5.21 (2H, m), 5.58-6.02 (1H, m).

Previously reported values for the anti-isomer:9

¹**H-NMR** (CDCl₃): δ 0.90 (3H, d, J = 7 Hz), 0.95 (3H, d, J = 7 Hz), 1.00 (3H, d, J = 6 Hz), 1.45-2.00 (2H, m), 2.32 (1H, sextet, J = 6 Hz), 3.00-3.33 (1H, m), 4.95-5.30 (2H, m), 5.55-6.00 (1H, m).

Formation of 1-cyclohexyl-2-methyl-but-3-en-1-ol:

The reaction using 1-cyclohexyl-2-methyl-3-trimethylsilanyl-but-3-en-1-ol 7 (120 mg, 0.5 mmol) was completed after 2 hours to give 1-cyclohexyl-2-methyl-but-3-en-1-ol (72 mg, 85%) as a colourless oil.

¹**H-NMR** (300 MHz; CDCl₃): δ 1.01 (3H, d, J = 7 Hz, CH₃), 0.96-2.03 (12H, m), 2.41 (1H, m, CH), 3.20 (1H, dd, J = 5 Hz, J = 6 Hz), 5.04-5.12 (2H, m, CH), 5.82 (1H, ddd, J = 7 Hz, J = 10 Hz, J = 18 Hz, CH).

Previously reported values for *syn*-isomer:¹⁰

¹**H-NMR** (CDCl₃): δ 1.01 (3H, d, J = 6.9 Hz), 0.98-1.95 (12H, m) 2.37-2.44 (1H, m), 3.19 (1H, t, J = 5.8 Hz), 5.07 (1H, d, J = 10.0 Hz), 5.08 (1H, d, J = 16.9 Hz), 5.81 (ddd, 1H, J = 6.9, J = 10.0, J = 16.9 Hz)

Previously reported values for the anti-isomer:¹⁰

¹**H-NMR** (CDCl₃): δ 1.03 (3H, d, J = 6.9 Hz), 1.00-1.85 (12H, m) 2.31-2.44 (1H, m), 3.10 (1H, t, J = 5.8 Hz), 5.09 (1H, d, J = 10.0 Hz), 5.10 (1H, d, J = 16.2 Hz), 5.78 (ddd, 1H, J = 8.1, J = 10.2, J = 16.2 Hz)

6. References

1. B. M. Trost and S. Mignani J. Org. Chem. 1986, 51, 3435.

2. T. H. Chan and B. S. Ong J. Org. Chem. 1978, 43, 2994.

3. G. Stork and B. Ganem J. Am. Chem. Soc. 1973, 95, 6152.

4. The zinc powder was activated by treatment first with 1,2- dibromoethane and then with chlorotrimethylsilane; see: P. Knochel, M. J. Rozema and C. E. Tucker *Organocopper reagents* (Ed.: R. J. K. Taylor), Oxford University press, Oxford, 1994, p. 85.

5. K. Lamara and R. K. Smalley Tetrahedron, 1991, 47, 2277.

6. F. Sato, M. Kusakabe and Y. Kobayashi, J. Chem. Soc., Chem. Commun., 1984, 1130.

7. S. Hayashi, K. Hirano, H. Yorimitsu and K. Oshima Org. Lett. 2005, 7, 3577.

8. C. H. Burgos, E. Canales, K. Matos and J. A. Soderquist J. Am. Chem. Soc. 2005, 127, 8044.

9. R. W. Hoffmann and H.-J. Zeiß J. Org. Chem. 1981, 46, 1309.

10. S. Kobayashi and K. Nishio J. Org. Chem. 1994, 59, 6620.

7. NMR Spectra

2-methyl-1-phenyl-3-trimethylsilanyl-but-3-en-1-ol **3**, ¹H-NMR (300 MHz, CDCl₃):

2-methyl-1-phenyl-3-trimethylsilanyl-but-3-en-1-ol **3**, ¹³C-NMR (75 MHz, CDCl₃):

2-Methyl-1-phenyl-but-3-en-1-ol 4, ¹H-NMR (300 MHz, CDCl₃):

2-Methyl-1-phenyl-but-3-en-1-ol 4, ¹³C-NMR (75 MHz, CDCl₃):

3-methyl-2-trimethylsilanyl-hept-1-en-4-ol **5**, ¹³C-NMR (75 MHz, CDCl₃):

1-cyclohexyl-2-methyl-3-trimethylsilanyl-but-3-en-1-ol 7, ¹H-NMR (300 MHz, CDCl₃):

1-cyclohexyl-2-methyl-3-trimethylsilanyl-but-3-en-1-ol 7, ¹³C-NMR (75 MHz, CDCl₃):

1-(2-amino-5-chloro-phenyl)-2-methyl-3-trimethylsilanyl-but-3-en-1-ol **8**, ¹H-NMR (300 MHz, CDCl₃):

1-(2-amino-5-chloro-phenyl)-2-methyl-3-trimethylsilanyl-but-3-en-1-ol **8**, ¹³C-NMR (75 MHz, CDCl₃):

2-methyl-1-(6-nitro-benzo[1,3]dioxol-5-yl)-3-trimethylsilanyl-but-3-en-1-ol **9**, ¹H-NMR (300 MHz, CDCl₃):

2-methyl-1-(6-nitro-benzo[1,3]dioxol-5-yl)-3-trimethylsilanyl-but-3-en-1-ol **9**, ¹³C-NMR (75 MHz, CDCl₃):

3-methyl-2-phenyl-4-trimethylsilanyl-pent-4-en-2-ol **10**, ¹H-NMR (600 MHz, CDCl₃):

3-methyl-2-phenyl-4-trimethylsilanyl-pent-4-en-2-ol **10**, ¹³C-NMR (150 MHz, CDCl₃):

2-(4-azido-phenyl)-3-methyl-4-trimethylsilanyl-pent-4-en-2-ol **11**, ¹H-NMR (300 MHz, CDCl₃):

2-(4-azido-phenyl)-3-methyl-4-trimethylsilanyl-pent-4-en-2-ol **11**, ¹³C-NMR (75 MHz, CDCl₃):

2-(2-bromo-phenyl)-3-methyl-4-trimethylsilanyl-pent-4-en-2-ol 12, ¹H-NMR (300 MHz, CDCl₃):

2-(2-bromo-phenyl)-3-methyl-4-trimethylsilanyl-pent-4-en-2-ol **12**, ¹³C-NMR (75 MHz, CDCl₃):

[1-(1-chloro-ethyl)-vinyl]-triethyl-silane **13a** and (1-chloromethyl-propenyl)-triethyl-silane **13b**, ¹H-NMR (300 MHz, CDCl₃):

[1-(1-chloro-ethyl)-vinyl]-triethyl-silane **13a** and (1-chloromethyl-propenyl)-triethyl-silane **13b**, ¹³C-NMR (75 MHz, CDCl₃):

2-methyl-1-(4-nitro-phenyl)-3-trimethylsilanyl-but-3-en-1-ol **15**, ¹H-NMR (600 MHz, CDCl₃):

2-methyl-1-(4-nitro-phenyl)-3-trimethylsilanyl-but-3-en-1-ol **15**, ¹³C-NMR (150 MHz, CDCl₃):

15 (recrystalised from ethyl acetate/hexane), ¹H-NMR (600 MHz, CDCl₃):

:ppm (f1) 154.588 150 - 150.467 - 146.986 126.916 125 126.396 - 123.313 SiMe₃ OH 100 O₂N² 77.213 75 77.000 _ 76.787 73.806 50 - 44.585 25 - 12.712 \bigcirc - -1.282

15 (recrystalised from ethyl acetate/hexane), ¹³C-NMR (150 MHz, CDCl₃):

4-(1-hydroxy-2-methyl-3-trimethylsilanyl-but-3-enyl)-benzoic acid methyl ester, ¹H-NMR (300 MHz, CDCl₃):

4-(1-hydroxy-2-methyl-3-trimethylsilanyl-but-3-enyl)-benzoic acid methyl ester, ¹³C-NMR (75 MHz, CDCl₃):

Reaction of 2 with 4-Acetyl-benzaldehyde, GC

= I S	Injection Date Sample Name	: 2/29/08 10:48:10 : t	AM Lo	cation : Vial 1	Ma	- mg = o manie r c	
A L L g	Acq. Operator Acq. Method Last changed Analysis Method Last changed gc 007	: matt : C:\HPCHEM\2\METH(: 2/28/08 8:29:11 F (modified after 1) : C:\HPCHEM\2\METH(: 2/29/08 12:15:49 (modified after 1)	Inj DDS\KOLJA.M PM by matt Loading) DDS\KOLJA.M PM by matt Loading)	Inj: 1 Volume : Manually	Me le Me		
	FID1A, (MA) PA 1200 1000 800 400 200 0	TMH681.D)	New Street	AND	Me Me Me Me Me Me Si Me Me	e - Me	
	6	6.5	7	7.5 8	8.5	9	9.5
So: Mu. Di: Use Sig	orted By Hitiplier Lution Wultiplier & gnal 1: FID1 A,	: Signal : 1.0000 : 1.0000 Dilution Factor wit	h ISTDs				
GC 007	2/29/08 12:16:	05 PM matt					Page 1 of 2
GC 007 Data Fi Peal # 	2/29/08 12:16: ile C:\HPCHEM\2' k RetTime Type [min] 7.300 MM 2 7.431 MM 3 7.489 MM als : sults obtained	05 PM matt \DATA\MATT\MH681.D Width Area [min] [pA*s] 0.0435 3718.19019 0.0435 2048.16528 0.0387 293.82541 6060.18088 with enhanced integ *** End of	Height Area [pA] % 1424.06152 61.354 1027.07397 33.797 55.20864 4.848 2506.34414 rator! Report ***			Sample Name: t	Page 1 of 2
GC 007 Data Fi Peal # Tota Res	2/29/08 12:16: Ale C:\HPCHEM\2 Ak RetTime Type [min] 1 7.300 MM 2 7.431 MM 3 7.489 MM als : sults obtained	05 PM matt DATA\MATT\MH681.D Width Area [min] [pA*s] 0.0435 3718.19019 0.0332 2048.16528 0.0387 293.82541 6060.18088 with enhanced integ **** End of 1	Height Area [pA] 4 1424.06152 61.364 1027.07397 33.797 55.20864 4.848 2506.34414 rator! Report ***	44 10 46		Sample Name: t	Page 1 of 2
GC 007	2/29/08 12:16: ile C:\HPCHEM\2' ik RetTime Type [min] 1 7.300 MM 2 7.431 MM 3 7.489 MM als : sults obtained	05 PM matt (DATA\MATT\MH681.D Width Area [min] [pA*s] 0.0435 3718.19019 0.0332 2048.16528 0.0887 293.82541 6060.18088 with enhanced integ **** End of 1	Height Area [pA] % 1424.06152 61.354 1027.07397 33.797 55.20864 4.848 2506.34414 rator! Report ***	44 10 46		Sample Name: t	Page 1 of 2
GC 007	2/29/08 12:16: ile C:\HPCHEM\2' ik RetTime Type (min) 1 7.300 MM 2 7.431 MM 2 7.431 MM als : sults obtained	05 PM matt DATA\MATT\MH681.D Width Area [min] [DA*s] 	Height Area [pA] % 1424.06152 61.354 1027.07397 33.797 55.20864 4.848 2506.34414 rator! Report ***	 44 10 46		Sample Name: t	Page 1 of 2
GC 007	2/29/08 12:16: ile C:\HPCHEM\2' k RetTime Type [[min] 1 7.300 MM 2 7.431 MM 3 7.489 MM als : sults obtained	05 PM matt \DATA\MATT\MH681.D Width Area [min] [pA*s] 0.0435 3718.19019 0.0335 2048.16528 0.0887 293.82541 6060.18088 with enhanced integ **** End of 1	Height Area [pA] % 1424.06152 61.354 1027.07397 33.797 55.20864 4.848 2506.34414 rator! Report ***	44 10 46		Sample Name: t	Page 1 of 2
GC 007	2/29/08 12:16: ile C:\HPCHEM\2' ik RetTime Type [min] 	05 PM matt \DATA\MATT\MH681.D Width Area [min] [pA*s] 0.0435 3718.19019 0.0332 2048.16528 0.0382 293.82541 6060.18088 with enhanced integ **** End of	Height Area [pA] % 1424.06152 61.354 1027.07397 33.797 55.20864 4.848 2506.34414 rator! Report ***	4 44 10 46		Sample Name: t	Page 1 of 2
GC 007	2/29/08 12:16: ile C:\HPCHEM\2' [min] 1 7.300 MM 2 7.431 MM 3 7.439 MM als : sults obtained	05 PM matt DATA\WATT\MH681.D Width Area [min] [DA*s] 0.0435 3718.19019 0.0332 2048.15528 0.0887 293.82541 6060.18088 with enhanced integ **** End of	Height Area [pA] % 	 44 10 46		Sample Name: t	Page 1 of 2
GC 007	2/29/08 12:16: ile C:\HPCHEM\2' k RetTime Type [[min] 1 7.300 MM 2 7.431 MM als : sults obtained	05 PM matt \DATA\MATT\MH681.D Width Area [min] [pA*s] 0.0435 3718.19019 0.0335 2048.16528 0.0887 293.82541 6060.18088 with enhanced integ **** End of	Height Area [pA] % 1424.06152 61.364 1027.07397 33.797 55.20864 4.848 2506.34414 rator! Report ***	44 10 46		Sample Name: t	Page 1 of 2
GC 007	2/29/08 12:16: ile C:\HPCHEM\2' k RetTime Type [min] 1 7.300 MM 3 7.431 MM 3 7.439 MM als: sults obtained	05 PM matt \DATA\MATT\MH681.D Width Area [min] [pA*s] 0.0435 3718.19019 0.0435 2048.16528 0.0382 2048.16528 0.0887 293.82541 6060.18088 with enhanced integ **** End of	Height Area [pA] % 1424.06152 61.364 1027.07397 33.7097 55.20864 4.848 2506.34414 rator! Report ***	44 10 46		Sample Name: t	Page 1 of 2
GC 007	2/29/08 12:16: ile C:\HPCHEM\2' [min] 1 7.300 MM 2 7.431 MM 3 7.489 MM als : sults obtained	05 PM matt \DATA\MATT\MH681.D Width Area [min] [pA*s] 0.0435 3718.19019 0.0322048.16528 0.0387 293.82541 6060.18088 with enhanced integ **** End of	Height Area [pA] % 1424.06152 61.364 1027.07397 33.797 55.20864 4.848 2506.34414 rator! Report ***	44 10 46		Sample Name: t	Page 1 of 2

Reaction of 2 with 4-Acetyl-benzaldehyde, GC-MS

2,4-dimethyl-hex-5-en-3-ol, ¹H-NMR (200 MHz, CDCl₃):

1-cyclohexyl-2-methyl-but-3-en-1-ol, ¹H-NMR (300 MHz, CDCl₃):

