Supporting Information

Efficient Base Catalyzed Alkylation

Reactions with Aziridine Electrophiles

Thomas A. Moss[†], Aurelie Alba[†], David Hepworth[‡] and Darren J. Dixon[†]

[†]School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL and [‡]Pfizer Global Research and Development, Ramsgate Road, Sandwich, Kent, CT13 9NJ.

Darren.Dixon@manchester.ac.uk

Contents

1. General Experimental	1
2. Practical Experimental	2
2.1. 2,4-(Dimesitylsulfonyl)ethanolamine	3
2.2. <i>N</i> -mesitylsulfonyl aziridine 2b	4
2.3. N-(2-(Trifluoromethane)benzenesulfonyl)ethanolamine	4
2.4. N-(2-(Trifluoromethane)benzenesulfonyl aziridine 2f	5
2.5. Methyl 2-cyano-2-phenylacetate	6
2.6. Benzyl 2-cyano-2-phenylacetate	7
2.7. 1-Oxo-indan-2-carboxylic acid tert-butylamide	8
2.8 General procedure for the base catalyzed ring opening of N-	
protected aziridines	9
2.8.1. Compound 3a	9
2.8.2. Compound 3b	10
2.8.3 Compound 3c	11
2.8.4. Compound 3d	11
2.8.5. Compound 3e	12
2.8.6. Compound 3f	13
2.8.7. Compound 3g	14
2.8.8. Compound 3h	15
2.8.9. Compound 3i	16
2.8.10. Compound 3j	17
2.8.11. Compound 3k	17
2.8.12. Compound 3I	18
2.8.13. Compound 3m	19
2.8.14. Compound 3n	20
2.8.15. Compound 30	21
2.8.16. Compound 3p	22
2.9. Di-alcohol 6	22
2.10. Spiro-fused mono alcohol 7	24

2.11. General procedure for one pot trifluoroacetylation / sulfoname cleavage:	ide 25
2.11.1. Compound 8a	25
2.11.2. Compound 8b	26
3. References	27
4. Spectra	28
4.1.2,4-(Dimesitylsulfonyl)ethanolamine	28
4.2. <i>N</i> -mesitylsulfonyl aziridine 2b	29
4.3. N-(2-(Trifluoromethane)benzenesulfonyl)ethanolamine	30
4.4. N-(2-(Trifluoromethane)benzenesulfonyl aziridine 2f	31
4.6. Methyl 2-cyano-2-phenylacetate	32
4.7. Benzyl 2-cyano-2-phenylacetate	33
4.8. 1-Oxo-indan-2-carboxylic acid tert-butylamide	34
4.5. Compound 3a	35
4.9. Compound 3b	36
4.10. Compound 3c	37
4.10. Compound 3d	38
4.11. Compound 3e	39
4.12. Compound 3f	40
4.13. Compound 3g	41
4.14. Compound 3h	42
4.15. Compound 3i	43
4.16. Compound 3j	44
4.17. Compound 3k	45
4.18. Compound 3	46
4.19. Compound 3m	
4.20. Compound 3n	48
4.21. Compound 30	49
4.22. Compound 3p	50
4.23. Di-alcohol 6	51

4.24 Spiro-fused mono-alcohol 7	52
4.23. Compound 8a	53
4.24. Compound 8b	54

Experimental

1) Solvents and Reagents

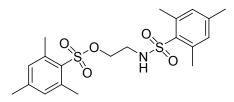
All reagents bought from commercial sources were used as sold. Organic solvents were concentrated under reduced pressure using a Büchi rotary evaporator. Syringes, needles and cannulae were oven dried at 140 °C. Anhydrous tetrahydrofuran was freshly distilled from sodium-benzophenone under an atmosphere of nitrogen. Anhydrous dichloromethane, toluene and HNⁱPr₂ were purified by distillation over calcium hydride.

2) Chromotography

TLC analyses were performed using Merck aluminium-backed or glass-backed plates pre-coated with silica (0.25 mm, 60 F_{254}) and visualized under UV light (254 nm) and/or by the use of potassium permanganate using the solvent system indicated. Systems using 'petroleum ether' refer to light petroleum 40-60 °C. Column chromatography was performed on silica (Kieselgel 60 (40-60 μ m).

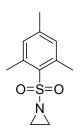
3) Spectra

Infrared spectra were recorded on an ATI Matison: Genesis Series FTIR spectrometer from a thin film or with Nujol deposited on a sodium chloride plate, with absorption maxima (v_{max}) recorded in wavenumbers (cm⁻¹), and labelled as broad (br), strong (s), medium (m), or weak (w). Only selected absorptions are recorded. NMR spectra were recorded using a Bruker Avance 500 MHz spectrometer, chemical shifts (δ) are quoted in parts per million referenced to the residual solvent peak (7.26

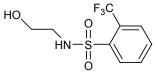

CDCl₃ ¹H, 77.1 CDCl₃ ¹³C). The multiplicity of each signal is designated using the following abbreviations; s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. Coupling constants (*J*) are reported in Hertz (Hz). Low resolution mass spectra were recorded on a Fissions VG Trio 2000 quadrupole mass spectrometer. High resolution mass spectra were recorded on a Thermo Finnigan Mat 95XP mass spectrometer. Melting points were obtained using a Griffin melting point apparatus and remain uncorrected.

4) Starting Materials

N-tosyl (2a), N-Nosyl (2d), N-Phosphoryl (2e) and N-CbZ (2c) aziridines were synthesised according to known procedures.^{S1-S4} The starting material for **3f** was synthesised by esterification of adipoyl dichloride followed by Dieckmann condensation.^{S5} The starting material for **3g** and **3o** was synthesised by treatment of 1-indanone with NaH and dimethylcarbonate.^{S6} Starting materials for **3h** was synthesised by a transesterification reaction from the methyl ester.^{S7} Starting material for **3i** was obtained from a Thorpe-Ziegler condensation.^{S8} Starting material for **3i** was synthesised by treatment of pyrrolidin-2-one with Boc₂O and 10 mol% DMAP at room temperature in CH_2Cl_2 followed by esterification with LiHMDS and dimethylcarbonate at -78 °C. The starting material for **3p** was synthesised *via* an SN_{Ar} reaction of 2-fluoronitrobenzene and dimethyl malonate with NaH, followed by reduction of the aromatic nitro group with H₂ / Pd according to a known procedure.^{S9}

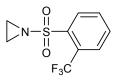

2.2 Reactions and Preparations

2,4-(DimesityIsulfonyI)ethanolamine


Ethanolamine (1.0 g, 16.4 mmol) in 1.0 mL dry pyridine was added to a stirred solution of 2,4,6-trimethylbenzene sulfonyl chloride (7.52 g, 34.4 mmol) in 5 mL dry pyridine at -10 °C. Following warming to room temperature, the solution was stirred overnight. Water (5 mL) and CH_2Cl_2 (10 mL) were added, and the two layers were separated. The organic layer was washed with 1 N HCl (2 x 10 mL), and the combined aqueous layers were extracted with CH₂Cl₂ (2 x 10 mL). The combined organic layers were washed with a saturated copper sulfate solution (10 mL), dried (MgSO₄) and concentrated under reduced pressure to give the titled product as a white solid (5.66 g, 81 %); m.p. 82-84 °C; v_{max} (nujol)/cm⁻¹ 3328 (br, NH), 2852 (s), 1601 (w), 1464 (s), 1455 (s), 1377 (m), 1316 (w, SO₂), 1303 (w, SO₂), (s), 1170 (w, SO₂), 1147 (w, SO₂); δ_H (500MHz, CDCl₃) 6.97 (s, 2 H, O-Mes aromatic), 6.94 (s, 2 H, NH-Mes aromatic), 4.95 (t, 1 H, J = 6, NH), 3.97 (t, 2 H, J = 6, CH₂O), 3.20 (q, 2 H, J = 6, CH_2NH), 2.59 (s, 6 H, 2 x CH_3 O-Mes), 2.57 (s, 6 H, 2 x CH_3 N-Mes), 2.32 (s, 3 H, CH₃, O-Mes), 2.30 (s, 3 H,-CH₃, N-Mes); δ_C (125MHz, CDCl₃) 143.8 (C), 142.5 (C), 139.9 (C), 139.0 (C), 133.3 (C), 132.1 (CH), 131.9 (CH), 130.0 (C), 67.7 (CH₂O), 41.8 (CH₂N), 22.9 (2 x CH₃), 22.6 (2 x CH₃), 21.1 (CH₃), 21.0 (CH₃); *m/z* (Cl⁺, NH₃) 443 ([M+NH₄]⁺, 100), 261 (21), 243 (37), 226 (72), 167 (22), 136 (25), 119 (23); HRMS 443.1663 [M+NH₄]⁺, C₂₀H₃₁O₅N₂S₂ requires 443.1669.

N-mesityl sulfonyl aziridine 2b

Potassium hydroxide (3.70 g, 65.9 mmol) in 18 mL water was added in one portion to 2,4-(dimesitylsulfonyl)ethanolamine (5.60 g, 13.2 mmol) in 100 mL benzene, and the biphasic mixture was stirred rapidly at room temperature overnight. The two layers were separated and the benzene layer was washed with water (20 mL), brine (20 mL), dried (Na₂SO₄) and concentrated under reduced pressure to give an off-white solid. The residue was purified by column chromatography [diethyl ether / petroleum ether] (1:2) to give the titled product as a crystalline white solid (2.81 g, 95 %); m.p 59-62 °C; v_{max} (neat)/cm⁻¹ 3056 (m), 2986 (m), 2942 (m), 2306 (m), 1751 (m), 1605 (m), 1456 (m), 1442 (m), 1320 (s, SO₂), 1266 (s), 1157 (s, SO₂); $\delta_{\rm H}$ (500MHz, CDCl₃) 6.96 (s, 2 H, CH aromatic), 2.68 (s, 6 H, 2 x CH₃), 2.40-2.25 (s, 4 H, 2 x CH₂), 2.29 (s, 3 H, CH₃); $\delta_{\rm C}$ (125MHz, CDCl₃) 143.1 (C), 140.2 (2 x C), 132.5 (C), 131.8 (2 x CH), 26.6 (2 x CH₂), 23.0 (2 x CH₃), 21.0 (CH₃); *m/z* (Cl⁺, NH₃) 226 ([M+H]⁺, 100%); HRMS ([M+NH₄]⁺) 243.1168, C₁₁H₁₉O₂N₂S requires 243.1162.


N-(2-(Trifluoromethane)benzenesulfonyl)ethanolamine

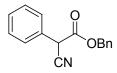
Ethanolamine (1.25 g, 20.44 mmol) and triethylamine (2.86 mL, 20.44 mmol) in 10 mL CH_2Cl_2 were added dropwise to a solution of 2-(Trifluoromethyl)benzenesulfonyl chloride (5.0 g, 20.44 mmol) in 15 mL CH_2Cl_2 at 0

°C. Following warming to room temperature, the solution was stirred overnight. 1 N HCl was added (10 mL), and the two layers were separated. The organic layer was washed with 1 N HCl (2 x 20 mL). The combined aqueous fractions were extracted with CH₂Cl₂ (20 mL). The combined organic fractions were then dried (Na₂SO₄) and concentrated. The residue was filtered through a silica plug (Et₂O) to give the titled product as a white solid (4.90 g, 79 %). v_{max} (neat)/cm⁻¹ 3367 (br, OH, NH), 1310 (s, SO₂), 1166 (s, SO₂); $\delta_{\rm H}$ (500MHz, CDCl₃) 8.21 (dd, 1 H, *J* = 6, 8, CH), 7.87 (dd, 1 H, *J* = 6, 8.0, CH), 7.74-7.69 (m, 2 H, 2 x CH), 5.48 (t, 1 H, *J* = 6, NH), 3.70 (t, 2 H, *J* = 6, CH₂), 3.12 (q, 2 H, *J* = 6, 11, CH₂N); $\delta_{\rm C}$ (125MHz, CDCl₃) 138.3 (*i*-C), 132.8 (CH), 132.5 (CH), 131.5 (CH), 128.6 (q, *J* = 4, CH), 127.5 (q, *J* = 33, *C*(CF₃)), 122.9 (q, *J* = 274, CF₃), 61.2 (CH₂O), 45.3 (CH₂N); *m*/*z* (Cl⁺, NH₃) 287 ([M+NH₄]⁺, 100%), 270 (12), 62 (10); HRMS (ES, [M+NH₄]⁺ 287.0669, C₉H₁₄O₃N₂F₃S requires 287.0672.

N-2-(Trifluoromethane)benzenesulfonyl aziridine 2f

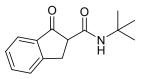
Triethylamine (3.81 mL, 27.24 mmol) and mesitylsulfonyl chloride (2.84 g, 12.97 mmol) in 5 mL CH_2CI_2 were added to a solution of *N*-(2-(Trifluoromethane)benzenesulfonyl)ethanolamine (3.49g, 12.97 mmol) in 10 mL CH_2CI_2 at -20 °C over 30 minutes. Following warming to 0 °C, the solution was stirred for 16 h. 1 N HCI was added (10 mL), and the two layers were separated. The organic layer was washed with 1 N HCI (2 x 15 mL). The combined aqueous fractions were extracted with CH_2CI_2 (15 mL). The combined organic fractions were dried (Na₂SO₄) and concentrated. The residue was dissolved in benzene (100 mL) and

potassium hydroxide (2.83 g, 50.47 mmol) in 14 mL H₂O was added. The biphasic mixture was stirred vigorously for 16 h. Water (25 mL) was added and the two layers were separated. The organic layer was dried (Na₂SO₄) and concentrated to give the titled compound as a white solid (2.44 g, 75 %). m.p. 54-56 °C; v_{max} (neat)/cm⁻¹ 3020 (m), 1361 (m), 1314 (s, SO₂), 1216 (s), 1162 (s, SO₂);); δ_{H} (500MHz, CDCl₃) 8.80 (dd, 1 H, *J* = 6, 8, CH), 7.85 (dd, 1 H, *J* = 6, 8, CH), 7.75-7.68 (m, 2 H, 2 x CH), 2.40 (s, 4 H, 2 x CH₂); δ_{C} (125MHz, CDCl₃) 137.2 (*i*-C), 133.6 (CH), 132.4 (CH), 131.9 (CH), 128.7 (q, *J* = 34, *C*(CF₃)), 128.4 (q, *J* = 6, CH), 122.4 (q, *J* = 274, CF₃), 28.8 (2 x CH₂); *m*/z (ES) 268 ([M+NH₄]⁺ 36), 252 (25), 199 (100); HRMS 252.0295 [M+H]⁺, C₉H₉O₂N₁F₃S requires 252.0301.


Methyl 2-cyano-2-phenylacetate

Phenylacetonitrile (3.80 mL, 33.0 mmol) followed by dimethyl carbonate (13.9 mL, 264.0 mmol) were added to a suspension of sodium hydride (2.64 g, 66.0 mmol, 60% dispersion in mineral oil) in 80 mL of toluene at room temperature. Following warming to 80 °C for 30 min, a white and pale yellow cake formed, which was heated at 80 °C for a further 1 h. 1 N HCl was added until the solid dissolved (~ 60 mL), and the solution was extracted with EtOAc (2 x 40 mL). The combined organic extracts were dried (MgSO₄) and concentrated, and the resulting yellow oil was purified by column chromatography [diethyl ether / petroleum ether] (1:3) to give the titled product as a clear oil (5.51 g, 95%); v_{max} (neat)/cm⁻¹ 2957 (m), 2252 (w, CN), 1750 (s, C=O), 1497 (m), 1456 (s), 1436 (s), 1313 (s), 1257 (s), 1236 (s); δ_{H} (500MHz,

CDCl₃) 7.22-7.13 (m, 5 H, 5 x CH), 4.54 (s, 1 H), 3.52 (s, 3 H, OCH₃); δ_{C} (125MHz, CDCl₃) 165.6 (C=O), 130.0 (C), 129.4 (2 x CH), 129.1 (CH), 128.0 (2 x CH), 115.8 (CN), 53.9 (OCH₃), 43.5 (CH); *m/z* (Cl⁺, NH₃) 193 ([M+NH₄]⁺, 100%); HRMS 193.0965 [M+NH₄]⁺, C₁₀H₁₃O₂N₂ requires 193.0977.


Benzyl 2-cyano-2-phenylacetate

BuLi (1.6M solution in hexanes, 8.1 mL, 13.0 mmol) was added dropwise to a solution of diisopropylamine (1.82 mL, 13.0 mmol) in 40 mL dry THF at -78 °C. Following warming to 0 °C for 20 min, phenylacetonitrile (1.0 mL, 8.7 mmol) was added in 5 mL dry THF dropwise and the solution was stirred for 20 min. Benzyl chloroformate (1.83 mL, 13.0 mmol) was then added in 10 mL dry THF and the solution was stirred at 0 °C for 48 h and then at RT for 16 h. 1 N HCll was added (50 mL), and the solution was extracted with CH_2CI_2 (2 x 30 mL). The combined organic portions were washed with 1 N HCl (2 x 30 mL), brine (30 mL), dried (MgSO₄) and concentrated. The residue was purified by column chromatography [diethyl ether / petroleum ether] (1:2) to give the titled product as a white solid (1.72 g, 80 %); m.p. 32-35 °C; v_{max} (neat)/cm⁻¹ 2975 (m), 2254 (w, CN), 1748 (s, C=O), 1497 (s), 1456 (s), 1378 (m), 1194 (s); δ_H (500MHz, CDCl₃) 7.38-7.17 (m, 10 H, 2 x Phenyl), 5.02 and 5.01 (d and d, J = 12 and 12, CH₂OCO), 4.68 (s, 1 H, CHCN); δ_{C} (125MHz, CDCl₃) 164.9 (C=O), 134.4 (C), 129.8 (C, Bn), 129.4 (CH), 129.3 (CH), 128.8 (CH), 128.7 (CH), 128.2 (CH), 128.0 (CH), 115.5 (CN), 68.7 (CH₂O), 43.8 (CHCN); m/z (Cl⁺,

NH₃) 269 ([M+NH₄]⁺, 100%), 108 (32), 91 (47) HRMS 269.1277 [M+NH₄]⁺, $C_{16}H_{17}O_2N_2$ requires 269.1280.

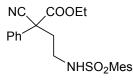
1-Oxo-indan-2-carboxylic acid tert-butylamide

NaH (60% dispersion, 636 mg, 15.9 mmol) was suspended in 10 mL dry THF under nitrogen in an oven dried flask. Following stirring for 10 minutes, the suspension was allowed to settle and the THF was syringed off. The residue was suspended in dry THF (15 mL). Following warming to reflux, tert-butyl isocyanate (726 µL, 6.4 mmol) and 1-indanone (750 mg, 6.4 mmol) was added in 2 mL THF over 10 minutes. Following stirring at reflux for 1 h, a white/yellow cake formed which was heated for a further 3 h. After cooling to 0 °C, 1 N HCl was added cautiously until the solid had completely dissolved (c.a 20 mL). The solution was extracted with Et₂O (2 x 20 mL) and the organic phase was washed with sat NaHCO₃ (20 mL), brine (20 mL), dried (Na_2SO_4) and concentrated. The residue was triturated with Et₂O to give the titled compound as a white solid (760 mg, 58 %); m.p. 134-136 °C; v_{max} (neat)/cm⁻¹ 3561 (br, NH), 3054 (m), 1698 (m, C=O ketone), 1665 (m, C=O amide), 1233 (s); δ_H (500MHz, CDCl₃) 7.72 (d, 1 H, J = 8, CH), 7.60 (t, 1 H, J = 7, CH), 7.49 (d, 1 H, J = 8, CH), 7.36 (t, 1 H, J = 7, CH), 7.00 (br, NH), 3.75 (dd, 1 H, J = 4, 18, CHH'), 3.48 (dd, J = 4, 8, CH), 3.28 (dd, J = 8, 18, CHH'), 1.37 (s, 9 H, 3 x CH₃); δ_{C} (125MHz, CDCl₃) 203.8 (C=O ketone), 165.2 (C=O amide), 154.4 (C), 135.7 (CH), 135.4 (C), 127.5 (CH), 126.7 (CH), 124.3 (CH), 53.5 (CH), 51.4 (C(CH₃)₃), 29.2 (3 x CH₃), 28.5 (CH₂);

m/*z* (ES) 254 ([M+Na]⁺ 100%); HRMS 254.1159 [M+Na]⁺, C₁₄H₁₇O₂N₁Na requires 254.1157.

General procedure for the base catalyzed ring opening of *N*-protected aziridines

BEMP (10.4 μ L, 0.036 mmol) was added to a stirred solution of pronucleophile (0.72 mmol) in 700 μ L THF and the solution was stirred at room temperature for 10 minutes. Aziridine (0.36 mmol) was added and the solution was stirred at room temperature. After completion of the reaction, the solution was concentrated under reduced pressure and the residue was purified by flash column chromatography [diethyl ether / petroleum ether].

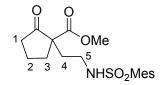

Compound 3a

,COOEt NC Ph NHTs

Following general procedure, the titled product was obtained as a colourless oil (129 mg, 93%) after flash column chromatography [diethyl ether / petroleum ether] (1:1)]; v_{max} (neat)/cm⁻¹ 3283 (br, NH), 2980 (m), 2240 (m, CN), 1743 (s, C=O), 1332 (s, SO₂), 1158 (s, SO₂); δ_{H} (500MHz, CDCl₃) 7.74 (d, 2 H, *J* = 8, 2 x CH), 7.53-7.40 (m, 5 H, Ph), 7.34 (d, 2 H, *J* = 8, 2 x CH), 4.75 (br, 1 H, NH), 4.34-4.18 (m, 2 H, OCH₂), 3.26-3.00 (m, 2 H, CH₂N), 2.68 (ddd, 1 H, *J* = 7, 9, 14, C*H*CH₂N), 2.47 (s, 3 H, CH₃), 2.47-2.37 (m, 1 H, C*H*CH₂N), 1.27 (t, 3 H, *J* = 7, CH₃); δ_{C} (125MHz, CDCl₃) 167.3 (C=O), 144.0 (C), 136.7, 133.8, 130.1, 129.6, 129.5, 127.4, 126.1, 117.9 (CN), 63.9 (OCH₂), 52.3 (guaternary C), 40.0 (CH₂), 37.9 (CH₂), 21.8 (CH₃), 14.0 (CH₃); *m/z*

 (CI^{+}, NH_{3}) 501 ([M+NH₄]⁺ 40%), 387 (28), 279 (65), 110 (100), 102 (43), 91 (22); HRMS (ES) [M+H]⁺ 387.1370, C₂₀H₂₃O₄N₂S requires 387.1373.

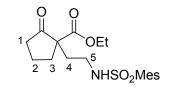
Compound 3b


Following general procedure, the titled product was obtained as a colourless oil (150 mg, 99 %) after flash column chromatography [diethyl ether / petroleum ether] (1:1)]; v_{max} (neat)/cm⁻¹ 3322 (br, NH), 3059m(w), 2983 (m), 2934 (m), 2245 (w, CN), 1744 (s, C=O), 1604 (m), 1450 (s), 1330 (s, SO₂), 1265 (s), 1229 (s), 1155 (s, SO₂); δ_{H} (500MHz, CDCl₃) 7.45-7.36 (m, 5 H, 5 x CH phenyl), 6.93 (s, 2 H, 2 x CH), 5.03 (t, 1 H, *J* = 6, NH), 4.25-4.14 (m, 2 H, *J* = 7, 11, OCH₂), 3.00 (tdd, 1 H, *J* = 6, 10, 13, CHN), 2.88 (dddd, *J* = 5, 6, 10, 12, 1 H CH'N), 2.61-2.58 (m, 1 H, CHCH₂N), 2.57 (s, 6 H, 2 x CH₃), 2.38-2.33 (m, 1 H, CH'CH₂N), 2.28 (s, 3 H, CH₃), 1.20 (t, 3 H, *J* = 7, CH₃); δ_{C} (125MHz, CDCl₃) 167.0 (C=O), 142.4 (C), 139.2 (2 x C Mes), 133.5 (C), 133.3 (C phenyl), 132.1 (2 x CH Mes), 129.4 (2 x CH phenyl), 129.2 (2 x CH phenyl), 125.9 (CH phenyl), 117.7 (CN), 63.6 (OCH₂), 52.0 (quaternary C), 39.1 (CH₂N), 37.6 (CH₂), 22.9 (2 x CH₃), 20.9 (CH₃), 13.7 (CH₃ ester); *m/z* (Cl⁺, NH₃) 432 ([M+NH₄]⁺ 34), 415 ([M+H]⁺ 100), 386 (15), 369 (20), 231 (27), 183 (12), 136 (25), 119 (22); HRMS 415.1696 [M+H]⁺, C₂₂H₂₇O₄N₂S₁ requires 415.1686.

Compound 3c

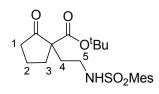
NC、 COOEt Ph' NHCbZ

Following general procedure (50mg, 0.28mmol of aziridine was used), the titled product was obtained as a colourless oil (86 mg, 83%), after flash column chromatography [dichloromethane / methanol] (99:1)]; v_{max} (neat)/cm⁻¹ 3350 (br, NH), 2990 (m), 2245 (m, CN), 1740 (s, C=O), 1710 (s, C=O); δ_{H} (500MHz, CDCl₃) 7.55 (d, 2 H, *J* = 7, CH), 7.42-7.31 (m, 8 H, 8 x CH), 5.07 (s, 2 H, CH₂ benzyl), 4.92 (t, 1 H, *J* = 7, NH), 4.25-4.14 (m, 2 H, CH₂O), 3.36 (q, 2 H, *J* = 7, CH₂N), 2.69-2.63 (m, 1 H, CHCH₂N), 2.44-2.39 (m, 1 H, CH'CH₂N), 1.22 (t, 3 H, *J* = 7, CH₃); δ_{C} (125MHz, CDCl₃) 167.7 (C=O ester), 156.5 (C=O carbamate), 136.8 (C), 134.3 (C), 129.7 (CH), 129.5 (CH), 128.9 (CH), 128.6 (CH), 128.6 (CH), 126.4 (CH), 118.4 (CN), 67.2 (CH₂ benzyl), 63.9 (OCH₂), 53.9 (quaternary C), 38.1 (CH₂N), 37.8 (CH₂), 14.2 (CH₃); *m/z* (Cl⁺, NH₃) 384 ([M+NH₄]⁺ 50), 367 (45), 323 (47), 276 (41), 233 (22), 204 (37), 108 (100), 91 (75); HRMS [M+H]⁺, 367.1657 C₂₀H₂₂O₄N₂ requires 367.1658.

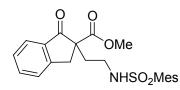

Compound 3d

Following general procedure, the titled product was obtained as a colourless oil (129 mg, 98 %) after flash column chromatography [diethyl ether / petroleum ether] (3:2); v_{max} (neat)/cm⁻¹ 3393(NH), 2979 (w), 2956 (w), 2254 (m), 1748 (m, C=O), 1726 (m, C=O ester), 1329 (m, SO₂), 1157 (s, SO₂); δ_{H} (500MHz, CDCl₃) 6.93

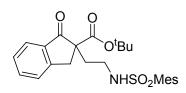
(s, 2 H, CH aromatic), 5.02 (t, 1 H, J = 6, NH), 3.64 (s, 3 H, OCH₃), 2.95 (q, 2 H, J = 6, CH₂N), 2.60 (s, 6 H, 2 x CH₃), 2.47-2.37 (m, 2 H, C(1)H₂), 2.28 (s, 3 H, CH₃), 2.31-2.23 (m, 1 H, C(4)H) 2.06-1.80 (m, 5 H, C(4)H', C(2)H₂, C(3)H₂) ; δ_{C} (125MHz, CDCI₃) 215.1 (C=O ester), 171.7 (C=O ketone), 142.1 (C), 139.0 (2 x C), 133.5 (C), 132.0 (2 x CH), 58.9 (quaternary C), 52.8 (OCH₃), 39.9 (CH₂N), 37.7 (CH₂CH₂N), 33.5 (C(1)H₂), 33.1 (C(3)H₂), 22.9 (2 x CH₃), 20.9 (CH₃), 19.6 (C(2)H₂); *m/z* (CI⁺, NH₃) 385 ([M+NH₄]⁺, 70), 368 ([M+H]⁺, 25), 350 (70), 336 (15), 243 (18), 203 (23), 168 (100), 160 (12); HRMS ([M+H]⁺) 368.1528 [M+H]⁺, C₁₈H₂₆O₅N₁S₁ requires 368.1526.


Compound 3e

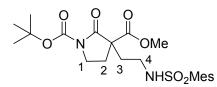
Following general procedure, the titled product was obtained as a colourless oil (134 mg, 99 %) after flash column chromatography [diethyl ether / petroleum ether] (3:2); v_{max} (neat)/cm⁻¹ 3307 (br, NH), 2979 (w), 2256 (w), 1748 (s, C=O), 1722 (s, C=O ester), 1327 (s, SO₂), 1155 (s, SO₂); δ_{H} (500MHz, CDCl₃) 6.93 (s, 2 H, CH aromatic), 5.06 (t, 1 H, *J* = 6, NH), 4.13-4.06 (q, 2 H, *J* = 7, OCH₂), 2.95 (q, 2 H, *J* = 6, CH₂N), 2.60 (s, 6 H, 2 x CH₃), 2.43-2.37 (m, 2 H, C(1)H₂), 2.97-2.22 (m, 1 H, C(4)H), 2.27 (s, 3 H, CH₃), 2.05-1.79 (m, 5 H, C(2)H₂, C(4)H', C(3)H₂), 1.10 (t, 3 H, *J* = 7, CH₃ ester); δ_{C} (125MHz, CDCl₃) 215.2 (C=O), 171.2 (C=O ester), 142.1 (C), 139.0 (2 x C), 133.5 (C), 131.9 (2 x CH), 61.7 (OCH₂), 58.9 (quaternary C), 38.9 (CH₂N), 37.7 (CH₂CH₂N), 33.6 (C(1)H₂), 33.0 (C(3)H₂), 22.9 (2 x CH₃), 20.9 (CH₃),


19.6 (C(2)H₂), 14.0 (CH₃ ester); m/z (Cl⁺, NH₃) 399 ([M+NH₄]⁺, 15), 364 (23), 182 (100), 174 (16); HRMS ([M+NH₄]⁺) 399.1949 [M+NH₄]⁺, C₁₉H₃₁O₅N₂S₁ requires 399.1948.

Compound 3f


Following general procedure, the titled product was obtained as a colourless oil (116 mg, 78 %) after flash column chromatography [diethyl ether / petroleum ether] (3:2); v_{max} (neat)/cm⁻¹ 3325 (br, NH), 3054 (m), 2983 (m), 2925 (m), 2305 (w), 1745 (s, C=O), 1720 (s, C=O ester), 1604 (w), 1456 (w), 1422 (w), 1369 (w), 1328 (s, SO₂), 1265 (s), 1155 (s, SO₂); δ_{H} (500MHz, CDCl₃) 6.93 (s, 2 H, 2 x CH), 5.17 (t, 1 H, J = 6, NH), 2.95 (q, 2 H, J = 6, CH₂N), 2.61 (s, 6 H, 2 x CH₃), 2.42-2.33 (m, 2 H, C(1)H₂), 2.27 (s, 3 H, CH₃), 2.26-2.18 (m, 1 H, C(4)H), 1.97-1.76 (m, 5 H, C(4)H', C(2)H₂, C(3)H₂), 1.36 (s, 9 H, 3 x CH₃); δ_{C} (125MHz, CDCl₃) 215.6 (C=O ketone), 170.5 (C=O ester), 142.0 (C), 139.0 (2 x C), 133.5 (C), 131.9 (2 x CH), 82.6 (OC(CH₃)₃), 59.8 (quaternary C), 38.9 (CH₂N), 37.6 (CH₂CH₂N) 34.0 (C(1)H₂), 32.8 (C(3)H₂), 27.7 (3 x CH₃), 22.9 (2 x CH₃), 20.9 (CH₃), 19.6 (C(2)H₂); *m*/z (Cl⁺, NH₃) 427 ([M+NH₄]⁺ 10), 392 (100), 354 (15), 310 (10), 170 (11), 136 (14), 110 (13); HRMS 427.2255 [M+NH₄]⁺, C₂1H₃₅O₅N₂S₁ requires 427.2261.

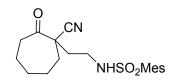
Compound 3g


Following general procedure, the titled product was obtained as a colourless oil, which crystallized upon storage (130 mg, 88 %) after flash column chromatography [diethyl ether / petroleum ether] (2:1); m.p. 82-85 °C; v_{max} (neat)/cm⁻ ¹ 3315 (br, NH), 2979 (m), 2930 (m), 1741 (s, C=O), 1715 (C=O ester), 1601 (s), 1456 (m), 1329 (s, SO₂), 1154 (s, SO₂); $\delta_{\rm H}$ (500MHz, CDCl₃) 7.72 (d, 1 H, J = 8, CH), 7.62 (t, 1 H, J = 8, CH), 7.40 (d, 1 H, J = 8, CH), 7.38 (t, 1 H, J = 8, CH), 6.91 (s, 2 H, CH aromatic), 5.09 (t, 1 H, J = 6, NH), 3.64 (d, 1 H, J = 17, CHH' indanone), 3.62 (s, 3 H, OCH₃), 3.07 (d, 1 H, J = 17, CHH' indanone), 3.05-3.00 (m, 2 H, CH₂N), 2.58 (s, 6 H, 2 x CH₃), 2.26 (s, 3 H, CH₃), 2.26-2.24 (m 1 H, CHCH₂N), 2.04-1.99 (m, 1 H, CH'CH₂N); δ_C (125MHz, CDCl₃) 201.0 (C=O), 170.3 (C=O ester), 151.7 (C), 141.1 (C), 137.9 (2 x C), 134.7 (C), 133.5 (C), 132.6 (CH), 130.9 (2 x CH), 127.0 (CH), 125.4 (CH), 123.9 (CH), 57.9 (quaternary C), 51.9 (O-CH₃), 38.0 (CH₂N), 36.2 (CH₂CH₂N), 33.4 (C(7)H₂), 21.9 (2 x CH₃), 19.9 (CH₃); *m/z* (Cl⁺, NH₃) 433 ([M+NH₄]⁺ 53%), 416 ([M+H]⁺ 63), 401 (38), 384 (15), 234 (32), 216 (100), 208 (33), 202 (18), 159 (31), 151 (21), 137 (54), 123 (33), 112 (25), 97 (21), 84 (23), 69 (19), 59 (34); HRMS 416.1526 $[M+H]^{\dagger}$, C₂₂H₂₆O₅N₁S₁ requires 416.1526.

Compound 3h

Following general procedure, the titled product was obtained as a white solid (148 mg, 91 %) after flash column chromatography [diethyl ether / petroleum ether] (1:1); m.p 24-26 $^{\circ}$ C; v_{max} (neat)/cm⁻¹ 3311 (br, NH), 2977 (m), 2932 (m), 1738 (s, C=O), 1716 (C=O ester), 1605 (s), 1455 (m), 1328 (s, SO₂), 1152 (s, SO₂); $\delta_{\rm H}$ (500MHz, CDCl₃) 7.70 (d, 1 H, J = 8, C(1)H), 7.59 (t, 1 H, J = 8, C(3)H), 7.42 (d, 1 H, J = 8, C(4)H), 7.36 (t, 1 H, J = 8, C(2)H), 6.90 (s, 2 H, CH aromatic), 5.11 (t, 1 H, J = 6, NH), 3.56 (d, 1 H, J = 17, C(5)H), 3.05-2.97 (m, 3 H, C(5)H', CH₂N), 2.59 (s, 6 H, 2 x CH₃), 2.25 (s, 3 H, CH₃), 2.22-2.15 (m, 1 H, CHCH₂N), 1.97-1.93 (m, 1 H, $CH'CH_2N$, 1.30 (s, 9 H, 3 x CH_3 tert butyl); δ_C (125MHz, $CDCI_3$) 202.5 (C=O ketone), 169.9 (C=O ester), 152.7 (C), 142.1 (C), 139.0 (2 x C), 135.5 (C), 134.8 (C), 133.6 (CH), 131.9 (2 x CH), 127.8 (CH), 126.3 (CH), 124.8 (CH), 82.4 (quaternary C ester), 59.9 (quaternary C), 39.1 (CH₂N), 37.4 (CH₂CH₂N), 34.1 (CH₂), 27.7 (3 x CH₃), 22.9 (2 x CH₃), 20.9 (CH₃); *m*/*z* (Cl⁺, NH₃) 475 ([M+NH₄]⁺ 10), 458 (21), 419 (60), 402 (100), 358 (62), 276 (29), 258 (40), 218 (30), 193 (39), 174 (25), 168 (17), 158 (58), 136 (24), 120 (21), 91 (13), 59 (16); HRMS 475.2261 [M+NH₄]⁺, C₂₅H₃₅O₅N₂S₁ requires 475.2261.

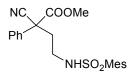
Compound 3i



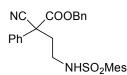
Following general procedure, the titled product was obtained as a colourless oil (121 mg, 73 %) after flash column chromatography [diethyl ether / petroleum ether (1:1) then chloroform / diethyl ether (4:1)]; v_{max} (neat)/cm⁻¹ 3309 (br, NH), 3021 (m), 2980 (m), 2954 (m), 2938 (m), 1782 (s, C=O), 1728 (br, C=O carbamate and C=O amide), 1605 (m), 1456 (m), 1369 (s, SO₂), 1305 (s), 1215 (s), 1154 (s, SO₂); δ_H $(500 \text{ MHz}, \text{ CDCI}_3)$ 6.94 (s, 2 H, 2 x CH), 4.99 (t, 1 H, J = 6, NH), 3.73-3.69 (m, 2 H, $C(1)H_2$, 3.71 (s, 3 H, OCH₃), 3.01 (q, 2H, J = 7, $C(4)H_2N$), 2.60 (s, 6 H, 2 x CH₃), 2.44 (ddd, 1 H, J = 4, 7, 13, C(2)H), 2.28 (s, 3 H, CH₃), 2.21 (td, 1 H, J = 7, 14, C(3)H), 2.02-1.97 (m, 1H), 1.92 (td, 1 H, J = 9, 13), 1.52 (s, 9 H, 3 x CH₃); δ_{C} (125MHz, CDCl₃) 171.2 (C=O), 170.7 (C=O), 149.8 (C=O carbamate), 142.2 (C), 139.0 (2 x C), 133.5 (C), 132.0 (2 x CH), 83.7 (C(CH₃)₃), 56.1 (OCH₃), 53.2 (quaternary C), 43.9 (C(1)H₂), 38.7 (C(4)H₂), 33.8 (C(3)H₂), 28.0 (3 x CH₃), 27.8 $(C(2)H_2)$, 22.9 (2 x CH₃), 20.9 (CH₃); m/z (Cl⁺, NH₃) 486 ([M+NH₄]⁺ 10), 385 (30), 369 (100), 287 (15), 256 (12), 185 (11), 172 (11); HRMS 486.2274 $[M+NH_4]^+$, C₂₂H₃₆O₇N₃S₁ requires 486.2268.

Compound 3j

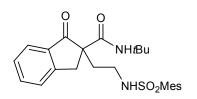
Following general procedure, the titled product was obtained as a colourless oil (91 mg, 73 %) after flash silica chromatography [diethyl ether / petroleum ether] (3:2); v_{max} (neat)/cm⁻¹ 3397 (br, NH), 1738 (m, C=O), 1703 (m, C=O), 1330 (m, SO₂), 1217 (s), 1156 (m, SO₂); δ_H (500MHz, CDCl₃) 6.94 (s, 2 H, 2 x CH), 4.78 (t, 1 H, *J* = 6, NH), 2.88-2.75 (m, 2 H, CH₂N), 2.60 (s, 6 H, 2 x CH₃) 2.56-2.49 (m, 1 H, C(1)H), 2.35-2.24 (m, 1 H, C(4)H), 2.29 (s, 3 H, CH₃), 2.16 (s, 3 H, CH₃ acetyl), 2.10-2.06 (m, 1 H, C(1)H'), 1.95-1.69 (m, 5 H, C(2)H₂, C(3)H₂, C(4)H'); δ_C (125MHz, CDCl₃) 216.05 (C=O ketone cyclic), 204.4 (C=O ketone), 142.3 (C), 138.9 (2 x C), 133.4 (C), 132.0 (2 x CH), 67.2 (quaternary C), 38.9 (CH₂N), 38.1 (CH₂CH₂N), 34.1 (C(1)H₂), 31.1 (C(3)H₂), 26.1 (CH₃ acetyl), 22.9 (2 x CH₃), 20.9 (CH₃), 19.5 (C(2)H₂) ; *m*/*z* (Cl⁺, NH₃) 369 ([M+NH₄]⁺ 12), 352 (12), 334 (100), 152 (20), 127 (12); HRMS 352.1571 [M+H]⁺, C₁₈H₂₆O₄N₁S₁ requires 352.1577.


Compound 3k

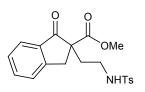
Following general procedure, the reaction was stirred at reflux (65 °C). The titled product was obtained as a white solid (55 mg, 43 %) after flash column chromatography [diethyl ether / petroleum ether] (3:1)]; m.p. 90-93 °C; v_{max} (nujol)/cm⁻¹ 3290 (br, NH), 2851 (s), 2324 (w, CN), 1457 (m), 1376 (m), 1330 (w, SO₂), 1164 (s, SO₂); δ_{H} (500MHz, CDCl₃) 6.95 (s, 2 H, 2 x CH), 4.88 (t, 1 H, *J* = 6,


NH), 3.09-2.94 (m, 2 H, CH₂N), 2.71-2.62 (m, 2 H, CH₂), 2.60 (s, 6 H, 2 x CH₃), 2.29 (s, 3 H, CH₃), 2.26-2.13 (m, 2 H, CH₂), 1.97-1.89 (m, 4 H, 2 x CH₂), 1.71-1.54 (m, 3 H, CH₂, C*H*H'), 1.33-1.24 (m, 1 H, C*H*'H); δ_{C} (125MHz, CDCl₃) 205.8 (C=O), 142.5 (C), 139.0 (2 x C), 133.1 (C), 132.1 (2 x CH), 119.6 (CN), 53.6 (quaternary C), 40.5 (CH₂), 38.9 (CH₂), 37.0 (CH₂), 36.3 (CH₂), 28.7 (CH₂), 25.6 (CH₂), 24.6 (CH₂), 23.0 (2 x CH₃), 21.0 (CH₃); *m/z* (Cl⁺, NH₃) 380 ([M+NH₄]⁺, 28), 363 (40), 179 (23), 163 (100), 136 (20); HRMS 363.1737 [M+H]⁺, C₁₉H₂₇O₃N₂S₁ requires 363.1737.

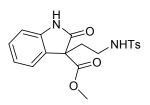
Compound 3I


Following general procedure, the titled product was obtained as a colourless oil (141 mg, 99 %) after flash column chromatography [diethyl ether / petroleum ether] (1:1)]; v_{max} (neat)/cm⁻¹ 3325 (br, NH), 2954 (m), 2246 (w, CN), 1746 (s, C=O), 1603 (m), 1450 (s), 1329 (s, SO₂), 1247 (s), 1155 (s, SO₂); δ_{H} (500MHz, CDCl₃) 7.45-7.36 (m, 5 H, 5 x CH phenyl), 6.94 (s, 2 H, CH aromatic), 5.03 (t, 1 H, *J* = 6, NH), 3.75 (s, 3 H, OCH₃), 3.00 (tdd, 1 H, *J* = 6, 10, 13, CHN), 2.99-2.92 (m, 1 H, CH'N), 2.64-2.59 (m, 1 H, CHCH₂N), 2.57 (s, 6 H, 2 x CH₃), 2.40-2.34 (m, 1 H, CH'CH₂N), 2.29 (s, 3 H, CH₃); δ_{C} (125MHz, CDCl₃) 167.6 (C=O), 142.4 (C), 139.2 (2 x C), 133.3 (C Mes), 133.3 (C phenyl), 132.1 (2 x CH Mes), 129.4 (2 x CH phenyl), 129.3 (2 x CH phenyl), 125.8 (CH), 117.6 (CN), 54.2 (OCH₃), 51.8 (quaternary C), 39.0 (CH₂N), 37.7 (CH₂CH₂N), 22.9 (2 x CH₃), 20.9 (CH₃); *m*/z (Cl⁺, NH₃) 418 ([M+NH₄]⁺ 100), 401 (56), 219 (10); HRMS 418.1794 [M+NH₄]⁺, C₂₁H₂₈O₄N₃S₁ requires 418.1795.

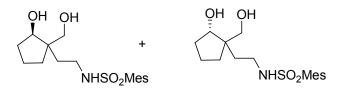
Compound 3m


Following general procedure, the titled product was obtained as a colourless oil (166 mg, 98 %) after flash silica chromatography [diethyl ether / petroleum ether] (1:1)]; v_{max} (neat)/cm⁻¹ 3325 (br, NH), 2939 (w), 2246 (w, CN), 1747 (s, C=O), 1450 (m), 1329 (s, SO₂), 1218 (s), 1156 (s, SO₂); δ_H (500MHz, CDCl₃) 7.31-7.29 (m, 2 H, 2 x CH), 7.25-7.23 (m, 3 H, 3 x CH), 7.20-7.16 (m, 3 H, 3 x CH), 7.08-7.06 (m, 2 H, 2 x CH), 6.83 (s, 2 H, 2 x CH), 5.07 and 5.06 (d and d, 1 H and 1H, J = 14 and 14, CH_2O), 4.89 (t, 1 H, J = 6, NH), 2.98 (tdd, 1 H, J = 6, 10, 13, CHN), 2.86 (dddd, 1 H, J = 5, 6, 10, 12, CH'N, 2.54-2.48 (m, 1 H, CHCH₂N), 2.47 (s, 6 H, 2 x CH₃), 2.31-2.23 (m, 1 H, CH²CH₂N), 2.19 (s, 3 H, CH₃); δ_C (125MHz, CDCl₃) 166.8 (C=O), 142.4 (C Mes), 139.2 (2 x C, Mes), 134.3 (C Bn), 133.3 (C Mes), 133.2 (C phenyl), 132.1 (2 x CH Mes), 129.4 (2 x CH phenyl), 129.2 (2 x CH phenyl), 128.6 (2 x CH Bn), 128.6 (2 x CH Bn), 127.8 (CH benzyl), 125.9 (CH phenyl), 117.5 (CN), 68.8 (OCH₂), 52.0 (quaternary C), 39.0 (CH₂N), 37.5 (CH₂), 23.0 (2 x CH₃), 21.0 (CH₃); m/z (Cl⁺, NH₃) 494 ([M+NH₄]⁺, 24), 477 (13), 386 (11), 360 (44), 295 (43), 269 (17), 217 (16), 204 (59), 161 (100), 136 (27), 120 (18), 106 (22), 91 (17); HRMS 494.2101 [M+NH₄]⁺, C₂₇H₃₂O₄N₃S₁ requires 494.2108.

Compound 3n


Following general procedure, the titled product was obtained as a white solid (153 mg, 94 %) after flash silica chromatography [diethyl ether / petroleum ether] (1 :1)]; m.p. 38-40 °C; v_{max} (neat)/cm⁻¹ 3349 (br, 2 x NH), 2976 (m), 1700 (C=O ketone), 1658 (C=O amide), 1537 (m), 1465 (m), 1328 (m, SO₂), 1266 (s), 1156 (s, SO₂); δ_H (500MHz, CDCl₃) 7.71 (d, 1 H, J = 8, CH), 7.63 (dt, 1 H, J = 1, 8, CH), 7.45 (d, 1 H, J = 8, CH), 7.37 (t, 1 H, J = 8, CH), 7.11 (s, 1 H, NH amide), 6.92 (s, 2 H, 2 x CH sulfonamide), 5.22 (t, 1 H, J = 7, NH sulfonamide), 3.89 (d, 1 H, J = 18, CHH'), 3.09 (d, 1 H, J = 18, CHH'), 3.02 (dtd, 1 H, J = 5, 8, 13, CH'), 2.90 (dd, 1 H, J = 6, 12, 12)CHHN, 2.61 (s, 6 H, 2 x CH_3), 2.27 (s, 3 H, CH_3), 2.07 (ddd, 1 H, J = 5, 7, 13, 100CHCH₂N), 1.86 (td, 1 H, J = 8, 14, CH²CH₂N), 1.26 (s, 9 H, 3 x CH₃); δ_{C} (125MHz, CDCl₃) 207.3 (C=O ketone), 168.0 (C=O amide), 153.3 (C), 142.1 (C), 139.0 (C), 136.3 (CH), 134.4 (CH), 133.5 (C), 132.0 (2 x CH), 127.8 (CH), 126.7 (CH), 124.6 (CH), 59.6 (quaternary C), 51.4 (C(CH₃)₃), 39.6 (CH₂), 39.5 (CH₂), 36.3 (CH₂), 28.5 (3 x CH₃), 22.9 (2 x CH₃), 20.9 (CH₃); *m*/*z* (ES, NH₃) 479 ([M+Na]⁺ 45), 457 ([M+H]⁺, 100); HRMS 457.2154 [M+H]⁺, C₂₅H₃₃O₄N₂S requires 457.2156.

Compound 3o


Following general procedure, the titled product was obtained as a white solid (135 mg, 97%), after flash silica chromatography [diethyl ether / petroleum ether] (2 :1)]; v_{max} (neat)/cm⁻¹ 3287 (br, NH), 1739 (m, C=O), 1711 (s, C=O ester), 1329 (s, SO₂), 1155 (s, SO₂);); δ_{H} (500MHz, CDCl₃) 7.67 (d, 1 H, *J* = 8, CH), 7.62 (d, 2 H, *J* = 8, 2 x CH tosyl), 7.57 (dt, 1 H, *J* = 1, 8, CH), 7.40 (d, 1 H. *J* = 8, CH), 7.33 (t, 1 H, *J* = 8, CH), 7.20 (d, 2 H, *J* = 8, 2 x CH tosyl), 4.92 (t, 1 H, *J* = 6, NH), 3.60 (d, 1 H, *J* = 17, C*H*H'), 3.57 (s, 3 H, CH₃), 3.04 (d, 1 H, *J* = 17, CH*H*), 3.08-2.97 (m, 2 H, CH₂N), 2.33 (s, 3 H, CH₃ tosyl), 2.22 (ddd, 1 H, *J* = 6, 8, 14, C*H*CH₂N), 1.96 (ddd, 1 H, *J* = 6, 8, 14, C*H*'CH₂N); δ_{C} (125MHz, CDCl₃) 202.1 (C=O), 171.4 (C=O), 152.3 (C), 143.4 (C), 136.8 (C), 135.7 (CH), 134.6 (C), 129.7 (CH), 128.0 (CH), 127.0 (CH), 126.5 (CH), 125.0 (CH), 59.0 (quaternary C), 53.0 (OCH₃), 39.7 (CH₂), 37.0 (CH₂), 34.4 (CH₂), 21.5 (CH₃); *m*/*z* (ES, NH₃) 388 ([M+H]⁺, 100), HRMS [M+H]⁺, 388.1219 C₂₀H₂₁O₄N₁S requires 388.1219.

Compound 3p

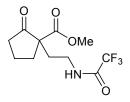
Following general procedure, the titled product was obtained as a white solid (136 mg, 98 %) after flash silica chromatography [chloroform / acetone] (9 :1)]; v_{max} (neat)/cm⁻¹ 3283 (br, NH), 1741 (s, C=O), 1714 (s, C=O), 1329 (s, SO₂), 1158 (s, SO₂), δ_{H} (500MHz, CDCl₃) 9.17 (s, 1 H, NH oxindole), 7.63 (d, 2 H, *J* = 8, 2 x CH tosyl), 7.32 (dt, 1 H, *J* = 1, 8, CH), 7.22 (d, 2 H, *J* = 8, 2 x CH tosyl), 7.18 (d, 1 H, *J* = 7, CH), 7.09 (t, 1 H, *J* = 8, CH), 7.01 (d, 1 H, *J* = 8, CH), 5.83 (dd, 1 H, *J* = 3, 9, NH), 3.67 (s, 3 H, OCH₃), 2.92-2.84 (m, 1 H, CHN), 2.80-2.76 (m, 1 H, CH'N), 2.58 (ddd, 1 H, *J* = 5, 10, 15, C*H*CH₂N), 2.49 (td, 1 H, *J* = 5, 15, C*H*'CH₂N), 2.37 (s, 3 H, CH₃ tosyl); δ_{C} (125MHz, CDCl₃) 177.3 (C=O), 169.7 (C=O), 143.2 (C), 142.0 (C), 136.4 (C), 129.8 (CH), 129.6 (CH), 127.1 (CH), 123.7 (CH), 122.9 (CH), 111.1 (CH), 58.4 (quaternary C), 53.5 (OCH₃), 39.3 (CH₂N), 32.3 (CH₂), 21.5 (CH₃); *m/z* (ES, NH₃) 406 [M+NH₄]⁺ 100), 389 (50); HRMS [M+NH₄]⁺ 406.1431, C₁₉H₂₄O₅N₃S requires 406.1431.

Diol-alcohol 6

LiAlH₄ (2.0 M solution in THF, 0.91 mL) was added dropwise to a solution of **3d** (190 mg, 0.52 mmol) in 4 mL dry Et_2O at 0°C. Following stirring at this

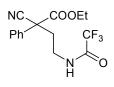
temperature for 4 h, the solution was diluted with Et_2O (5 mL), and water (5 mL) was added cautiously whilst maintaining cooling at 0°C. The layers were separated, and the aqueous layer was acidified to pH 2 with 1.0 N HCl. The aqueous portion was then extracted with Et_2O (3 x 10 mL), and the combined organic fractions were dried (Na₂SO₄) and concentrated. The residue was purified by flash column chromatography (Et₂O) to give the titled compound as a clear oil (155 mg, 88%); v_{max} (neat)/cm⁻¹ 3488 (br, OH and NH), 3055 (m), 2962 (m), 1734 (w), 1605 (m), 1451 (m), 1422 (m), 1321 (s, SO₂), 1266 (s), 1155 (s, SO₂); δ_H (500MHz, CDCl₃) 6.95 (s, 2 H, 2 x CH), 5.62 (t, 1 H, J = 6, NH), 3.99 and 3.92 (q and q, 0.75 H and 0.25 H, J = 4 and 7), 3.45 and 3.33 (dd and dd, 0.8 H and 1.2 H, J = 4, 11 and 4, 11, CH₂OH), 3.00-2.85 (m, 2 H, CH₂N), 2.56 (s, 6 H, 2 x CH₃), 2.50 (t, 1 H, J = 4, OH), 2.29 (s, 3 H, CH₃), 2.00-1.84 (m, 2 H), 1.69-1.62 (m, 1 H), 1.58-1.24 (m, 5 H); δ_C (125MHz, CDCl₃) 142.1 (C), 139.1 (2 x C), 133.5 (C), 131.9 (2 x CH), 81.0 and 78.7 (CHOH), 67.9 and 65.3 (CH₂OH), 48.7 and 47.5 (quaternary C), 39.1 and 39.0 (CH₂N), 33.5 and 32.7 (CH₂), 32.8 and 31.4 (CH₂), 29.4 (CH₂), 23.0 (2 x CH₃), 20.9 (CH₃), 20.3 and 19.8 (CH_2) ; m/z (CI^+, NH_3) 342 $([M+H]^+, 81\%)$, 322 (10), 217 (11), 167 (49), 160 (72), 140 (100), 126 (12), 120 (27), 110 (14); HRMS [M+H]⁺ 342.1734, C₁₇H₂₈O₄NS requires 342.1734

Spiro-fused mono-alcohol 7



Diol 6 (100mg, 0.29 mmol) in CH₂Cl₂ (0.5 mL) was added dropwise to a solution of Et₃N (189 µL, 1.35 mmol), TsCl (54 mg, 0.29 mmol) and a single crystal of DMAP in CH₂Cl₂ (1 mL) and the solution was stirred at RT for 1 h. before warming to reflux and stirring for a further 48 h. Following cooling to RT, CH₂Cl₂ (3 mL) was added and the solution was washed with 1.0 N HCl (3 x 3 mL) and brine (3 mL). The HCl portions were extracted with CH_2Cl_2 (2 x 5 mL), dried (Na₂SO₄), and concentrated. The residue was purified by flash column chromatography ([diethyl ether / petroleum ether] (1:1 to 100:0) to give the spiro cyclised adduct (67 mg) and 10 mg of the starting diol (78% brsm); v_{max} (neat)/cm⁻¹ 3511 (br, OH and NH), 3055 (m), 2986 (m), 1712 (m), 1310 (m, SO₂), 1266 (s), 1153 (m, SO₂); $\delta_{\rm H}$ (500MHz, CDCl₃) 6.94 (s, 2 H, 2 x CH), 3.95 (t, 0.35 H, J = 4, CHOH minor), 3.87-3.86 (m, 0.65 H, C*H*OH major), 3.52 (d, 0.65 H, *J* = 10, C*H*H'N, major), 3.47 (ddd, 0.35 H, *J* = 7, 8, 10, CHH'N minor), 3.39-3.30 (m, 1.30 H, CH₂N, major), 3.24 (ddd, 0.35 H, J = 6, 8, 9, 9CHH'N, minor), 3.11 (d, 0.35 H, J = 10, CHH', minor), 3.00 (d, 0.35 H, J = 10, CHH', minor), 2.92 (d, 0.65 H, J = 10, CHH', major), 2.63 (s, 3.9 H, 2 x CH₃, major), 2.62 (s, 2.1 H, 2 x CH₃, minor), 2.30 (s, 3 H, CH₃), 2.04-1.95 (m, 2 H, CH₂), 1.80-1.43 (m, 6 H, 3 x CH₂); δ_C (125MHz, CDCl₃) 142.5 (*i*-C), 140.1 (2 x C), 132.8 (*p*-C), 131.9 (2 x CH), 77.6 and 77.5 (CHOH), 55.7 and 51.3 (CH₂N), 54.4 and 53.9 (quaternary C), 46.2 and 45.8 (CH₂), 35.8 (CH₂), 33.9 and 33.5 (CH₂), 31.2 and 29.7 (CH₂), 22.9 and 22.8 (2 x CH₃), 21.0 (*p*-CH₃), 21.0 *and* 20.3 (CH₂); *m*/*z* (Cl⁺, NH₃) 324 ([M+H]⁺, 100%), 140 (60); HRMS HRMS [M+H]⁺ 324.1623, C₁₇H₂₆O₃NS requires 324.1628.

General procedure for one pot trifluoroacetylation / sulfonamide cleavage:


Trifluoroacetic anhydride (197 μ L, 1.37 mmol) was added to a stirred solution of sulfonamide (0.68 mmol) and Et₃N (206 μ L, 1.37 mmol) in dry CH₂Cl₂ (10 mL) under N₂. Following stirring at RT for 30 mins, the residue was concentrated under reduced pressure, and diluted with dry THF (5 mL). The solution was cooled to -78 °C, and Sml₂ (0.1 M in THF) was added dropwise until the blue/green colour persisted for 20 minutes (typically 5 equivs). Following exposure to air until the solution turned yellow, the solution was concentrated, and filtered through a plug of silica (eluent: Et₂O). The filtrate was concentrated, and purified by flash column chromatography.

Compound 8a

Following the general procedure, the titled product was obtained as a pale yellow oil (145 mg, 74 %) after flash column chromatography [diethyl ether / petroleum ether] (3 : 2)]; v_{max} (neat)/cm⁻¹ 3340 (br, NH), 1730 (m, C=O ketone), 1708 (br, C=O ester, amide), 1556 (m), 1213 (m), 1162 (m); δ_{H} (500MHz, CDCl₃) 7.36 (br, 1 H, NH), 3.72 (s, 3 H, OCH₃), 3.50 (dt, 1 H, *J* = 6, 13, CHN), 3.39 (dt, 1 H, *J* = 6, 13, CH'N), 2.51-2.46 (m, 2 H), 2.35 (m, 1 H), 2.10-1.92 (m, 5 H); δ_{C} (125MHz, CDCl₃) 215.3 (C=O ketone), 171.9 (C=O ester), 157.2 (q, J = 37, C=O amide), 115.8 (q, J = 286, CF₃), 59.1 (quaternary C), 52.9 (OCH₃), 37.1 (CH₂N), 36.3 (CH₂), 34.3 (CH₂), 32.0 (CH₂), 19.7 (CH₂); m/z (ES) 299 ([M+NH₄]⁺, 100); HRMS 299.1222 [M+NH₄]⁺, C₁₁H₁₈O₄N₂F₃ requires 299.1219.

Compound 8b

Following the general procedure, the titled product was obtained as a pale yellow oil, (162 mg, 73 %) after flash column chromatography [diethyl ether / petroleum ether] (3 : 2)]; v_{max} (neat)/cm⁻¹ 3335 (br, NH), 2249 (w, CN), 1735 (s, C=O), 1704 (br, C=O ester, amide), 1556 (m), 1451 (m), 1215 (s), 1182 (s); δ_{H} (500MHz, CDCl₃) 7.53-7.52 (m, 2 H, 2 x CH), 7.44-7.38 (m, 3 H, 3 x CH), 6.92 (br, 1 H, NH), 4.23 (dq, 2 H, *J* = 7, 11, OCH₂), 3.57-3.44 (m, 2 H, CH₂N), 2.67 (td, 1 H, *J* = 7, 14, CHCH₂N), 2.50 (ddd, 1 H, *J* = 6, 8, 14, CH'CH₂N), 1.22 (t, 3 H, *J* = 7, CH₃); δ_{C} (125MHz, CDCl₃) 167.0 (C=O), 157.4 (q, *J* = 37, C=O amide), 133.3 (C), 129.5 (2 x CH), 129.4 (CH), 125.8 (2 x CH), 117.7 (CN), 115.6 (q, *J* = 288, CF₃), 63.6 (OCH₂), 52.2 (quaternary C), 36.7 (CH₂), 36.2 (CH₂), 13.7 (CH₃); *m/z* (ES) 346 ([M+NH₄]⁺, 100); HRMS 346.1365 [M+NH₄]⁺, C₁₅H₁₉O₃N₃F₃ 346.1373.

References

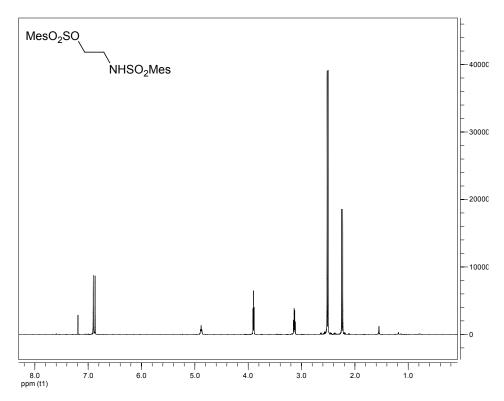
S1) R. Herges, A. Dikmans, U. Jana, F. Köhler, P. G. Jones, I. Dix, T. Fricke and B. König, *Eur. J. Org. Chem.* 2002, 3004.

S2) (a) R.N. Misra, H.-Y. Xiao, D. K. Williams, K. S. Kim, S. Lu, K. A. Keller, J. G. Mulheron, R. Batorski, J. S. Tokarski, J. S. Sack, D. Kimball, F. Y. Lee and K. R. Webster, *Bioorg. Med. Chem. Lett.* 2004, **14**, 2973.; (b) R. T. Skerlj, S. Nan, Y. Zhou and G. J. Bridger, *Tetrahedron Lett.* 2002, 7569.

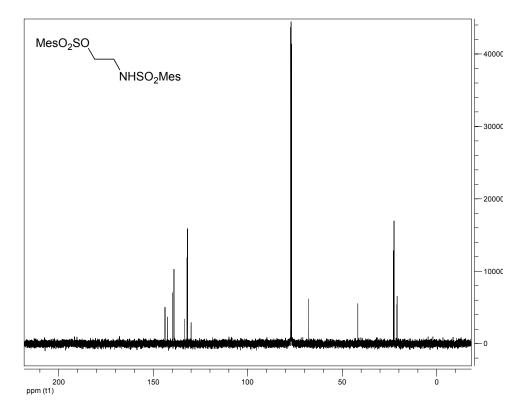
S3) K. Osowska-Pacewicka and A. Zwierzak, Synthesis, 1996, 333.

S4) Z. Mladen, A. Sulejam and S. J. Vinko, Chem. Soc. Perkin 1. 1993, 21

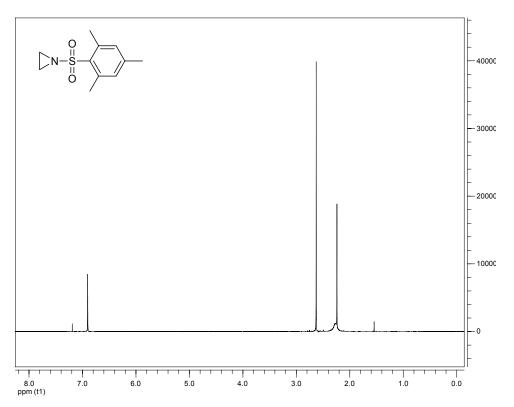
S5) S. Bailey, S. G. Davies, A. D. Smith and J. M. Withey, *Chem. Comm.*, 2002, 23, 2910.

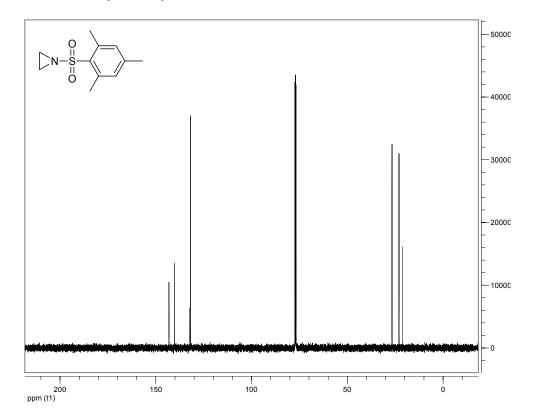

S6) F. Maertens, S. Toppet, F. Compernolle and G. J. Hoornaert, *Eur. J. Org. Chem.* 2004, **12**, 2707.

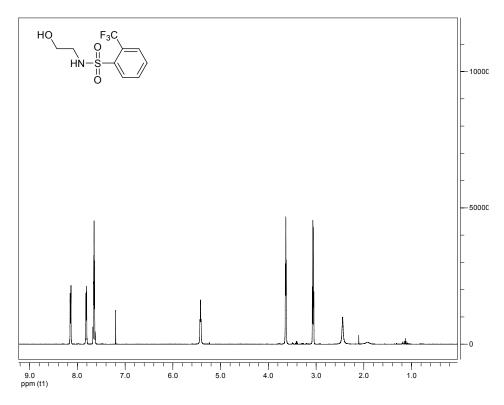
S7) M. Nakajima, S. Yamamoto, Y. Yamaguchi, S. Nakamura and S. Hashimoto *Tetrahedron*, 2003, **59**, 7307.

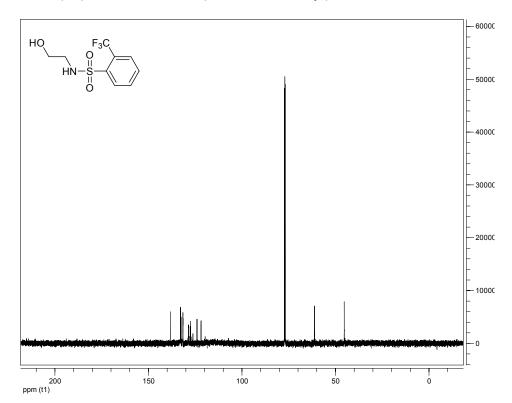

S8) H-J. Liu, T.W. Ly, C-L. Tai, J-D. Wu, J-K. Liang, J-C. Guo, N-W. Tsang and K-S. Shia, *Tetrahedron*, 2003, **59**, 1209.

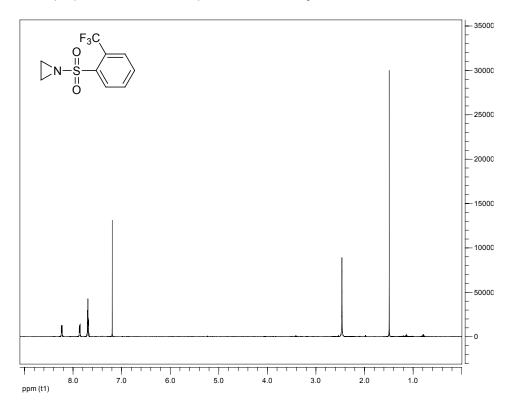
S9) J. Bourdais and C. Mahieu, *Comptes Rendus Des Séances de l'Académie des Sciences, Série C: Sciences chimiques* 1967, **12**, 1075



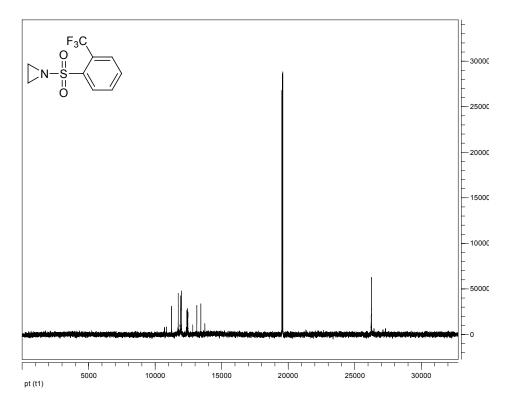

¹³C NMR of 2,4-(DimesityIsulfonyI)ethanolamine

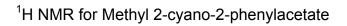


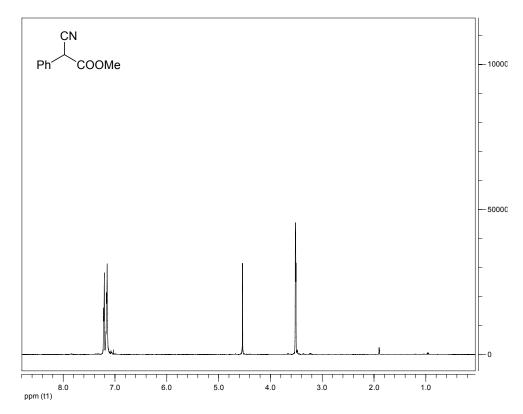

¹³C NMR of *N*-mesitylsulfonyl aziridine **2b**



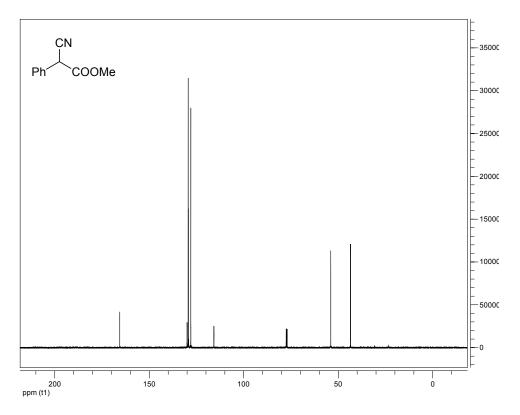
¹H NMR of *N*-(2-(Trifluoromethane)benzenesulfonyl)ethanolamine

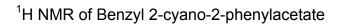

¹³C NMR of *N*-(2-(Trifluoromethane)benzenesulfonyl)ethanolamine

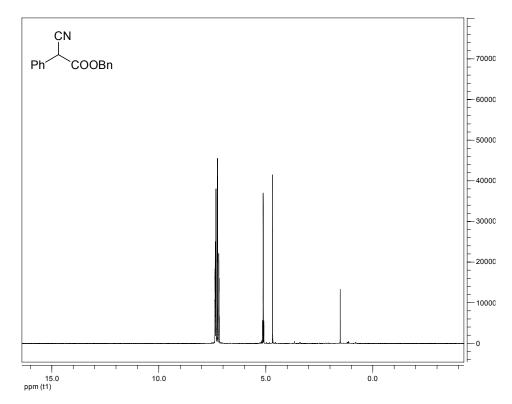


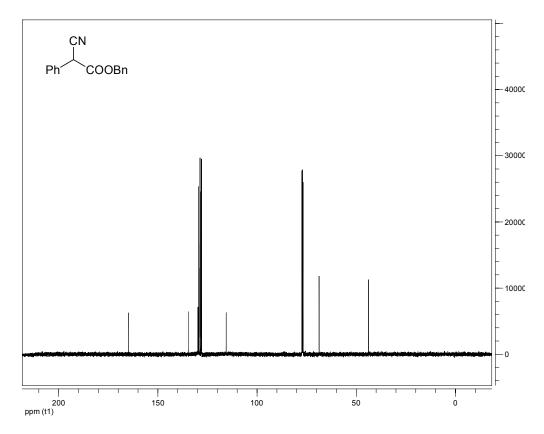


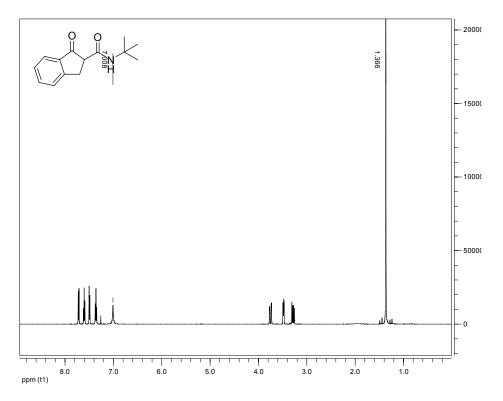
¹H NMR of *N*-(2-(Trifluoromethane)benzenesulfonyl aziridine **2f**

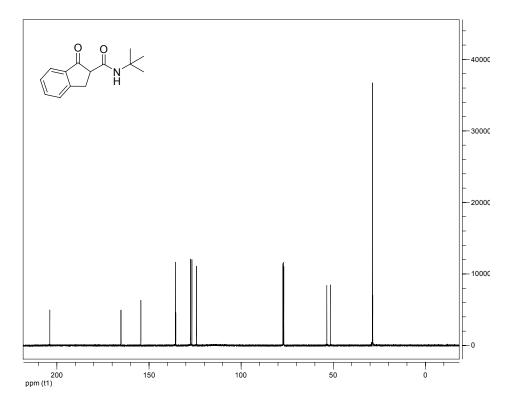

¹³C NMR of *N*-(2-(Trifluoromethane)benzenesulfonyl aziridine **2f**

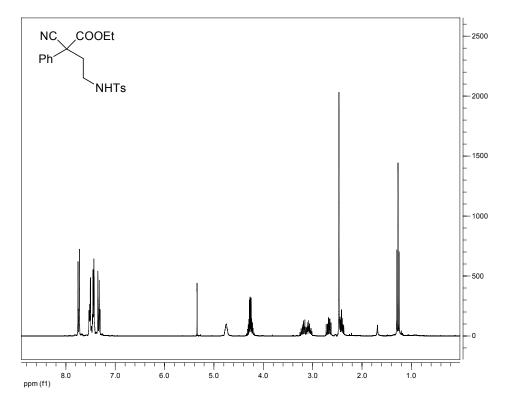




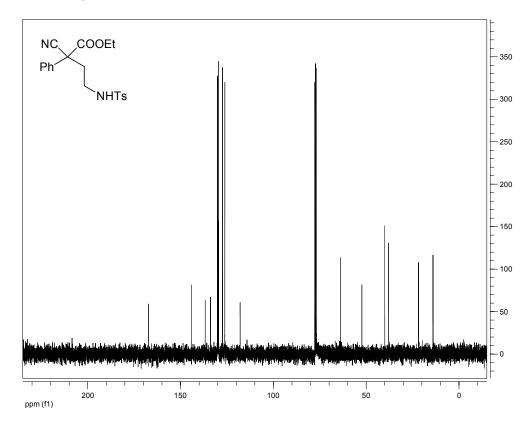

¹³C NMR of Methyl 2-cyano-2-phenylacetate

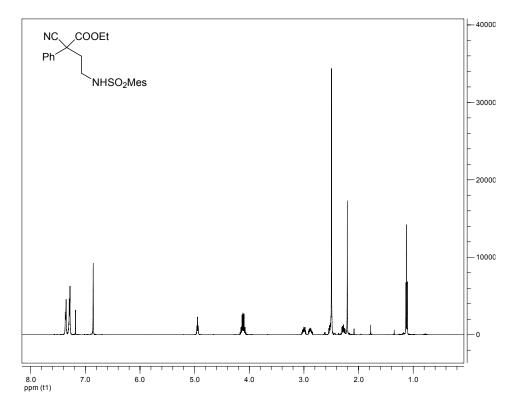


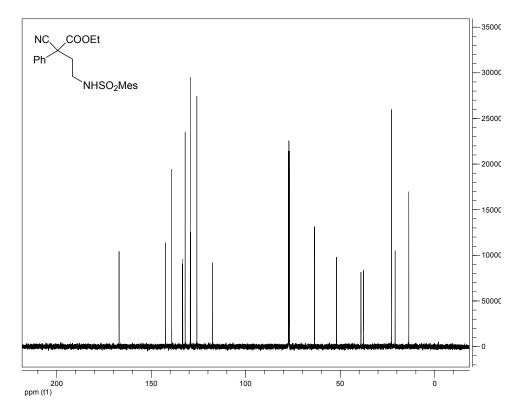

¹³C NMR of Benzyl 2-cyano-2-phenylacetate

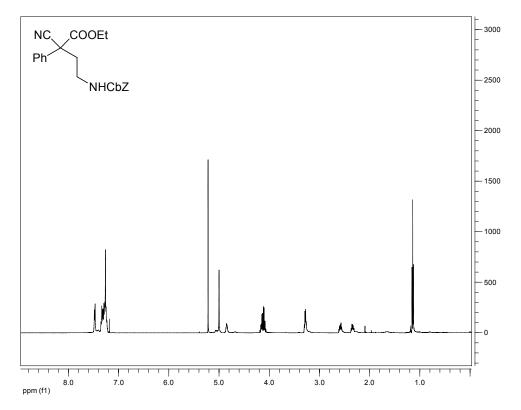


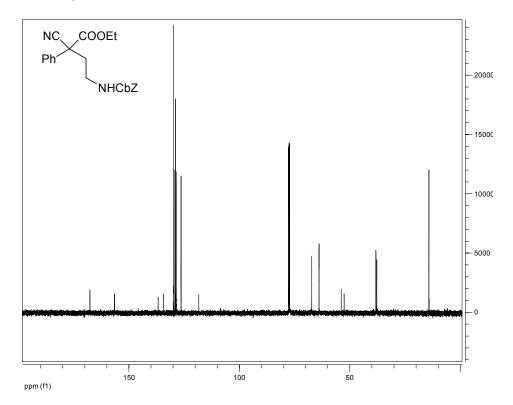
¹H NMR of 1-Oxo-indan-2-carboxylic acid tert-butylamide

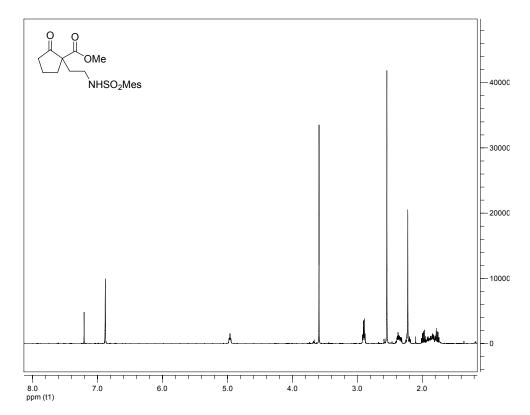

¹³C NMR of 1-Oxo-indan-2-carboxylic acid tert-butylamide

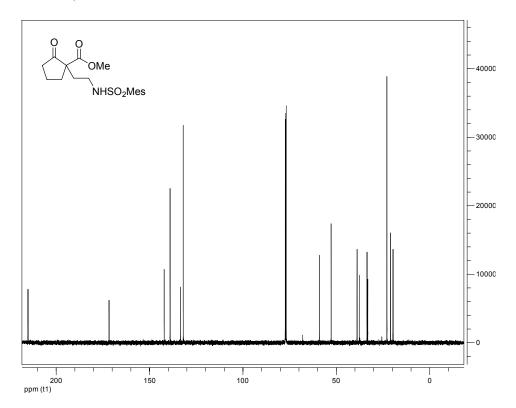

¹H NMR of compound **3a**

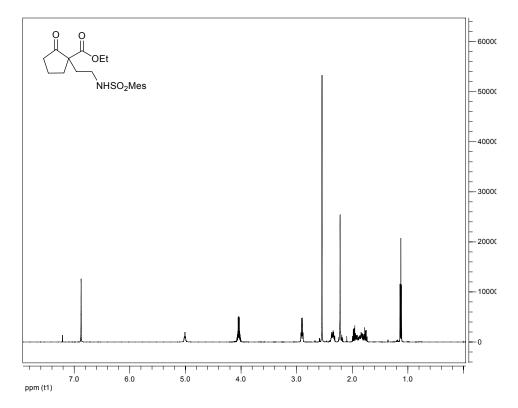

¹³C NMR of compound **3a**

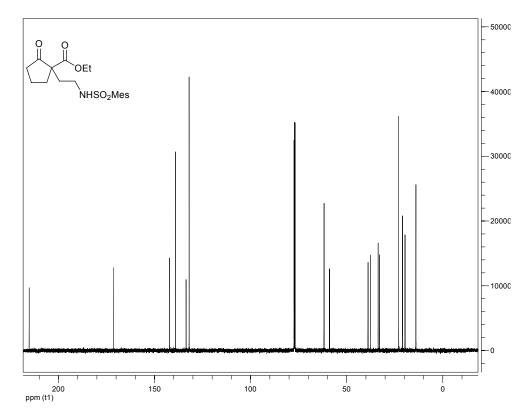

¹H NMR of compound **3b**

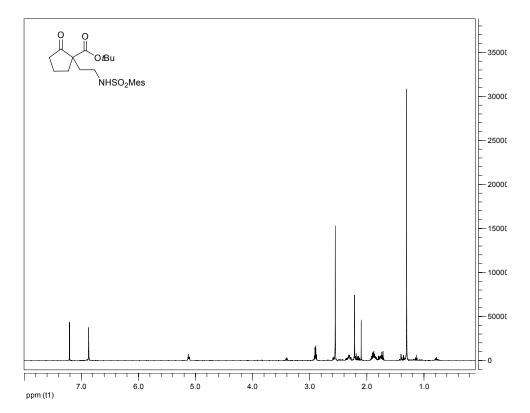

¹³C NMR of compound **3b**

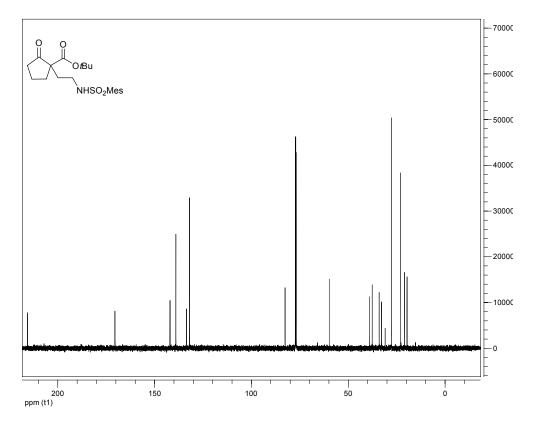

¹H NMR of compound **3c**

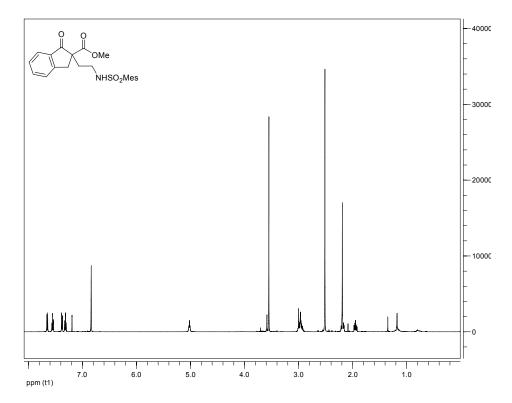

¹³C NMR of compound **3c**

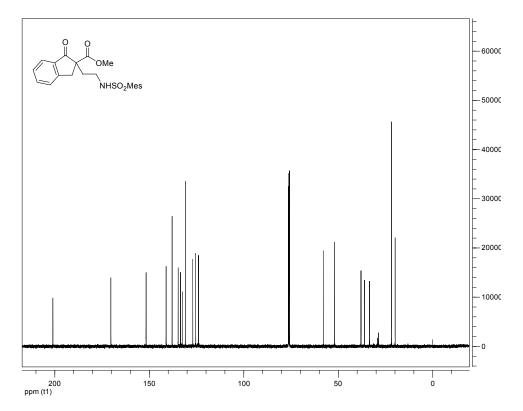

¹H NMR of compound **3d**

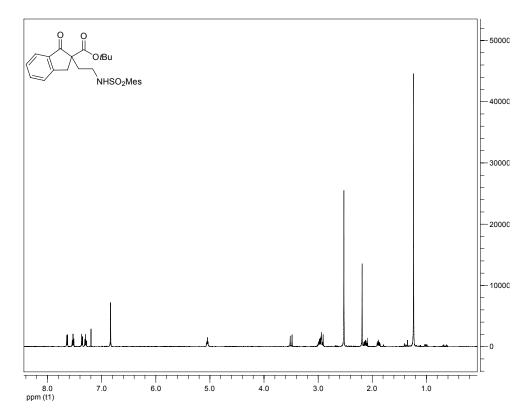

¹³C NMR of compound **3d**


¹H NMR of compound **3e**

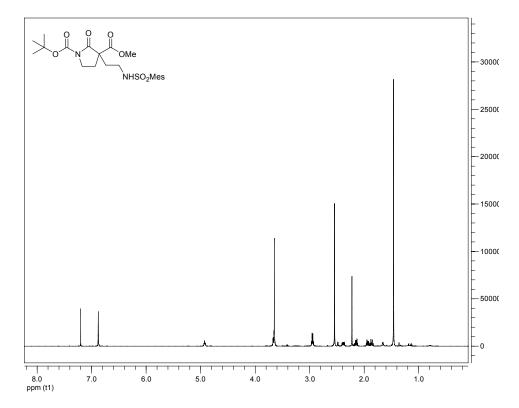

¹³C NMR of compound **3e**

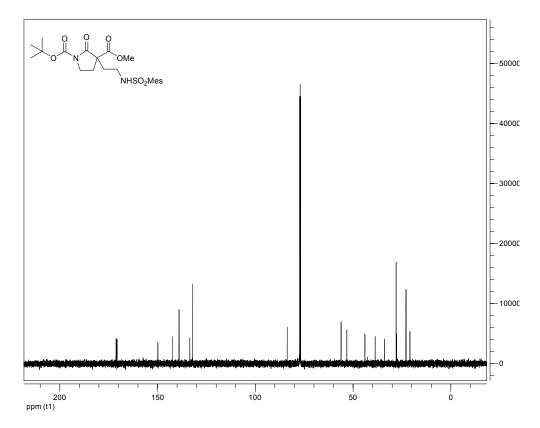

¹H NMR of compound **3f**

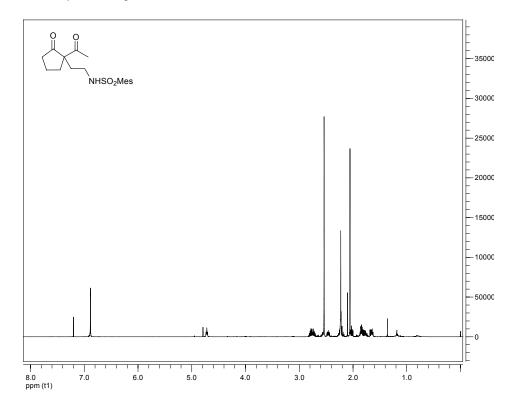

¹³C NMR of compound **3f**

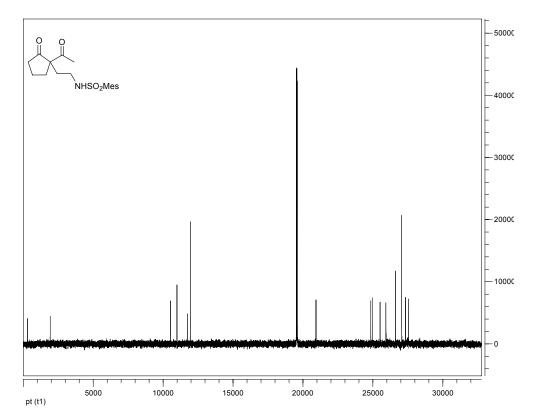

¹H NMR of compound **3g**

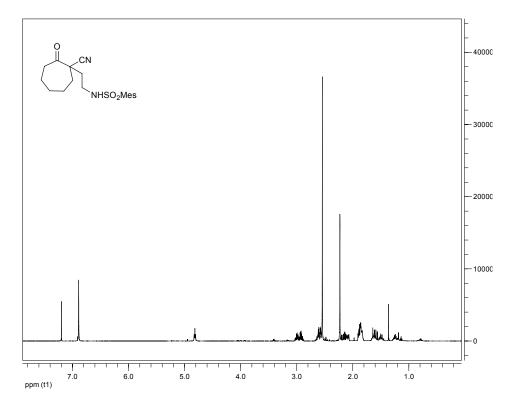
¹³C NMR of compound **3g**

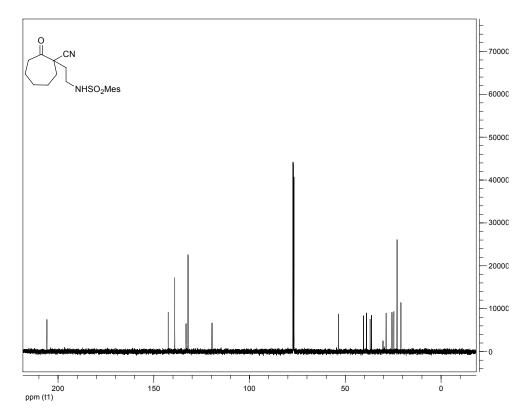

¹H NMR of compound **3h**

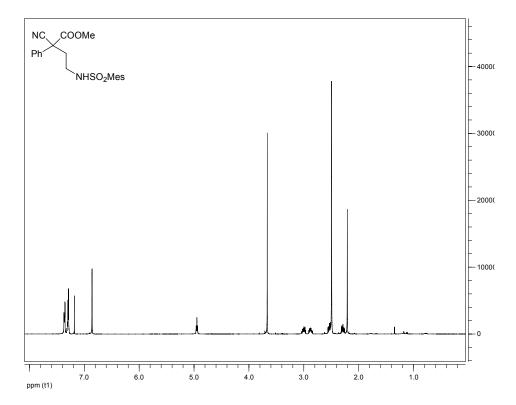

¹³C NMR of compound **3h**

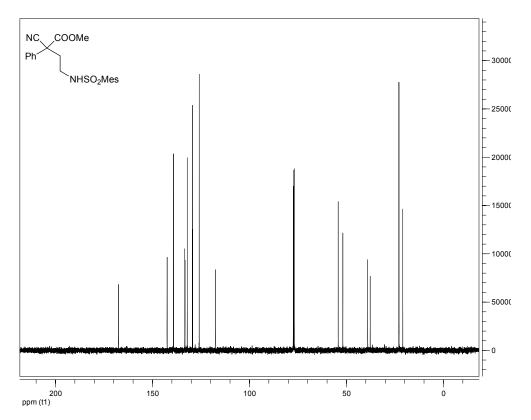

¹H NMR of compound **3i**

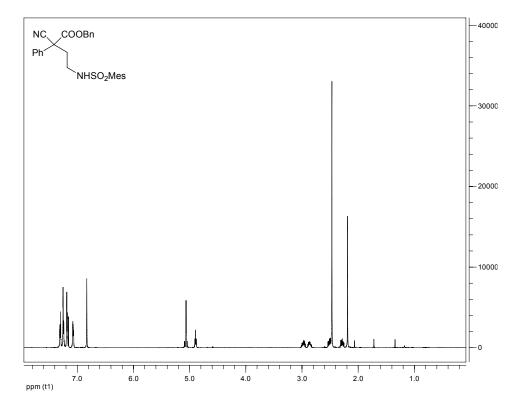

¹³C NMR of compound **3i**

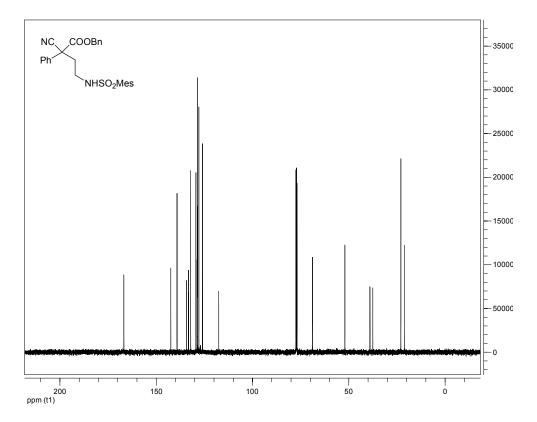

¹H NMR of compound **3j**

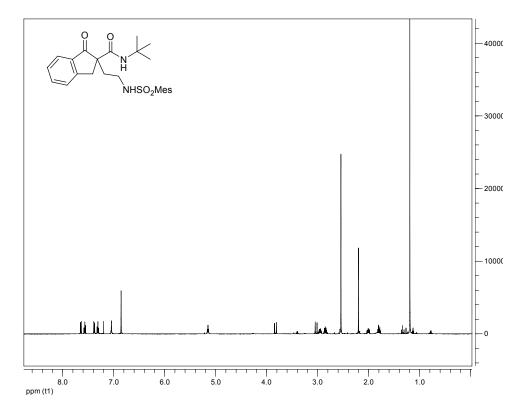

¹³C NMR of compound **3**j

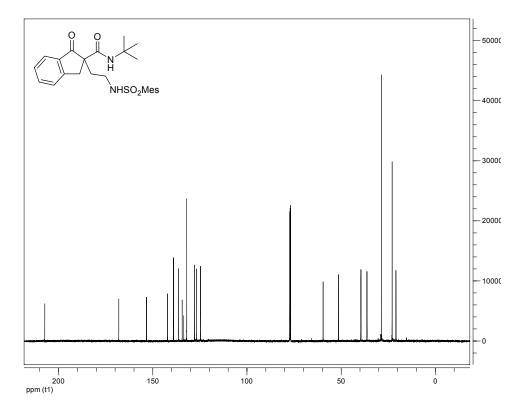

¹H NMR of compound **3k**

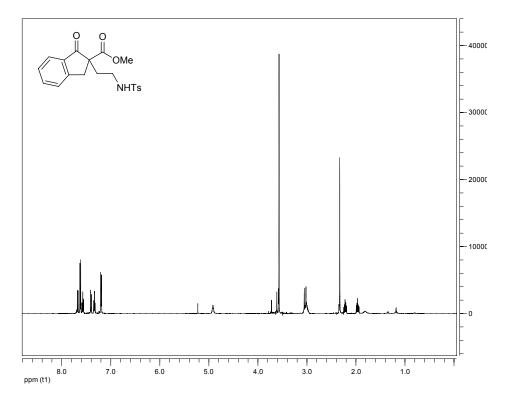

¹³C NMR of compound **3k**

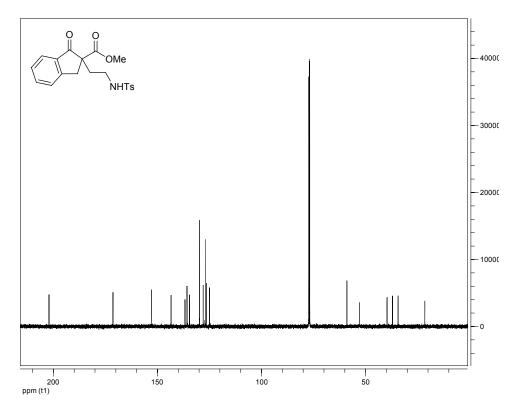

¹H NMR of compound **3I**

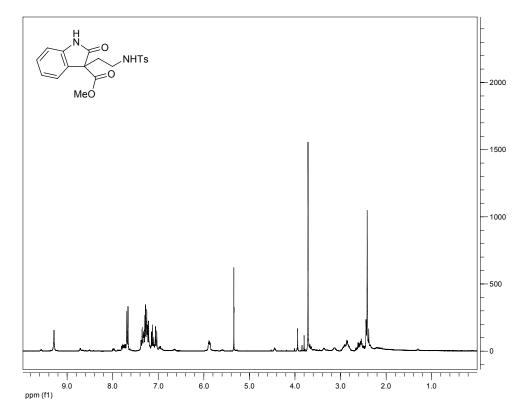

¹³C NMR of compound **3I**

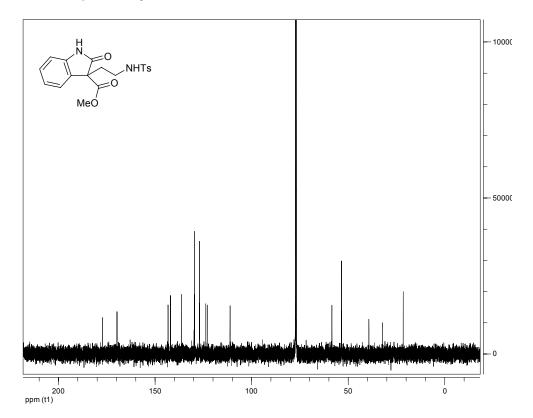

¹H NMR of compound **3m**

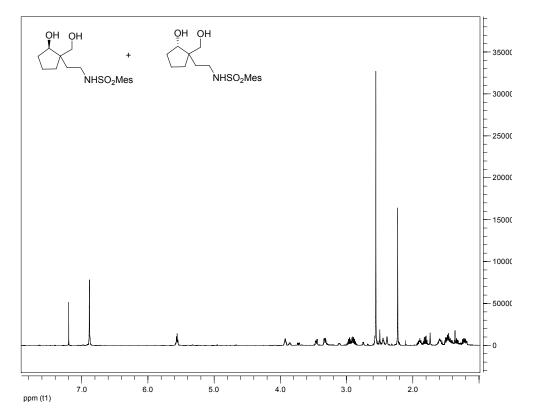

¹³C NMR of compound **3m**

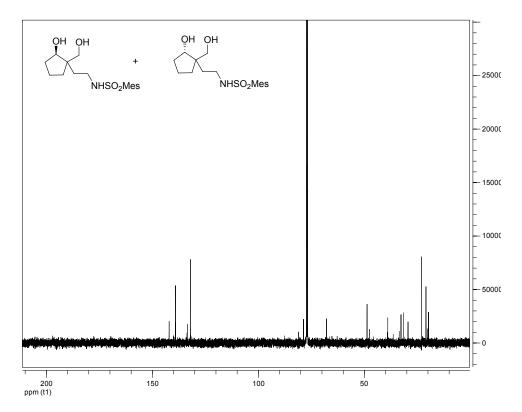

¹H NMR of compound **3n**

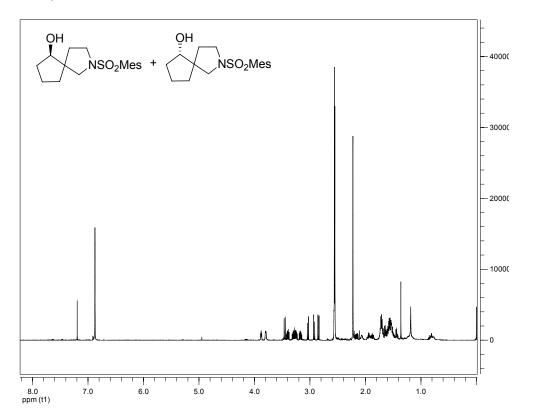

¹³C NMR of compound **3n**

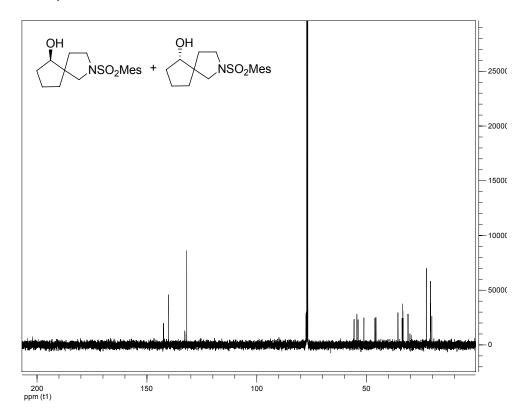

¹H NMR of compound **3o**

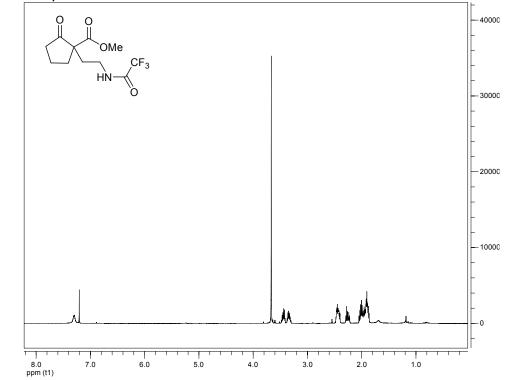

¹³C NMR of compound **3o**


¹H NMR of compound **3p**

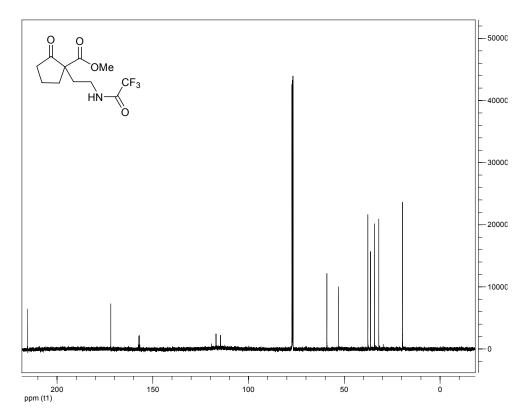

¹³C NMR of compound **3p**

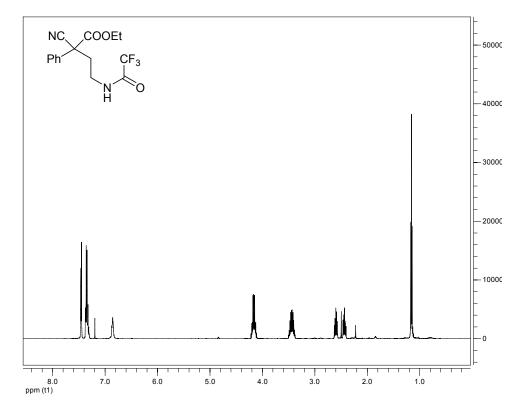

¹H NMR of Di-alcohol 6


¹³C NMR of Di-alcohol 6

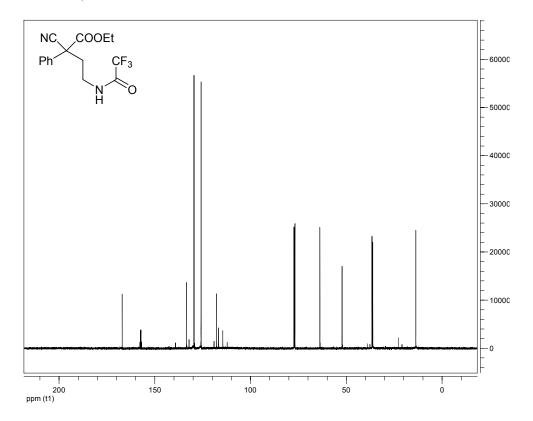


¹H NMR of spiro-fused mono alcohol **7**


 $^{\rm 13}{\rm C}$ NMR of spiro-fused mono alcohol 7



¹H NMR compound 8a


¹³C NMR of compound 8a

¹H NMR of compound **8b**

^{13}C NMR of compound 8b

