Oxidative Radical Cyclisations for the Synthesis of γ -Lactones

Luke H. Powell, Paul H. Docherty, David G. Hulcoop, P. D. Kemmitt and Jonathan W. Burton*

General Experimental	2
Experimental procedures and spectroscopic data	2
References	12
NMR Spectra	13

Introduction

¹H and ¹³C NMR spectra were recorded on Bruker instruments (DPX-200, DPX-400, DQX-400 or DRX-500), using deuterochloroform as an internal deuterium lock. Chemical shifts are quoted in units of δ relative to tetramethylsilane (δ =0). Multiplets are indicated as s, singlet; d, doublet; t, triplet; q, quartet; qn, quintet; dd, double doublet; m, multiplet; br, broad, etc. Coupling constants *J* are quoted in Hz. Where useful, the FID was zero-filled (128 K) and sine-bell shifted (ssb = 30) prior to Fourier Transformation in order to provide baseline-resolved multiplets and easily identifiable coupling constants. Double Quantum Filtered and magnitude COSY and HMQC spectra were typically acquired with 256 slices in F₁ and 2048 points in F₂ (acquisition time approximately 20 min). ¹³C spectra were recorded with proton decoupling; *J* resolved spin-echo APT or DEPT-135, and in some cases HMQC, were recorded to assist assignment.

Infrared spectra were recorded on a Perkin-Elmer 1600 series FTIR spectrometer calibrated relative to polystyrene absorption at 1630 cm⁻¹. The samples were prepared as a thin film or a solution in the solvent indicated.

Mass spectra were recorded by the Mass Spectrometry Service at the University of Cambridge Chemical Laboratory, or the Mass Spectrometry Service at the University of Oxford Chemistry Research Laboratory. Microanalyses were carried out by the Microanalytical Service at the University of Cambridge Chemical Laboratory.

Optical specific rotations were measured on a Perkin-Elmer 241 polarimeter and are quoted in units of $^{\circ}10^{-1}$ cm²g⁻¹. The concentration (*c*) is expressed in g/0.1 dm³.

Flash chromatography was carried out on silica gel [Merck 9385 Kieselgel 60 (230-400 ASTM)]. Analytical TLC was carried out on 0.25 mm thick plates precoated with Merck Kieselgel F_{254} silica gel and visualised by UV and aqueous potassium permanganate solution or ethanolic phosphomolybdic acid solution. Preparative layer chromatography was carried out on 1 mm thick plates of Merck Kieselgel PF_{254} .

Melting points were determined using a Kofler hot-stage apparatus and are uncorrected. Kugelrohr bulb-to-bulb distillations were carried out using a Büchi GKR-51 machine. Boiling points are oven temperatures.

The experimental procedures for the preparation of the lactone 2, the methylenecyclopentane 3 and the methylcyclopentane 4 are representative.

(3aR*,6aS*)-Methyl 3-oxohexahydro-1*H*-cyclopenta[*c*]furan-3a-carboxylate 2

Manganese(III) acetate (536 mg, 2.0 mmol) and copper(II) triflate (362 mg, 1.0 mmol) were added to a solution of dimethyl 4-pentenyl malonate **1** (200 mg, 1.0 mmol) in dry degassed acetonitrile (5 mL) (nitrogen bubbled through the solvent for 2 h prior to use). The resulting suspension was then heated to 80 °C for 24 h. Water (20 mL) and diethyl ether (20 mL) were added, the mixture was filtered and then extracted with diethyl ether (3 × 100 mL). The combined organics were then dried (MgSO₄), filtered and concentraed *in vacuo*. The resultant oil was then purified by flash column chromatography (gradient elution 5-20% diethyl ether/petroleum ether) to yield the *title compound* **2** (167.4 mg, 0.91 mmol, 91%) as a colourless oil; ¹H NMR (400 MHz, CDCl₃): δ =4.55 (dd, *J* (H, H)=9.3, 7.6 Hz, 1H; 1-H), 4.07 (dd, *J*(H, H)=9.3, 2.4 Hz, 1H; 1-H'), 3.77 (s, 3H; OCH₃), 3.14-3.06 (m, 1H; 6a-H), 2.42-2.32 (m, 1H; 4-H), 2.29-2.22 (m, 1H; 4-H'), 2.12-2.00 (m, 1H; 6-H), 1.88-1.77 (m, 1H; 5-H), 1.71-1.56 (m, 2H; 6-H', 5-H'); ¹³C NMR (50 MHz, CDCl₃): δ =176.9 (C=O), 170.9 (C=O), 73.4 (1-C), 62.0 (3a-C), 53.5 (CH₃O), 46.0 (6a-C), 35.1 (4-C), 34.5 (6-C), 26.3 (5-C). Data consistent with literature.^[1-3]

(3aR*, 6R*, 6aS*)-Methyl 6-(tert-butyldiphenylsilyloxymethyl)-3-oxohexahydro-1Hcyclopenta[c]furan-3a-carboxylate 6

R_f 0.68 (EtOAc:hexane, 1:1); (Found: C, 68.83; H, 7.09%; C₂₆H₄₃O₅Si requires C, 68.99; H 7.13); ¹H NMR (400 MHz, CDCl₃): δ =7.65-7.59 (m, 4H; ArH), 7.47-7.36 (m, 6H; ArH), 4.48 (dd, ²*J* (H, H)=9.4, ³*J* (H, H)=6.8 Hz, 1H; 1-H), 4.23 (dd, ²*J* (H, H)=9.4, ³*J* (H, H)=1.6 Hz, 1H; 1-H'), 3.76 (s, 3H; OMe), 3.69 (dd, ²*J* (H, H)=10.0, ³*J* (H, H)=5.6 Hz, 1H; C*H*HOSi), 3.54 (dd, ²*J* (H, H)=10.0, ³*J* (H, H)=7.2 Hz, 1H; CHHOSi), 2.85 (td, ³*J* (H, H)=6.8, 1.6 Hz, 1H; 6a-H), 2.53 (ddd, ²*J* (H, H)=14.0, ³*J* (H, H)=8.3, 5.5 Hz, 1H, 4-H), 2.19-2.09 (m, 2H), 1.77 (dddd, ²*J* (H, H)=13.0, ³*J* (H, H)=7.2, 7.2, 5.5 Hz, 1H), 1.58 (dq, ²*J* (H, H)=13.0, ³*J* (H, H)=8.3 Hz, 1H), 1.04 (s, 9H; (CH₃)₃C); ¹³C NMR (100 MHz, CDCl₃): δ =176.5 (C), 170.3 (C), 135.5 (CH), 135.5 (CH), 133.2 (C), 133.1 (C), 129.9 (CH), 129.9 (CH), 127.8 (CH), 127.8 (CH), 72.0 (CH₂), 65.7 (CH₂), 61.4 (C), 53.1 (CH₃), 50.1 (CH), 49.5 (CH), 32.7 (CH₂), 29.1 (CH₂), 26.8 (CH₃), 19.2 (C); IR (film): 1775, 1741; MS (+ESI): *m/z* (%): Found: (M+Na)⁺, 475.1908 (100), C₂₆H₃₂O₅SiNa req. 475.1917.

(3aR*, 5R*, 6aS*)-Methyl 5-(tert-butyldiphenylsilyloxymethyl)-3-oxohexahydro-1Hcyclopenta[c]furan-3a-carboxylate 8maj and (3aS*, 5R*, 6aR*)-methyl 5-((tertbutyldiphenylsilyloxy)methyl)-3-oxohexahydro-1H-cyclopenta[c]furan-3a-carboxylate 8min

The diastereomers were partly separable by flash chromatography.

Minor diastereomer: ¹H NMR (400 MHz, CDCl₃): δ =7.64 (m, *J* (H, H)= 7.9, 1.5 Hz, 4H; ArH), 7.47-7.36 (m, 6H; ArH), 4.56 (dd, ²*J* (H, H)= 9.2, ³*J* (H, H)=6.6 Hz, 1H; 1-H), 4.07 (dd, ²*J* (H, H)=9.2, ³*J* (H, H)=1.7 Hz, 1H; 1-H'), 3.77 (s, 3H; OMe), 3.66-3.54 (m, 2H; CH₂OSi), 3.17-3.09 (m, 1H; 6a-H), 2.44-2.31 (m, 1H; 4-H), 2.27-2.15 (m, 2H; 5-H, 6-H), 1.99-1.89 (m, 1H; 4-H'), 1.32-1.24 (m, 1H; 6-H'), 1.05 (s, 9H; (CH₃)₃C); ¹³C NMR (100 MHz, CDCl₃): δ =176.5 (3-C), 170.5 (C), 135.6 (CH), 133.4 (C), 129.7 (CH), 127.7 (CH), 71.4 (1-C), 65.4 (CH₂OSi), 60.8 (3a-C), 53.2 (OMe), 47.2 (6a-C), 44.0 (5-C), 36.2 (6-C), 35.9 (4-C), 26.9 (CH₃), 19.3 (C); IR (film):1776, 1744; MS (+ESI): *m/z* (%): Found: (M+Na)⁺, 475.1912 (100), C₂₆H₃₂O₅SiNa req. 475.1911.

Major diastereomer: ¹H NMR (400 MHz, CDCl₃): δ =7.66-7.61 (m, 4H; ArH), 7.47-7.36 (m, 6H; ArH), 4.50 (dd, ²*J* (H, H)=9.3, ³*J* (H, H)=7.7 Hz, 1H; 1-H), 4.15 (dd, ²*J* (H, H)= 9.3, ³*J* (H, H)=2.5 Hz, 1H; 1-H'), 3.79 (s, 3H; OMe), 3.63 (dd, ²*J* (H, H)=10.2, ³*J* (H, H)=5.5 Hz, 1H; CHHOSi), 3.57 (dd, *J* (H, H)=10.2, ³*J* (H, H)=6.0 Hz, 1H; CHHOSi), 3.13-3.05 (m, 1H; 6^a-H), 2.69 (ddd, ²*J* (H, H)=13.9, ³*J* (H, H)=8.0, 1.5 Hz, 1H; 4-H), 2.45-2.32 (m, 1H; 5-H), 2.27-2.17 (m, 1H; 6-H), 1.97 (dd, ²*J* (H, H)=13.9, ³*J* (H, H)=10.3 Hz, 1H; 4-H'), 1.48-1.38 (m, 1H; 6-H'), 1.05 (s, 9H; (CH₃)₃C); ¹³C NMR (100 MHz, CDCl₃): 176.3 (3-C), 170.2 (C), 135.5 (CH), 133.5 (C), 129.7 (CH), 127.7 (CH), 73.5 (1-C), 65.5 (CH₂OSi), 61.3 (3a-C), 53.1 (OMe), 44.3 (6a-C), 41.5 (5-C), 37.2 (6-C), 36.7 (4-C), 26.9 (CH₃), 19.3 (C); IR (film): 1778, 1743; MS (+ESI): *m/z* (%): Found: (M+Na)⁺, 475.1919 (100), C₂₆H₃₂O₅SiNa req. 475.1911.

(3aS*, 4S*, 6aS*)-Methyl 4-(tert-butyldiphenylsilyloxymethyl)-3-oxohexahydro-1Hcyclopenta[c]furan-3a-carboxylate 10maj and (3aS*, 4R*, 6aS*)-methyl 4-(tertbutyldiphenylsilyloxymethyl)-3-oxohexahydro-1H-cyclopenta[c]furan-3a-carboxylate 10min

The diastereomers were partly separable by flash chromatography.

Major diastereomer **10maj**: mp 97.3-98.0 °C; ¹H NMR (400 MHz, CDCl₃): *δ*=7.69-7.62 (m, 4H; ArH), 7.48-7.38 (m, 6H; ArH), 4.47 (dd, ${}^{2}J$ (H, H)=9.2, ${}^{3}J$ (H, H)=6.1 Hz, 1H; 1-H), 4.16 (dd, ${}^{2}J$ (H, H)=9.2, ${}^{3}J$ $(H, H) = 0.8 Hz, 1H; 1-H'), 3.79 (dd, {}^{2}J(H, H) = 10.4, {}^{3}J(H, H) = 6.0 Hz, 1H; CHHOSi), 3.71 (dd, {}^{2}J(H, H) = 10.4, {}^{3}J(H, H) = 6.0 Hz, 1H; CHHOSi), 3.71 (dd, {}^{2}J(H, H) = 10.4, {}^{3}J(H, H) = 10.4$ H)=10.4, ${}^{3}J$ (H, H)=4.0 Hz, 1H; 1'-H), 3.63 (s, 3H; OMe), 3.43-3.36 (m, 1H; 6a-H), 2.89-2.82 (m, 1H; 4-H), 2.32 (ddt, J (H, H)=13.3, 9.6, 8.0 Hz, 1H; 6-H), 1.93-1.79 (m, 2H; 5-H, 5-H'), 1.64-1.54 (m, 1H; 6-H'), 1.07 (s, 9H; (CH₃)₃C); ¹³C NMR (100 MHz, CDCl₃): *S*=175.5 (3-C), 167.9 (C), 135.7 (CH), 135.6 (CH), 133.1 (C) 133.1 (C), 129.8 (CH), 129.8 (CH), 127.7 (CH), 73.2 (1-C), 63.9 (3a-C), 63.8 (CH₂OSi). 52.9 (OMe), 49.3 (4-C), 44.2 (6a-C), 31.6 (6-C), 29.7 (5-C), 26.8 (CH₃), 19.1 (C); IR (KBr): 1776, 1732; MS (+ESI): *m/z* (%): 475.2 ((M+Na)⁺, 90); Found: (M+Na)⁺, 475.1921, C₂₆H₃₂O₅SiNa req. 475.1911; Minor diastereomer **10min**: ¹H NMR (400 MHz, CDCl₃): δ =7.71-7.67 (app dt, *J* (H, H)= 7.9, 1.5 Hz; ArH), 7.45-7.35 (m, 6H; ArH), 4.56 (app t, ${}^{2}J$ (H, H)=8.9, ${}^{3}J$ (H, H)=8.9, 1H; 1-H), 4.03-3.97 (m, 2H; 1-H', CHHOSi), 3.88 (dd, ²J (H, H)=10.5, ³J (H, H)=6.3 Hz, 1H; CHHOSi), 3.74 (s, 3H; OMe), 3.34-3.27 (m, 1H; 6a-H), 2.99-2.91 (m, 1H; 4-H), 2.07-1.91 (m, 2H; 5-H, 6-H), 1.79-1.65 (m, 2H; 5-H', 6-H'), 1.05 (s, 9H; (CH₃)₃C); ¹³C NMR (100 MHz, CDCl₃): *δ*=174.0 (3-C), 171.0 (C), 135.7 (CH), 135.6 (CH)), 133.4 (C), 129.6 (CH), 129.6 (CH), 127.6 (CH), 72.3 (1-C), 62.6 (CH₂OSi), 61.5 (3a-C), 53.2 (OMe), 49.4 (4-C), 46.9 (6a-C), 31.3 (6-C), 28.7 (5-C), 26.7 (CH₃), 19.3 (C); IR (film): 1774, 1737; MS (+ESI): m/z (%): 453.3 ((M+H)⁺, 100); Found: (M+Na)⁺, 475.1915, C₂₆H₃₂O₅SiNa reg. 475.1911.

Dimethyl 2-methylcyclopentane-1,1-dicarboxylate 4

Manganese(III) acetate (536 mg, 2.0 mmol) was added to a solution of the malonate **1** (200 mg, 1.0 mmol) in dry degassed ethanol (50 mL) (nitrogen bubbled through the solvent for 2 h prior to use). The resulting suspension was then heated to 80 °C for 24 h. Water (50 mL) and diethyl ether (100 mL) were added and the mixture was filtered and then extracted with diethyl ether (3×100 mL). The combined organics were dried (MgSO₄), filtered and concentrated *in vacuo*. The resultant oil was purified by flash column chromatography (gradient elution 5-20% diethyl ether/petroleum ether) to yield the *title compound* **4** (132 mg, 0.66 mmol, 66%) as a colourless oil; ¹H NMR (400 MHz, CDCl₃): δ =3.72 (s, 3H; OCH₃), 3.71 (s, 3H; OCH₃), 2.68 (ddq, ³J (H, H)=8.9, 7.0, 7.0 Hz, 1H; 2-H), 2.44 (ddd, ³J (H, H)=13.9, 8.8, 7.6 Hz, 1H; 5-H), 2.03 (ddd, ³J (H, H)=13.9, 9.3, 4.7 Hz, 1H; 5-H'), 1.98-1.77 (m, 2H; 4-H, 3-H), 1.64-1.50 (m, 1H; 4-H'), 1.46-1.35 (m, 1H; 3-H'), 0.98 (d, ³J (H, H)=7.0 Hz, 3H; 2-CCH₃). Data consistent with literature.^[5]

(2S*, 3R*)-Dimethyl 3-(tert-butyldiphenylsilyloxymethyl)-2-methylcyclopentane-1,1-dicarboxylate 11

R_f 0.71 (EtOAc:hexane, 1:1); ¹H NMR (400 MHz, CDCl₃): δ =7.67-7.62 (m, 4H; ArH), 7.43-7.35 (m, 6H; ArH), 3.71 (s, 3H; OMe), 3.69 (s, 3H; OMe), 3.67 (dd, ²*J* (H, H)=10.7, ³*J* (H, H)=5.0 Hz, 1H; *CH*HOSi), 3.56 (dd, ²*J* (H, H)=10.7, ³*J* (H, H)=5.7 Hz, 1H; CHHOSi), 2.50 (dq, ³*J* (H, H)=9.8, 7.0 Hz, 1H; 2-H), 2.35 (ddd, ²*J* (H, H)=13.3, ³*J* (H, H)=7.7, 7.7 Hz, 1H; 5-H), 2.05 (m, 2H), 1.87 (ddddd, ²*J* (H, H)=9.8, ³*J* (H, H)=8.6, 8.6, 5.7, 5.0 Hz, 1H), 1.57-1.42 (m, 1H), 1.04 (s, 9H; (CH₃)₃C), 0.95 (d, ³*J* (H, H)=7.0 Hz, 3H; 2-CCH₃); ¹³C NMR (125 MHz, CDCl₃): δ =172.9 (C), 172.1 (C), 135.6 (CH), 135.5 (CH), 133.8 (C), 133.7 (C), 129.6 (CH), 127.6 (CH), 127.6 (CH), 65.7 (CH₂), 64.3 (C), 52.4 (CH₃), 51.9 (CH₃), 48.2 (CH), 33.3 (CH₂), 27.2 (CH₂), 26.8 (CH₃), 19.3 (C), 15.5 (CH₃); IR (film): 1731; MS (+ESI): *m/z* (%): Found: (M+Na)⁺, 491.2234 (100), C₂₇H₃₆O₅SiNa req. 491.2230.

(2S*, 4R*)-Dimethyl 4-(tert-butyldiphenylsilyloxymethyl)-2-methylcyclopentane-1,1-dicarboxylate 12maj and (2R*, 4R*)-dimethyl 4-(tert-butyldiphenylsilyloxymethyl)-2-methylcyclopentane-1,1dicarboxylate 12min

The diastereomers were partly separable by flash chromatography.

Major diastereomer **12maj**: ¹H NMR (400 MHz, CDCl₃): δ =7.71-7.64 (m, 4H; ArH), 7.47-7.36 (m, 6H; ArH), 3.75 (s, 3H; OMe), 3.70 (s, 3H; OMe), 3.66 (d, ³*J* (H, H)=5.9 Hz, 2H; CH₂OSi), 2.78 (ddq, ³*J* (H, H)=13.8, 10.1, 7.0, 1H; 2-H), 2.36-2.13 (m, 3H; 5-H, 5-H', 4-H,), 2.08-1.99 (m, 1H; 3-H), 1. 30-1.17 (m, 1H; 3-H'), 1.08 (s, 9H; (CH₃)₃C), 1.00 (d, ³*J* (H, H)=7.0 Hz, 3H; 2-CCH₃); ¹³C NMR (100 MHz, CDCl₃): δ =173.1 (C), 171.9 (C), 135.6 (CH), 133.9 (C), 129.6 (CH), 127.6 (CH), 67.1 (CH₂OSi), 63.5 (1-C), 52.5 (OMe), 52.0 (OMe), 40.3 (4-C), 40.1 (2-C), 36.9 (3-C), 36.8 (5-C), 26.8 (CH₃), 19.3 (C), 16.9 (2-CCH₃); IR (film): 1732; MS (+ESI): *m/z* (%): 469.3 ((M+H)⁺, 100); Found: (M+Na)⁺, 491.2232, C₂₇H₃₆O₅SiNa req. 491.2224.

minor diastereomer **12min**: ¹H NMR (400 MHz, CDCl₃): δ =7.69-7.60 (m, 4H), 7.45-7.33 (m, 6H; ArH), 3.73 (s, 3H; OMe), 3.71 (s, 3H; OMe), 3.53 (dd, *J* (H, H)= 6.2, 1.8 Hz, 2H; CH₂OSi), 2.72 (ddq, ³*J* (H, H)=10.4, 8.8, 7.2 Hz, 1H; 2-H), 2.64-2.48 (m, 2H; 5-H, 4-H), 1.85-1.77 (m, 2H; 5-H', 3-H), 1.64-1.54 (m, 1H; 3-H'), 1.07 (s, 9H; (CH₃)₃C), 1.01 (d, ³*J* (H, H)=7.0 Hz, 3H; 2-CCH₃); ¹³C NMR (100 MHz, CDCl₃): δ =172.7 (C), 171.7 (C), 135.7 (CH), 133.8 (C), 129.6 (CH), 127.6 (CH), 67.4 (CH₂OSi), 63.8 (1-C), 52.3 (OMe), 52.0 (OMe), 40.0 (2-C), 38.6 (4-C), 37.0 (5-C), 35.9 (3-C), 26.9 (CH₃), 19.3 (C) 16.3 (2-CCH₃); IR (film): 1733; MS (+ESI): *m/z* (%): 469.3 ((M+H)⁺, 40); Found: (M+Na)⁺, 491.2226, C₂₇H₃₆O₅SiNa req. 491.2224.

(2S*, 5S*)-Dimethyl 2-(tert-butyldiphenylsilyloxymethyl)-5-methylcyclopentane-1,1-dicarboxylate 13maj and (2S*, 5R*)-dimethyl 2-(tert-butyldiphenylsilyloxymethyl)-5-methylcyclopentane-1,1dicarboxylate 13min

The diastereomers were partly separable by flash chromatography.

major diastereomer **13maj**; ¹H NMR (400 MHz, CDCl₃): δ =7.68-7.61 (m, 4H; ArH), 7.45-7.35 (m, 6H; ArH), 3.72-3.63 (m, 4H; C*H*HOSi, OMe), 3.56-3.51 (m, 1H; CH*H*OSi), 3.50 (s, 3H; OMe), 2.95-2.87 (m, 1H; 2-H), 2.87-2.76 (m, 1H; 5-H), 2.13-1.99 (m, 2H; 4-H, 3-H), 1.74-1.61 (m, 1H; 4-H'), 1. 35-1.25 (m, 1H; 3-H'), 1.05 (s, 9H; (CH₃)₃C), 0.94 (d, ³*J* (H, H)=7.0 Hz, 3H; 5-CCH₃); ¹³C NMR (100 MHz, CDCl₃): δ =(100 MHz, CDCl₃) 171.6 (C), 171.2 (C), 135.7 (CH), 135.7 (CH), 133.7 (C), 133.5 (C), 129.6 (CH), 129.5 (CH), 127.6 (CH), 65.4 (1-C), 64.9 (CH₂OSi), 53.4 (OMe), 52.3 (OMe), 47.5 (2-C), 42.2 (5-C), 32.2 (3-C), 27.7 (4-C), 27.0 (CH₃), 19.8 (C), 17.8 (2-CCH₃); IR (film): 1731; MS (+ESI): *m/z* (%): 491.2 ((M+Na)⁺, 100); Found: (M+Na)⁺, 491.2227, C₂₇H₃₆O₅SiNa req. 491.2224.

minor diastereomer **13min**: ¹H NMR (400 MHz, CDCl₃): δ =7.69-7.60 (m, 4H; ArH), 7.45-7.33 (m, 6H; ArH), 4.03 (dd, ²J (H, H)=9.7, ²J (H, H)=4.6 Hz, 1H; CHHOSi), 3.65-3.51 (m, 7H; CHHOSi, 2 × OMe), 2.69 (m, 1H; 2-H), 2.56-2.44 (m, 1H; 5-H), 2.17-2.08 (m, 1H; 3-H), 1.98-1.80 (m, 2H; 4-H, 3-H'), 1.66-1.51 (m, 1H; 4-H'), 1.10-1.05 (m, 12H; (CH₃)₃C, 5-CCH₃); ¹³C NMR (100 MHz, CDCl₃): δ =172.3 (C), 169.8 (C), 135.6 (CH), 135.6 (CH), 133.9, 133.8 (C), 129.6, 129.5 (CH), 127.7 (CH), 127.6 (CH), 65.3 (CH₂OSi), 64.6 (1-C), 52.5 (OMe), 51.8 (OMe), 50.5 (2-C), 43.8 (3-C), 32.4 (4-C), 31.4 (5-C), 27.0 (CH₃), 19.3 (C), 16.0 (5-CCH₃); IR (film): 1731; MS (+ESI): *m/z* (%): 491.2 ((M+Na)⁺, 100); Found: (M+Na)⁺, 491.2225, C₂₇H₃₆O₅SiNa req. 491.2224.

Dimethyl 2-methylenecyclopentane-1,1-dicarboxylate 3

MeO₂C CO₂Me 3

Manganese(III) acetate (536 mg, 2.0 mmol) and copper(II) acetate (218 mg, 1.0 mmol) were added to a solution of the malonate **1** (200 mg, 1.0 mmol) in dry degassed DMSO (5 mL) (nitrogen bubbled through the solvent for 2 h prior to use). The resulting suspension was then heated to 80 °C for 24 h. Water (50 mL) and diethyl ether (100 mL) were added and the mixture was filtered and then extracted with diethyl ether (3 × 100 mL). The combined organics were washed with water (100 mL), dried (MgSO₄), filtered and then concentrated *in vacuo*. The resultant oil was purified by flash column chromatography (gradient elution 5-20% diethyl ether/petroleum ether) to yield in order of elution the *title compound* **3** (152 mg, 0.77 mmol, 77%) as a colourless oil; ¹H NMR (400 MHz, CDCl₃): δ =5.31 (d, *J* (H, H)=2.2 Hz, 1H; C=CHH), 5.28 (d, *J* (H, H)=2.2 Hz, 1H; C=CHH), 3.75 (s, 6H; OCH₃), 2.47 (tt, *J* (H, H)=7.3, 2.2 Hz, 2H; 3-H, 3-H'), 2.36 (t, *J* (H, H)=6.9 Hz, 2H; 5-H, 5-H'), 1.75 (qn, ³J (H, H)=7.1 Hz, 2H; 4-H, 4-H'); and lactone **6** (13 mg, 0.07 mmol, 7%). Data consistent with literature.^[4]

Dimethyl 3-(tert-butyldiphenylsilyloxymethyl)-2-methylenecyclopentane-1,1-dicarboxylate 14

12 3 14 OTBDPS

¹H NMR (400 MHz, CDCl₃): δ =7.67-7.62 (m, 4H; ArH), 7.41-7.34 (m, 6H; ArH), 5.36 (d, ²*J* (H, H)=2.5 Hz, 1H; C=C*H*H), 5.21 (d, ²*J* (H, H)= 2.1 Hz, 1H; C=CH*H*), 3.72 (m, 4H; OMe, C*H*HOSi), 3.71 (s, 3H, OMe), 3.55 (dd, ²*J* (H, H)=10.1, ³*J* (H, H)= 7.9 Hz, 1H; CHHOSi), 2.83 (m, 1H; 3-H), 2.41-2.34 (dt, *J* (H, H)= 6.6, 12.2 Hz, 1H; 5-H), 2.27-2.14 (m, 1H; 5-H'), 1.97-1.89 (m, 1H; 4-H), 1.75-1.66 (m, 1H; 4-H'), 1.04 (s, 9H; (CH₃)₃C); ¹³C NMR (50 MHz, CDCl₃): δ =171.8 (C), 171.4 (C), 149.1 (C), 136.0 (CH), 134.1 (C), 130.0 (CH), 128.1 (CH), 113.9 (C=CH₂), 66.9 (CH₂OSi), 65.0 (6-C), 53.3 (OMe), 53.2 (OMe), 47.4 (3-C), 34.5 (5-C), 27.3 (CH₃), 19.7 (C); IR (film): 1735; MS (+ESI): *m/z* (%):Found (M+Na)⁺, 489.2066 (100), C₂₇H₃₄O₅SiNa req. 489.2068.

Dimethyl 4-(tert-butyldiphenylsilyloxymethyl)-2-methylenecyclopentane-1,1-dicarboxylate 15

MeO₂C CO₂Me 15

TBDPSO

¹H NMR (400 MHz, CDCl₃): δ =7.72-7.67 (m, 4H; ArH), 7.49-7.38 (m, 6H; ArH), 5.35 (s, 1H; C=C*H*H), 5.30 (s, 1H; C=CH*H*), 3.78 (s, 3H; OMe), 3.76 (s, 3H; OMe), 3.70-3.50 (m, 2H; CH₂OSi), 2.65-2.57 (m, 2H; 3-H, 5-H), 2.50-2.30 (m, 2H; 3-H', 4-H), 2.17 (dd, ²*J* (H, H)=12.8, ³*J* (H, H)= 10.5, Hz, 1H; 5-H'), 1.10 (s, 9H; (CH₃)₃C); ¹³C NMR (100 MHz, CDCl₃): δ =171.2 (C), 147.6 (2-C), 135.6 (CH), 133.7 (C),

129.7 (CH), 127.7 (CH), 112.5 (C=CH₂), 66.1 (CH₂OSi), 63.5 (1-C), 52.9 (OMe), 52.8 (OMe), 40.1 (4-C), 38.5 (5-C), 36.9 (3-C), 26.9 (CH₃), 19.3 (C); IR (film): 1735; MS (+ESI): m/z (%): 489.2 ((M+Na)⁺, 100); Found: (M+Na)⁺, 489.2068, C₂₇H₃₄O₅SiNa req. 489.2068.

Dimethyl 2-(tertbutyldiphenylsilyloxymethyl)-5-methylenecyclopentane-1,1-dicarboxylate 16 MeO₂C, CO₂Me

TBDPSO 21 5 16

¹H NMR (400 MHz, CDCl₃): δ =7.68-7.64 (m, 4H; ArH), 7.46-7.36 (m, 6H; ArH), 5.29 (t, *J* (H, H)=2.4 Hz, 1H; C=C*H*H), 5.22 (t, *J* (H, H)=2.2 Hz, 1H; C=CH*H*), 3.82 (dd, ²*J* (H, H)=10.2, ³*J* (H, H)=4.9 Hz, 1H; C*H*HOSi), 3.71 (s, 3H; OMe), 3.58-3.51 (m, 4H; CH*H*OSi, OMe), 3.07-2.98 (m, 1H; 2-H), 2.65-2.55 (m, 1H; 4-H), 2.51-2.38 (m, 1H; 4-H'), 2.08 (ddd, ²*J* (H, H)=12.2, ³*J* (H, H)=6.3, 3.9 Hz, 1H; 3-H), 1.74 (ddd, ²*J* (H, H)=12.2, ³*J* (H, H)=4.9 Hz, 1.74 (ddd, ²*J* (H, H)=12.2, ³*J* (H, H)=9.3, 9.2 Hz, 1H; 3-H'), 1.06 (s, 9H; (CH₃)₃C); ¹³C NMR (100 MHz, CDCl₃): δ =170.3 (C), 170.0 (C), 148.8 (5-C), 135.6 (CH), 133.7 (C), 129.6 (CH), 127.6 (CH), 111.9 (C=CH₂), 65.1 (1-C), 63.8 (CH₂OSi), 52.7 (OMe), 52.2 (OMe), 49.8 (2-C), 31.8 (4-C), 27.1 (3-C), 26.8 (CH₃), 19.3 (C); IR (film): 1734; MS (+ESI): *m*/*z* (%): 489.2 ((M+Na)⁺, 100); Found: (M+Na)⁺, 489.2072, C₂₇H₃₄O₅SiNa req. 489.2068.

(3aR*, 6aS*)-Methyl 3-oxo-1-butyl-hexahydro-1H-cyclopenta[c]furan-3a-carboxylate 18

The lactones were isolated as a ca 2:1 mixture of inseparable diastereomers. Characterisation is on the mixture of diastereomers.

¹H NMR (400 MHz, CDCl₃): δ =4.65 (dt, ³*J* (H, H)=7.2, 5.4 Hz, 1H; 1-H [d1]), 4.06 (ddd, ³*J* (H, H)=7.9, 5.6, 4.0 Hz, 1H; 1-H [d2]), 3.77 (s, 6H; OCH₃ [d1, d2]), 2.97 (dt, ³*J* (H, H)=13.2, 6.3 Hz, 1H; 6a-H [d1]), 2.79 (ddd, ³*J* (H, H)=8.3, 3.7, 2.7 Hz, 1H; 6a-H [d2]), 2.43-2.31 (m, 2H; [d1, d2]), 2.30-2.22 (m, 2H; [d1, d2]), 2.00-1.93 (m, 1H; 6-H [d2]), 1.90-1.43 (m, 13H, [d1, d2]), 1.42-1.22 (m, 10H, [d1, d2]), 1.40-1.25 (m, 10H, [d1, d2]), 0.88 (3H, t, ³*J* (H, H)=7.2 Hz, 6H; CH₂CH₃ [d1, d2]); ¹³C NMR (100 MHz, CDCl₃): δ =176.1 (C=O), 175.9 (C=O), 171.1 (C=O), 170.7 (C=O), 86.2 (CH), 81.2 (CH), 63.6 (C), 62.3 (C), 53.1 (CH₃), 53.0 (CH₃), 50.8 (CH), 50.1 (CH), 36.2 (CH₂), 35.5 (CH₂), 34.2 (CH₂), 34.1 (CH₂), 31.6 (CH₂), 31.4 (CH₂), 30.7 (CH₂), 27.1 (CH₂), 26.4 (CH₂), 25.8 (CH₂), 25.7 (CH₂), 25.0 (CH₂), 22.5 (CH₂), 22.4 (CH₂), 13.9 (CH₃); IR (CDCl₃): 2952, 2871, 1773 (C=O), 1742 (C=O); MS (+ESI): *m/z* (%): 277.1410 ((M+Na)⁺, 100); Found: (M+Na)⁺, 277.1410, C₁₄H₂₂O₄Na req. 483. 277.1416).

(3aR*, 6aS*)-Methyl 1-(2-hydroxyethyl)-3-oxohexahydro-1H-cyclopenta[c]furan-3a-carboxylate 20

Isolated as an inseparable 1.7:1 mixture of diastereomers. Characterisation is on the mixture of compounds.

 $R_f = 0.09$ (hexane:EtOAc, 1:1); ¹H NMR (500 MHz, CDCl₃): δ =4.89 (ddd, ³*J* (H, H)=9.8, 6.0, 4.0 Hz, 1H; 1-H [d1]), 4.32 (qn, ³*J* (H, H)=4.2 Hz, 1H; 1-H [d2]) 3.88-3.80 (m, 4H; CH₂OH, [d1, d2]), 3.77 (s, 6H; OMe [d1, d2]), 2.98 (dt, ³*J* (H, H)=7.0, 6.0 Hz, 1H; 6a-H [d1]), 2.86 (dt, ³*J* (H, H)=4.2, 2.8 Hz, 1H; 6a-H [d2]), 2.45-2.32 (m, 2H), 2.98-2.20 (m, 2H), 2.05-1.90 (m, 2H), 1.89-1.80 (m, 2H), 1.75-1.65 (m, 3H), 1.62-1.52 9 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ =175.9 (C), 175.8 (C), 171.0 (C0, 170.5 (C), 83.2 (CH), 78.3 (CH), 63.4 (C), 62.2 (C), 59.8 (CH₂), 59.0 (CH₂), 53.2 (CH₃), 53.1 (CH₃), 50.7 (CH), 50.3 (CH), 38.8 (CH₂), 35.5 (CH₂), 34.1 (CH₂), 33.9 (CH₂), 33.7 (CH₂), 27.5 (CH₂), 26.4 (CH₂), 25.7 (CH₂); 1R (CHCl₃): 3423, 1769, 1739; MS (+ESI): *m/z* (%): Found: (M+Na)⁺, 251.0882 (100), C₁₁H₁₆O₅Na req. 251.0895.

(2aS*, 4aS*, 6S*, 6aR*, 6bR*)-Methyl 6-(2-tert-butyldiphenylsilyloxyethyl)-2-oxo-hexahydropentaleno[1,6-bc]furan-2a-carboxylate 22

$$MeO_2C^{(1)} \xrightarrow{H} 0 0$$

R_f = 0.84 (PE:EtOAc, 1:1); ¹H NMR (400 MHz, CDCl₃): *δ*=7.67-7.62 (m, 4H, ArH), 7.44-7.35 (m, 6H, ArH), 4.78 (dd, ³*J* (H, H)=5.4, 4.4 Hz, 1H; 6a-H), 3.76 (s, 3H; OMe), 3.79-3.67 (m, 2H; CH₂OSi), 3.31 (dd, *J* (H, H)=9.8, 6.0 Hz, 1H), 2.74-2.64 (m, 1H), 2.55 (ddd, *J* (H, H)=14.0, 8.4, 6.6 Hz, 1H), 2.31 (dt, ³*J* (H, H)=14.0, 7.0 Hz, 1H), 2.26-2.15 (m, 1H), 2.08-1.82 (m, 3H), 1.72-1.63 (m, 1H), 1.58-1.49 (m, 1H), 1.04 (s, 9H; (CH₃)₃C); ¹³C NMR (125 MHz, CDCl₃): *δ*=176.4 (C), 170.6 (C), 135.5 (CH), 133.8 (C), 129.6 (CH), 127.7 (CH), 85.4 (CH), 62.3 (C), 62.2 (CH₂), 57.2 (CH), 53.0 (CH₃), 44.7 (CH), 44.1 (CH), 35.9 (CH₂), 35.5 (CH₂), 32.7 (CH₂), 32.1 (CH₂), 26.9 (CH₃), 19.2 (C); IR (film): 1772, 1742; MS (+ESI): m/z (%): Found: (M+Na)⁺ 515.2208 (100), C₂₉H₃₆O₅SiNa req. 515.2230.

(3aR*, 5R*, 6aS)-Ethyl 5-((tert-butyldiphenylsilyloxy)methyl)-1,1-dimethyl-3-oxohexahydro-1H-cyclopenta[c]furan-3a-carboxylate 24maj

Isolated as an inseparable 5:1 mixture of diastereomers; data for major diastereomer $R_f 0.63$ (PE:EtOAc, 2:1); ¹H NMR (400 MHz, CDCl₃): δ =7.64-7.60 (m, 4H; ArH), 7.44-7.34 (m, 6H; ArH), 4.29-4.20 (m, 2H; OCH₂CH₃), 3.62 (dd, ²J (H, H)=10.4, ³J (H, H)= 5.8 Hz, 1H; CHHOSi), 3.59 (dd, ²J (H, H)=10.4, ³J (H, H)=6.0 Hz, 1H; CHHOSi), 2.94 (dd, J (H, H)=11.4, 7.4 Hz, 1H), 2.48-2.30 (m, 2H), 2.00-1.90 (m, 2H), 1.48-1.46 (m, 1H), 1.42 (s, 3H; 1-CCH₃), 1.37 (s, 3H; 1-CCH₃), 1.29 (t, ³J (H, H)= 7.0 Hz, 3H; OCH₂CH₃), 1.03 (s, 9H; (CH₃)₃C); ¹³C NMR (125 MHz, CDCl₃): δ =175.4 (C), 171.9 (C), 135.5 (CH), 133.5 (C), 129.7 (CH), 127.7 (CH), 83.8 (C), 65.4 (CH₂), 62.7 (C), 62.2 (CH₂), 55.8 (CH), 44.1 (CH), 38.8 (CH), 32.8 (CH₂), 29.4 (CH₂), 26.8 (CH₃), 24.4 (CH₃), 19.2 (C), 14.0 (CH₃); IR (film): 1769, 1732; MS (+ESI): *m/z* (%): Found: (M + Na)⁺ 517.2398 (100), C₂₉H₃₈O₅SiNa req. 517.2386.

(3aR*, 6aS*)-Methyl 1-((E)-hept-1-enyl)-3-oxohexahydro-1H-cyclopenta[c]furan-3a-carboxylate 26

Isolated as an inseparable 1:1 mixture of diastereomers.

¹H NMR (500 MHz, CDCl₃): δ =5.84 (dtd, *J* (H, H)=15.4, 6.8, 0.9 Hz; 1H; CH=CHCH₂CH₂ [d1]), 5.74 5.84 (dd, ³*J* (H, H)=15.3, 6.3 Hz; 1H; CH=CHCH₂CH₂ [d2]), 5.51 (ddt, *J* (H, H)=15.3, 7.8, 1.5 Hz; 1H; CH=CHCH₂CH₂ [d2]), 5.43 (ddt, *J* (H, H)=15.4, 7.0, 1.4 Hz; 1H; CH=CHCH₂CH₂ [d1]), 5.10 (t, ³*J* (H, H)=7.0 Hz, 1H; 1-H [d1]), 4.44 (dd, ³*J* (H, H)=8.0, 3.8 Hz, 1H; 1-H [d2]), 3.75 (s, 3H; OCH₃), 3.74 (s, 3H; OCH₃), 2.98 (dt, ³*J* (H, H)=8.0, 7.0 Hz, 1H; 6a-H [d1]), 2.87 (dt, ³*J* (H, H)=8.0, 3.1 Hz, 1H; 6a-H [d2]), 2.40-2.22 (m, 2H), 2.22-2.18 (m, 2H), 2.08-2.00 (m, 4H; CH=CHCH₂ [d1. d2]), 1.98-1.88 (m, 1H; 6-H [d2]), 1.86-1.80 (m, 1H), 1.75-1.53 (m, 6H), 1.40-1.32 (m, 4H; CH=CHCH₂CH₂ [d1, d2]), 1.30-1.20

(m, 8H; (CH₂)CH₃ [d1, d2]), 0.86 (t, ³*J* (H, H)=6.7 Hz, 6H; CH₂CH₃ [d1, d2]); ¹³C NMR (125 MHz, CDCl₃): δ =175.9 (C=O), 175.8 (C=O), 171.0 (C=O), 170.5 (C=O), 136.9 (CH), 135.8 (CH), 127.6 (CH), 123.6 (CH), 86.4 (CH), 81.6 (CH), 63.4 (C), 62.2 (C), 53.1 (CH), 51.7 (CH), 50.9 (CH), 35.5 (CH₂), 34.3 (CH₂), 33.4 (CH₂), 32.2 (CH₂), 32.0 (CH₂), 31.3 (CH₂), 31.2 (CH₂) 28.4 (CH₂), 28.4 (CH₂), 28.2 (CH₂), 26.2 (CH₂), 25.6 (CH₂), 22.4 (CH₂), 22.4 (CH₂), 14.0 (CH₃), 13.9 (CH₃); IR (CDCl₃): 2955, 2828, 2858, 1772 (C=O), 1740 (C=O); MS (+ESI): *m/z* (%): 303.1568 ((M+Na)⁺, 100); Found: (M+Na)⁺, 303. 1568, C₁₃H₂₂O₅Na req. 303.1572.

(3aR*,6R*,6aS*)-Methyl 6-(hydroxymethyl)-3-oxohexahydro-1H-cyclopenta[c]furan-3a-carboxylate 27

Tetrabutyl ammonium fluoride (1.0 M, in THF, 300 μ L, 0.30 mmol) was added dropwise to a solution of the[3.3.0]-bicyclic γ -lactone **6** (45 mg, 0.10 mmol) in THF (7 mL) buffered with acetic acid (17 μ L, 0.30 mmol) at 0 °C. The reaction mixture is allowed to reach RT and stirred for 16 h. Water (40 mL) and diethyl ether (40 mL) were both added and the aqueous layer was extracted with diethyl ether (3 × 40 mL). The combined organic layers were dried (MgSO₄), filtered, and the solvent removed *in vacuo*. The resulting compound was purified by column chromatography (20% diethyl ether/petroleum ether) to give the *title compound* **27** as a colourless oil (19.2 mg, 90 μ mol, 90%); (Found: C, 55.72; H, 6.65%; C₁₀H₁₄O₅ requires C, 56.07; H, 6.59); ¹H NMR (400 MHz, CDCl₃): δ =4.57 (dd, *J*(H, H)=9.4, 7.0 Hz, 1H; 1-H), 4.23 (dd, *J*(H, H)=9.3, 1.8 Hz, 1H; 1-H'), 3.78 (s, 3H; OMe), 3.72 (dd, *J*(H, H)=10.5, 5.8 Hz, 1H; CHHOH), 3.57 (dd, *J*(H, H)=10.5, 7.5 Hz, 1H; CHHOSi), 2.93 (td, ³*J*(H, H)=6.9, 1.8 Hz, 1H; 6a-H), 2.57 (ddd, *J*(H, H)=14.2, 8.1, 6.4 Hz, 1H; 4-H), 2.25-2.09 (m, 2H; 6-H, 4-H'), 1.90-1.80 (m, 1H; 5-H), 1.72 (br s, 1H; OH), 1.64 (dq, *J*(H, H)=13.1, 7.6 Hz, 1H; 5-H'); ¹³C NMR (100 MHz, CDCl₃): δ =176.5 (C), 170.4 (C), 72.1 (1-C), 64.6 (CH₂OH), 61.4 (3a-C), 53.2 (CH₃), 49.7 (6a-C), 49.3 (6-C), 32.8 (4-C), 29.0 (5-C); IR (film): 3431, 1768, 1738; MS (+ESI): *m/z*(%): 237.0737 ((M+Na)⁺, 100); Found: (M+Na)⁺, 237.0737, C₁₀H₁₄O₅Na req. 237.0739.

(3aR*,6R*,6aS*)-6-(tert-Butyldiphenylsilyloxymethyl)-3-oxohexahydro-1H-cyclopenta[c]furan-3a-carboxylic acid 28

Aqueous 10% KOH solution (4 mL) was added to the γ-lactone **6** (452 mg, 1.0 mmol) in THF (20 mL) and the resulting mixture was stirred at RT for 16 h. Sulfate buffer (pH 2, 40 mL) was then added to acidify the mixture. The mixture was extracted with ether (5 × 50 mL), the organic layers combined, dried (MgSO₄), filtered, and the solvent removed *in vacuo*. The resulting compound was recrystallised (diethyl ether/hexane) to give the *title compound* **28** as a white crystalline solid (395 mg, 0.90 mmol, 90%); mp 118.0-118.5°C; ¹H NMR (400 MHz, CDCl₃): δ =7.65-7.61 (m, 4H; ArH), 7.48-7.38 (m, 6H; ArH), 4.55 (dd, *J*(H, H)=9.3, 7.1 Hz, 1H; 1-H), 4.27 (dd, *J*(H, H)=9.3, 1.9 Hz, 1H; 1-H'), 3.71 (dd, *J*(H, H)=10.3, 5.7 Hz, 1H; CHHOSi), 3.58 (dd, ³*J*(H, H)=10.3, 7.5 Hz, 1H; CHHOSi), 3.00 (td, ³*J*(H, H)=7.8, 1.6 Hz, 1H; 6a-H), 2.51 (ddd, *J*(H, H)=13.0, 8.3 Hz, 1H; 4-H), 2.24-2.12 (m, 2H; 6a-H, 4-H'), 1.86-1.77 (m, 1H; 5-H), 1.58 (dq, *J*(H, H)=13.0, 8.3 Hz, 1H; 4-H'), 1.06 (s, 9H; (CH₃)₃C); ¹³C NMR (50 MHz, CDCl₃): δ =176.7 (C), 175.4 (C), 136.0 CH), 133.5 (C), 130.4 (CH), 128.3 (CH), 72.7 (1-C), 66.1 (CH₂OSi), 61.9 (3a-C), 50.5 (6a-C), 50.1 (6-C), 33.2 (4-C), 27.3 (5-C), 27.3 (CH₃), 19.6 (C); IR (KBr): 3073, 1760, 1737; MS (+ESI): *m/z*(%): 502.2 ((M+Na+MeCN)⁺, 60)); Found: (M+Na)⁺, 461.1757, C₂₅H₃₀O₅SiNa req. 461.1755.

Benzyl (3aS,6R*,6aS*)-6-((tert-butyldiphenylsilyloxy)methyl)-3-oxohexahydro-1H-cyclopenta[c]furan-3a-ylcarbamate 31*

Diphenyl phosphoryl azide (15.8 µL, 0.074 mmol) was added to a solution of the [3.3.0]-bicyclic ylactone 28 (30.7 mg, 0.07 mmol) and triethylamine (10.7 µL, 0.077 mmol) in toluene (1 mL). The mixture was then heated to 110°C for 2 h, at which point benzyl alcohol (1 mL) was added, and the reaction was stirred at this temperature for a further 16h. Saturated aqueous NaHCO₃ (10 mL) and diethyl ether (20 mL) were then added and the aqueous layer was extracted with diethyl ether (2 \times 20 mL). The combined organics were concentrated in vacuo and water was added (20 mL) and then concentrated in vacuo for azeotropic removal of the benzyl alcohol. Diethyl ether (20 mL) was then added and the solution was dried (MgSO₄), filtered and concentrated *in vacuo* to give the *title compound* **31** as a white solid (35.1 mg, 64 µmol, 92%); mp 113.5-114°C; NMR shows compound exists as rotomers; ¹H NMR (400 MHz, CDCl₃): &=7.63 (m, 4H; ArH), 7.48-7.30 (m, 11H; ArH), 5.22 (br s, 1H; NH), 5.10 (br s, 2H; CH₂Ar), 4.79 (t, J(H, H)=8.5 Hz, 1H; 1-H), 4.05 (d, J(H, H)=8.5 Hz, 1H; 1-H'), 3.66-3.55 (m, 2H; CH₂OSi), 2.81 (br s, 1H; 6a-H), 2.26-2.09 (m, 2H; 4-H, 6-H), 1.85-1.59 (m, 3H; 4-H', 5-H, 5-H'), 1.06 (9H, s, (CH₃)₃C); ¹³C NMR (50 MHz, CDCl₃): *δ*=178.6 (C), 155.9 (C), 136.0 (CH), 133.7 (C), 130.3 (CH), 129.1 (CH), 128.8(CH), 128.7 (CH), 128.2 (CH), 73.9 (1-C), 67.7 (CH₂Ar), 65.9 (CH₂OSi), 51.8 (6-C), 48.6 (6a-C), 37.9 (4-C), 28.1 (5-C), 27.3 (CH₃), 19.6 (C); IR (KBr) 3465, 3314, 1753, 1713; MS (+ESI): m/z (%): 566.2 ((M+Na)⁺, 100), Found: (M+Na)⁺, 566.2333, C₃₂H₃₇NO₅SiNa reg. 566.2333.

(3aS*,4R*,6aR*)-4-(tert-Butyldiphenylsilyloxymethyl)hexahydro-1H-cyclopenta[c]furan-1-one 30

The [3.3.0]-bicyclic γ -lactone **5** (226 mg, 0.50 mmol) and LiCl (42 mg, 1.00 mmol) were dissolved in DMSO (0.9 mL) and water (9 μ L, 0.50 mmol), the resulting mixture was heated to 160°C and stirred for 2 h. After cooling, water (30 mL) and diethyl ether (50 mL) were added and the aqueous layer extracted with ether (5 × 50 mL). The combined organic layers were washed with water (2 × 50 mL), brine (50 mL), dried (MgSO₄), filtered, and the solvent removed *in vacuo*. The resulting compound was purified *via* flash chromatography (gradient elution 5-20% diethyl ether/hexane) to give the *title compound* **30** as a white crystalline solid (178.2 mg, 90%); mp 51.7-52.3 °C; ¹H NMR (400 MHz, CDCl₃): δ =7.66-7.62 (m, 4H), 7.48-7.37 (m, 6H), 4.40 (dd, *J*(H, H)=9.4, 7.3 Hz, 1H; 3-H), 4.19 (dd, ³*J*(H, H)=9.4, 2.4 Hz, 1H; 3-H'), 3.68 (dd, *J*(H, H)=10.2, 5.8 Hz, 1H; CHHOSi), 3.54 (dd, ³*J*(H, H)=10.2, 7.2 Hz, 1H; CHHOSi), 3.10 (td, ³*J*(H, H)=9.5, 4.3 Hz, 1H' 6a-H), 2.69 (dddd, ³*J*(H, H)=9.3, 7.2, 7.0, 2.3 Hz, 1H; 3a-H), 2.19-1.93 (m, 3H; 4-H, 6-H. 6-H'), 1.82-1.72 (m, 1H; 5-H), 1.56-1.46 (m, 1H; 5-H'), 1.06 (s, 9H; (CH₃)₃C); ¹³C NMR (125 MHz, CDCl₃): δ =181.0 (C), 135.5 (CH), 133.3 (C), 129.8 (CH), 127.8 (CH), 72.4 (3-C), 65.9 (CH₂OSi), 48.9 (4-C), 44.5 (6a-C), 43.5 (3a-C), 29.1 (6-C), 28.4 (5-C), 26.8 (CH₃), 19.2 (C); IR (KBr) 1763; MS (+ESI): *m/z* (%): 458.3 ((M+Na+MeCN)⁺, 100); Found (M+Na)⁺, 417.1855, C₂₄H₃₀O₅SiNa reg, 417.1856.

(3aS*,4R*,6aS*)-6a-Benzyl-4-(tert-butyldiphenylsilyloxymethyl)hexahydro-1H-cyclopenta[c]furan-1-one

TBDPS

A solution of the [3.3.0]-bicyclic y-lactone **30** (39.5 mg, 0.10 mmol) in dry THF (2 mL) was cooled to -78 °C and LiHMDS (300 µL 0f a 1.0 M solution in toluene, 0.3 mmol) was added dropwise and the solution was allowed to warm to -30°C and then cooled back down to -78°C. Benzyl bromide (35.6 µL, 0.3 mmol) was then added dropwise to the reaction mixture which was allowed to reach RT. over 16 h. Saturated aqueous NH₄Cl (20 mL) and diethyl ether (20 mL) were added and the aqueous layer was extracted with diethyl ether $(3 \times 20 \text{ mL})$. The combined organic layers were dried (MgSO₄), filtered, and the solvent removed in vacuo. The resulting compound was purified by flash chromatography (gradient elution 5-20% diethyl ether/hexane) to give the *title compound* as a colourless oil (43.3 mg, 89 µmol, 89%); ¹H NMR (400 MHz, CDCl₃): δ=7.66-7.61 (m, 4H; ArH), 7.49-7.37 (m, 6H; ArH), 7.32-7.24 (m, 3H; ArH) 7.19-7.15 (m, 2H; ArH), 3.82 (dd, J(H, H)=9.2, 1.4 Hz, H; 3-H), 3.62 (dd, J(H, H)=10.2, 5.8 Hz, 1H; CHHOSi), 3.54 (dd, J(H, H)=10.2, 6.8 Hz, 1H; CHHOSi), 3.31-3.24 (m, 2H; 3-H', CHHAr), 2.66 (d, ${}^{2}J(H, H)=13.3$ Hz, 1H; CHHAr), 2.49 (t, 1H; ${}^{3}J(H, H)=6.9$ Hz, 1H; 3a-H), 2.17 (app dt, J(H, H)=13.3 Hz, 1H; CHHAr), 2.49 (t, 1H; ${}^{3}J(H, H)=6.9$ Hz, 1H; 3a-H), 2.17 (app dt, J(H, H)=13.3 Hz, 1H; CHHAr), 2.49 (t, 1H; ${}^{3}J(H, H)=6.9$ Hz, 1H; 3a-H), 2.17 (app dt, J(H, H)=13.3 Hz, 1H; CHHAr), 2.49 (t, 1H; ${}^{3}J(H, H)=6.9$ Hz, 1H; 3a-H), 2.17 (app dt, J(H, H)=13.3 Hz, 1H; CHHAr), 2.49 (t, 1H; ${}^{3}J(H, H)=6.9$ Hz, 1H; 3a-H), 2.17 (app dt, J(H, H)=13.3 Hz, 1H; CHHAr), 2.49 (t, 1H; ${}^{3}J(H, H)=6.9$ Hz, 1H; 3a-H), 2.17 (app dt, J(H, H)=13.3 Hz, 1H; CHHAr), 2.49 (t, 1H; ${}^{3}J(H, H)=6.9$ Hz, 1H; 3a-H), 2.17 (app dt, J(H, H)=6.9 Hz, 1H; 3A-H), 3 H)=13.5, 7.4 Hz, 1H; 6-H), 2.05 (app sext, ${}^{3}J(H, H)=6.8$ Hz, 1H; 4-H), 1.89 (ddd, J(H, H)=13.6, 7.6, 6.2 Hz, 1H; 6-H'), 1.73 (ddd, J(H, H)=13.0, 6.8, 6.2 Hz, 1H; 5-H), 1.64-1.49 (m, 1H; 5-H'), 1.07 (s, 9H; (CH₃)₃C); ¹³C NMR (125 MHz, CDCl₃) &=183.5 (C), 137.3 (C), 136.0 (CH), 133.8 (C), 130.3 (CH), 129.9 (CH), 129.1 (CH), 128.2 (CH), 127.6 (CH), 72.1 (3-C), 66.0 (CH₂OSi), 57.7 (6a-C), 50.8 (4-C), 46.9 (3a-C), 43.4 (CH₂Ar), 37.2 (6-C), 28.8 (5-C), 27.3 (CH₃), 19.7 (C); IR (film) 1765; MS (+ESI): m/z(%):548.3 ((M+Na+MeCN)⁺, 100); Found (M+Na)⁺, 507.2326, C₃₁H₃₆O₃SiNa req. 507.2326.

(3aS*,4R*,6aS*)-6a-Allyl-4-(tert-butyldiphenylsilyloxymethyl)hexahydro-1H-cyclopenta[c]furan-1-one

Prepared as for $(3aS^*, 4R^*, 6aS^*)$ -6a-benzyl-4-((tbutyldiphenylsilyloxy)methyl)hexahydro-1H-cyclopenta[*c*]furan-1-one using allylbromide in place of benzyl bromide.

¹H NMR (400 MHz, CDCl₃): δ =7.67-7.63 (m, 4H; ArH), 7.49-7.38 (m, 6H; ArH), 5.79-5.66 (m, 1H; CH=CH₂), 5.18-5.12 (m, 2H; CH=CH₂), 4.25 (dd, *J*(H, H)=9.4, 7.3 Hz, 1H; 3-H), 4.10 (dd, *J*(H, H)=9.4, 2.0 Hz, 1H; 3-H'), 3.67 (dd, *J*(H, H)=10.3, 5.7, 1H; CHHOSi), 3.55 (dd, *J*(H, H)=10.2, 7.2 Hz, 1H; CHHOSi), 2.51 (dd, *J*(H, H)=13.6, 6.8 Hz, 1H; CHHCH=CH₂), 2.42 (app td, ³*J*(H, H)=7.0, 1.7, 1H; 3a-H), 2.25 (dd, *J*(H, H)=13.6, 8.0 Hz, 1H; CHHCH=CH₂), 2.16-2.00 (m, 2H; 4-H, 6-H), 1.82-1.65 (m, 2H; 5-H, 6-H'), 1.57-1.46 (m, 1H; 5-H'), 1.07 (s, 9H; (CH₃)₃)C); ¹³C NMR (125 MHz, CDCl₃): δ = 183.0 (C), 136.0 (CH), 133.8 (C), 133.3 (CH), 130.3 (CH), 128.2 (CH), 119.8 (CH), 72.2 (3-C), 66.2 (CH₂OSi), 55.7 (6a-C), 50.7 (4-C), 47.6 (3a-C), 41.3 (CH₂CH=CH₂), 35.9 (6-C), 28.9 (5-C), 27.3 (CH₃), 19.7 (C); IR (film): 1767; MS (+ESI): *m/z*(%): 498.3 ((M+Na+MeCN)⁺, 80); Found (M+Na)⁺, 457.2170, C₂₇H₃₄O₃SiNa req. 457.2169.

(1S, 4S, 5R, 6S, 7S)-6-(tert-Butyldiphenylsilyloxymethyl)-4-((E)-hept-1-enyl)-3,8-dioxa-tricyclo[5.2.1.0^{1,5}]decane-2,9-dione 33

 $[\alpha]_D^{20} = +11.3$ (*c* 1.1, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ =7.63-7.62 (m, 4H; ArH), 7.48-7.38 (m, 6H; ArH), 5.83 (dt, ³*J* (H, H)=15.3, 6.8 Hz, 1H; CH=CHCH₂), 5.40 (dd, ³*J* (H, H)=15.3, 7.5 Hz, 1H; CH=CHCH₂), 5.12 (s, 1H; 7-H), 4.72 (dd, ³*J* (H, H)=7.5, 9.6 Hz, 1H;4-H), 3.70 (1H, dd, ²*J* (H, H)=10.4, ³*J* (H, H)=1.3 Hz, 1H; CHHOSi), 3.60 (dd, ²*J* (H, H)=10.4, ³*J* (H, H)=6.6 Hz, 1H; CHHOSi), 2.62-2.58 (m, 2H; 6-H, 10-H), 2.43 (d, ²*J* (H, H)=10.9 Hz, 1H; 10-H²), 2.26 (dd, ³*J* (H, H)=9.6, 4.7 Hz, 1H; 5-H), 1.98 (td, ³*J* (H, H)=8.2, 6.8 Hz, 2H; CH=CHCH₂), 1.34-1.18 (6H, m), 1.06 (s, 9H; (CH₃)₃C), 0.86 (t, ³*J* (H, H)=7.1 Hz, 3H; CH₂CH₃); ¹³C NMR (100 MHz, CDCl₃): δ =169.1 (C), 167.3 (C), 138.7 (CH=CHCH₂), 135.5 (CH), 135.4 (CH), 130.0 (C), 129.9 (C), 127.9 (CH), 127.8 (CH), 124.7 (CH=CHCH₂), 84.2 (4-C), 82.2 (7-C), 62.2 (CH₂OSi), 56.8 (1-C), 50.1 (5-C), 49.4 (6-C), 40.6 (10-C), 32.1 (CH=CHCH₂), 31.2 (CH₂), 28.2 (CH₂), 26.8 (C(CH₃)₃), 22.4 (CH₂), 19.2 (C(CH₃)₃), 14.0 (CH₂CH₃); IR (CDCl₃): 1813 (CO), 1783 (CO), 1728 (CO); MS (+ESI): *m/z* (%): Found: (M+Na)⁺ 555.2335 (100), C₂₅H₃₄NaO₃Si req. 555.2335.

(1S, 3aS, 5S, 6S, 6aR)-Methyl 6-(tert-butyldiphenylsilyloxymethyl)-1-((E)-hept-1-enyl)-5-hydroxy-3-oxohexahydro-1H-cyclopenta[c]furan-3a-carboxylate 34

$$\begin{split} & [\alpha]_{D}^{20} = +22 \ (c \ 0.53, \ CH_{2}Cl_{2}); \ ^{1}H \ NMR \ (400 \ MHz, \ CDCl_{3}): \ \mathcal{E}=7.66-7.63 \ (m, \ 4H; \ ArH), \ 7.48-7.38 \ (m, \ 6H; \ ArH), \ 5.66 \ (dt, \ ^{3}J \ (H, \ H)=15.4, \ 6.7 \ Hz, \ 1H; \ CH=CHCH_{2}), \ 5.55 \ (dd, \ ^{3}J \ (H, \ H)=15.4, \ 7.2 \ Hz, \ 1H; \ CH=CHCH_{2}), \ 5.55 \ (dd, \ ^{3}J \ (H, \ H)=15.4, \ 7.2 \ Hz, \ 1H; \ CH=CHCH_{2}), \ 4.66 \ (d, \ ^{3}J \ (H, \ H)=7.2 \ Hz, \ 1H; \ 1-H), \ 4.42 \ (d, \ ^{3}J \ (H, \ H)=6.8, \ 4.2 \ Hz, \ 1H; \ 5-H), \ 3.96 \ (dd, \ ^{2}J \ (H, \ H)=10.7, \ ^{3}J \ (H, \ H)=6.0 \ Hz, \ 1H; \ CHHOSi), \ 3.96 \ (dd, \ ^{2}J \ (H, \ H)=10.7, \ ^{3}J \ (H, \ H)=6.0 \ Hz, \ 1H; \ CHHOSi), \ 3.96 \ (dd, \ ^{2}J \ (H, \ H)=10.7, \ ^{3}J \ (H, \ H)=6.0 \ Hz, \ 1H; \ CHHOSi), \ 3.80 \ (s, \ 3H; \ OMe), \ 2.98 \ (dd, \ ^{3}J \ (H, \ H)=9.9, \ 8.0 \ Hz, \ 1H; \ 6a-H), \ 2.67 \ (dd, \ ^{2}J \ (H, \ H)=14.8, \ ^{3}J \ (H, \ H)=14.8, \ ^{3}J \ (H, \ H)=13.8 \ Hz, \ 1H; \ 4-H), \ 2.52 \ (d, \ ^{3}J \ (H, \ H)=4.2 \ Hz, \ 1H; \ OH), \ 2.28 \ (dd, \ ^{2}J \ (H, \ H)=14.8, \ ^{3}J \ (H, \ H)=4.1 \ Hz, \ 1H; \ 4-H'), \ 2.07 \ (m, \ 1H; \ 6-H), \ 2.01 \ (dt, \ ^{3}J \ (H, \ H)=7.1, \ 6.7 \ Hz, \ 2H; \ CH=CHCH_{2}), \ 1.37-1.20 \ (m, \ 6H), \ 1.06 \ (s, \ 9H; \ (CH_{3})_{3}C), \ 0.88 \ (t, \ ^{3}J \ (H, \ H)=6.6 \ Hz, \ 3H; \ CH_{2}CH_{3}); \ ^{13}C \ NMR \ (100 \ MHz, \ CDCl_{3}): \ \mathcal{E}=(100 \ MHz, \ CDCl_{3}): \ \mathcal{E}=(100 \ MHz, \ CDCl_{3}); \ \mathcal{E}=(100 \ MHz, \ \mathcal{E}=(100 \ MHz, \ \mathcal{E}=(100 \ MHz, \ \mathbb{E}=(100 \ MHz, \ \mathbb{E}=(100$$

References

- [1] T. Inoue, O. Kitagawa, A. Saito, T. Taguchi, J. Org. Chem. 1997, 62, 7384.
- [2] D. P. Curran, T. M. Morgan, C. E. Schwartz, B. B. Snider, M. A. Dombroski, *J. Am. Chem. Soc.* **1991**, *113*, 6607.
- [3] D. P. Curran, C. T. Chang, J. Org. Chem. 1989, 54, 3140.
- [4] N. Monteiro, J. Gore, G. Balme, *Tetrahedron* **1992**, *48*, 10103.
- [5] B. B. Snider, J. E. Merritt, M. A. Dombroski, B. O. Buckman, J. Org. Chem. 1991, 56, 5544.

S16

1H NMR (400 MHz, CDCl3) mixture of diastereomers

ppm

1H NMR (400 MHz, CDC13) with the cyclohexene as a slight impurity

1H NMR (400 MHz, CDCl3)

1H NMR (500 MHz, CDC13) mixture of diastereomers

1H NMR (500 MHz, CDC13) mixture of diastereomers

S31

