# A simple route to chiral phosphinous acid-boranes

# **Electronic Supplementary Information**

Delphine Moraleda, David Gatineau, David Martin, Laurent Giordano, Gérard Buono

Université Aix-Marseille, Institut des Sciences Moléculaires de Marseille, ECM, CNRS, UMR 6263, Av. Escadrille Normandie Niemen13397 Marseille Cedex 20

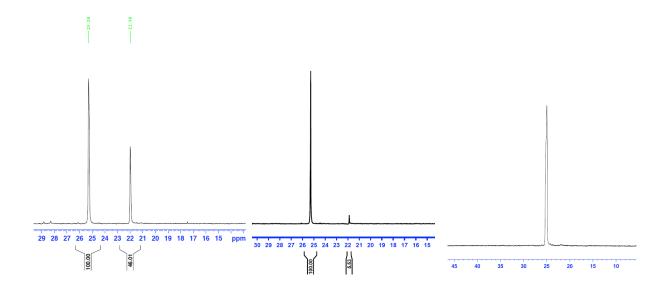
#### General remarks

# **Analyses:**

- NMR spectra were recorded on Bruker Avance (200 or 300 MHz) spectrometers. H and C chemical shifts are reported in ppm relative to CDCl<sub>3</sub> as internal standard (H: 7.26 ppm, C: 77.0 ppm). P NMR downfield chemical shifts are expressed with a positive sign, in ppm, relative to external 85% H<sub>3</sub>PO<sub>4</sub>.
- Specific optical rotations of chiral compounds were measured on a 341 Perkin Elmer spectrometer.
- High resolution MS analyses were performed on a QStar Elite (Applied Biosystems SCIEX) spectrometer by « Spectropole » at University of Aix-Marseille.

## Reagents:

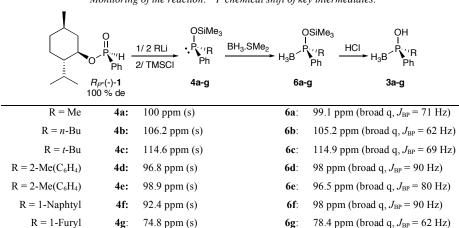
- Oxygen free solvents were used and all reactions were carried out under dry nitrogen atmosphere. Tetrahydrofurane was distilled over sodium before use.
- Methyllithium, butyllitium and *tert*-butyllitium were purchased from Aldrich. Aryllithium were synthesized in situ by adding two equivalent of *tert*-butyllitium to the corresponding arylbromide in THF at -78°C.<sup>1</sup> 1-Furyllithium was synthesized by adding one equivalent of butyllitium to furane in THF at -78°C.<sup>2</sup>
- (Rp)-(-)-menthyl hydrogenophenylphosphinate 1 was synthesized from menthol and dichlorophenylphosphine according to Mislow<sup>3a</sup> and Emmick<sup>3b</sup> (see below for experimental details). Enantiopure (Rp)-(-)- 1 was obtained after two successive recrystallizations in n-hexane. Mother liquors afforded nearly racemic 1. This latter was used for the syntheses of nearly racemic samples of 3a-g, which were used as standards for chiral HPLC analyses.


<sup>2</sup> L. Brandsma, S. F. Vasilevsky, H. D. Verkruijsse, In Application of Transition Metal Catalysts in Organic Synthesis, Springer-Verlag, Berlin, 1999, p. 15.

<sup>&</sup>lt;sup>1</sup> J. Clayden, Organolithiums: Selectivity for synthesis, Elsevier, Oxford, 2002.

<sup>&</sup>lt;sup>3</sup> (a) W. B. Farnham, R. K. Jr Murray, K. Mislow, *J. Am. Chem. Soc.* 1970, **92**, 5809–5810; (b) T. L. Emmick, R. L. Letsinger, *J. Am. Chem. Soc.* 1968, **90**, 3459-3465.

(*Rp*)-(-)-menthyl hydrogenophenylphosphinate 1 (according to Mislow *et al.*). A solution of (-)-menthol (100 g, 0.64 mol) and pyridine (51 mL, 0.64 mol) in hexane (300 mL) was added dropwise at 0°C to dichlorophenylphosphine (87 mL g, 0.64 mol) in hexane (300 mL). After 12 hours, the resulting pyridine hydrochloride is removed by filtration and water (200 mL) was added slowly at 0°C. The two layers were separated, and the organic phase was washed with aqueous sodium bicarbonate solution (100 mL), dried over MgSO<sub>4</sub>, filtrated, and concentrated under reduced pressure to give 166 g of menthyl hydrogenophenylphosphinate with 37% diastereomeric excess. The crude product was then diluted in hexane (26 mL) and stored at refrigerator (-20°C) for 48h. The first crope was collected. After a second crystallisation in hexane, 41,5 g (25% yield) of diastereomerically pure menthyl hydrogenophenylphosphinate was obtained. **1-**( $S_p$ ): <sup>31</sup>P{<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 81 MHz)  $\delta$  = 25.2 (s); **1-**( $R_p$ ): <sup>31</sup>P{<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 81 MHz):  $\delta$  = 21.9 (s); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz):  $\delta$  = 0.81-1.32 (m, 12H), 1.36-1.53 (m, 2H), 1.56-1.7 (m, 2H), 2.10-2.29 (m, 2H), 4.30 (qd, <sup>1</sup>J<sub>H-H</sub> = 10.36Hz, <sup>3</sup>J<sub>P-H</sub> = 4.51Hz, 1H), 7.44-7.63 (m, 3H), 7.64 (d, <sup>1</sup>J<sub>P-C</sub> = 15.3.15 Hz, 1H), 7.71-7.84 (m, 2H); <sup>13</sup>C NMR {<sup>1</sup>H} (CDCl<sub>3</sub>, 50 MHz):  $\delta$  = 15.80, 21.04, 22.98, 25.83, 31.69, 33.98, 43.56, 48.75 (d, J<sub>P-C</sub> = 6.26 Hz), 79.00 (d, J<sub>P-C</sub> = 7.15 Hz), 128.72 (d, <sup>2</sup>J<sub>P-C</sub> = 14.05 Hz, 2CH<sub>arom</sub>), 130.67 (d, <sup>3</sup>J<sub>P-C</sub> = 11.84 Hz, 2CH<sub>arom</sub>), 131.87 (d, <sup>1</sup>J<sub>P-C</sub> = 111.10 Hz, Cq<sub>arom</sub>), 132.94 (d, <sup>4</sup>J<sub>P-C</sub> = 2.80 Hz, CH<sub>arom</sub>).


<sup>31</sup>P NMR spectra of the crude mixture (Left), after the first crystallisation (center), and after the second crystallisation (right).



## One pot synthesis of phosphinous acid-boranes 3a-g:

**Method A:** In a typical procedure, a dry schlenk is charged under nitrogen atmosphere with a solution of organolithium (3.9 mmol)<sup>4</sup> in THF (5 mL) and cooled down to -78 °C. A solution of (*R*p)-(-)-menthyl hydrogenophenylphosphinate (500 mg, 1.78 mmol) in THF (3 mL) was added dropwise. After 3 hours at -78 °C, the solution was slowly warmed up to room temperature and BH<sub>3</sub>.SMe<sub>2</sub> (393 μL, 3.9 mmol) was added. After 3 hours, aqueous HCl (5%) was added under vigorous stirring.

**Method B:** In a typical procedure, a dry schlenk is charged under nitrogen atmosphere with a solution of organolithium (3.9 mmol)<sup>4</sup> in THF (5 mL) and cooled down to -78 °C. A solution of (*R*p)-(-)-menthyl hydrogenophenylphosphinate (500 mg, 1.78 mmol) in THF (3 mL) was added dropwise. After 3 hours at -78 °C, the solution was slowly warmed up to room temperature and trimethylsilyl chloride (490 μL, 3.9 mmol) was added. The reaction was monitoring by <sup>31</sup>P NMR. Then, BH<sub>3</sub>.SMe<sub>2</sub> (393 μL, 3.9 mmol) was added at room temperature. After 3 hours, the completion of the reaction was confirmed by <sup>31</sup>P NMR. Aqueous HCl (5%) was added under vigorous stirring.



Monitoring of the reaction: <sup>31</sup>P chemical shift of key intermediates.

# **Purification (all methods):**

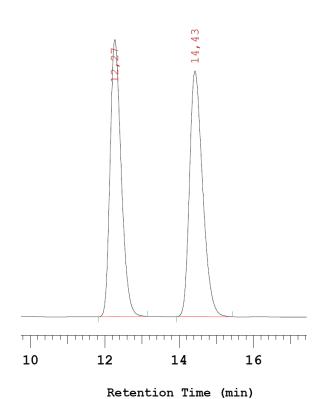
The aqueous layer was washed with dichloromethane (3 times). The organic layers were combined and volatiles were removed under vacuum. The residue was dissolved in diethylether. Aqueous NaOH (10 %) was added under vigorous stirring until pH>10. The organic layer was extracted with water and the combine aqueous layers were washed with diethylether (2 times). Aqueous HCl (5 %) was added dropwise until pH<1. The product was extracted with diethylether (3 times). The organic layers were washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub> and volatiles were removed under vacuum. When necessary, the product could be purified by flash chromatography. (silica, eluent: petroleum ether/diethylether 9:1). Phosphinous acid-boranes 3a-g proved to be stable to air and moisture. However neat compound proved to lose their BH<sub>3</sub> moieties to afford the corresponding secondary phosphine oxide. This undesirable transformation also occurred upon prolonged exposition to high vacuum. Thus 3a-g were preferentially stored in solution and "neat" samples usually featured trace amounts of solvents.

### Synthesis of enantiopure tert-butylphenylphosphinous acid-borane 3c:

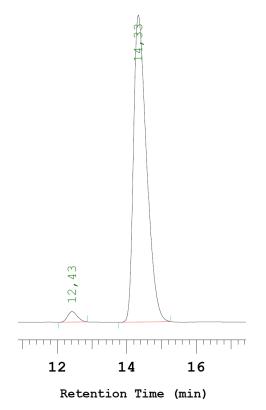
A solution of enantiopure *tert*-butylphenylphosphine oxyde<sup>5</sup> (91.1 mg, 0.5 mmol) was cooled down to -78°C. Then a 1.7 M solution of *tert*-butyllithium in hexane (412  $\mu$ L, 0.7 mmol) was added. After warming up to room temperature, trimethylsilyl chloride (89  $\mu$ L, 0.7 mmol) was added. The reaction was monitoring by <sup>31</sup>P NMR: **4c** featured a singlet at 115 ppm. Then, BH<sub>3</sub>.SMe<sub>2</sub> (70  $\mu$ L, 0.7 mmol) was added at room temperature. After 3 hours, the completion of the reaction was confirmed by <sup>31</sup>P NMR (**5c** appeared as a broad quadruplet at 115 ppm, J<sub>PB</sub> = 69 Hz). Aqueous HCl (5 %) was added under vigorous stirring. The product was purified as described above. The product is isolated as a white powder. 85 % yield (84 mg). Spectroscopic and analytic data: see below.

<sup>&</sup>lt;sup>4</sup> With MeLi: 5.34 mmol were introduced.

<sup>&</sup>lt;sup>5</sup> (a) A. Leyris, D. Nuel, L. Giordano, M. Achard, G. Buono, *Tetrahedron Lett.* 2005, **46**, 8677–8680; (b) A. Leyris, J. Bigeault, D. Nuel, L. Giordano, G. Buono, Tetrahedron Lett. 2007, **48**, 5247-5250.


#### Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008




**3a**: milky liquid. 78% yield (239 mg). [α]<sub>D</sub><sup>20</sup> -11.4 (c = 1.0, CHCl<sub>3</sub>). <sup>31</sup>P NMR (81 MHz, CDCl<sub>3</sub>):  $\delta$  = 102.6 (broad q,  $J_{PB}$  = 65.3 Hz); <sup>1</sup>H NMR (200 MHz, CDCl<sub>3</sub>):  $\delta$  = 0.5-1.5 (broad, 3H, BH<sub>3</sub>), 1.73 (d,  $J_{PH}$  = 9.5 Hz, 3H), 7.47-7.54 (m, 3H), 7.74-7.85 (m, 2H); <sup>13</sup>C NMR (50 MHz, CDCl<sub>3</sub>):  $\delta$  = 17.4 (d,  $J_{PC}$  = 44.6 Hz, CH<sub>3</sub>), 128.5 (d,  $J_{PC}$  = 10.5 Hz, CH), 129.7 (d,  $J_{PC}$  = 11.5 Hz, CH), 131.5 (d,  $J_{PC}$  = 2.2 Hz, CH), 133.7 (d,  $J_{PC}$  = 61.6 Hz, C). IR: ν = 3232, 3056, 2916, 2369, 2259, 2034, 1973, 1894, 1815, 1767, 1669, 1590, 1481, 1432, 1402, 1292, 1140, 1055, 922, 897, 745, 690 cm<sup>-1</sup>. MS (ESI-MS) [M+Na]<sup>+</sup>: 177, [M+NH<sub>4</sub>]<sup>+</sup>: 172, [M-H]<sup>-</sup>:153.

The enantiomeric excess was determined by HPLC analysis on a chiralpak AS-H column with a UV detector at  $\lambda = 254$  nm; flow rate 1 mL/min; eluent: hexane/i-PrOH 99:1; (+)-3a:  $t_r = 12.4$  min, (-)-3a:  $t_r = 14.3$  min.

Left: nearly racemic sample. Right: enantioenriched 3a.



| RT             | Area               | Conc 1           |
|----------------|--------------------|------------------|
| 12,27<br>14,43 | 1022685<br>1074599 | 48,762<br>51,238 |
|                | 2097284            | 100,000          |

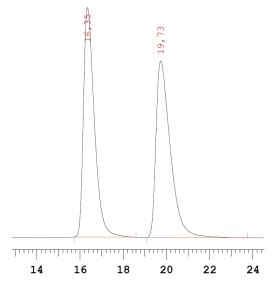


 RT
 Area
 Conc 1

 12,43
 77368
 2,502

 14,33
 3014595
 97,498

 3091963
 100,000


#### Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008



**3b**: milky liquid. 70 % yield (328 mg).  $[\alpha]_D^{20}$  -12.6 (c = 1.0, CHCl<sub>3</sub>). <sup>31</sup>P NMR (81 MHz, CDCl<sub>3</sub>):  $\delta = 105.3$  (broad q,  $J_{PB} = 62.3$  Hz); <sup>1</sup>H NMR (200 MHz, CDCl<sub>3</sub>):  $\delta = 0.5$ -1.5 (broad, 3H, BH<sub>3</sub>), 0.87 (t,  $J_{HH} = 7$  Hz, 3H), 1.26-1.58 (m, 4H), 1.79-2.01 (m, 2H), 7.47-7.50 (m, 3H), 7.7-7.81 (m, 2H); <sup>13</sup>C NMR (50 MHz, CDCl<sub>3</sub>):  $\delta = 13.4$  (s, CH<sub>3</sub>), 23.7 (d,  $J_{PC} = 13.9$  Hz, CH<sub>2</sub>), 23.8 (s, CH<sub>2</sub>), 31.0 (d,  $J_{PC} = 43.0$  Hz, CH<sub>2</sub>), 128.6 (d,  $J_{PC} = 10.4$  Hz, CH), 130.0 (d,  $J_{PC} = 11.1$  Hz, CH), 131.3 (d,  $J_{PC} = 2.3$  Hz, CH), 132.8 (d,  $J_{PC} = 59.7$  Hz, C). IR: v = 3361, 3059, 2959, 2873, 2372, 2246, 1964, 1805, 1818, 1653, 1465, 1437, 1119, 1097, 910, 880, 793, 732 cm<sup>-1</sup>. HRMS (ESI-MS) [M+Na]<sup>+</sup>: found 219.1084; calculated for C<sub>10</sub>H<sub>18</sub>OBPNa: 219.1082.

The enantiomeric excess was determined by HPLC analysis on a chiralpak AS-H column with a UV detector at  $\lambda = 254$  nm; flow rate 1 mL/min; eluent: hexane/i-PrOH 98:2; (+)-3b:  $t_r = 15.9$  min, (-)-3b:  $t_r = 19.0$  min.

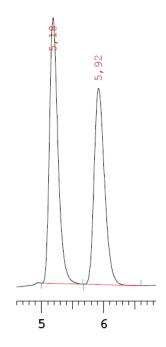
Left: nearly racemic sample. Right: enantioenriched 3b.



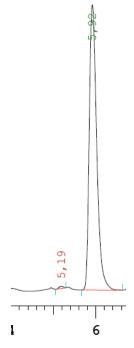
Retention Time (min)

|    | 15,89               | 57      |      |                   |    |  |
|----|---------------------|---------|------|-------------------|----|--|
| т  | <del>''''''''</del> |         |      | <del>سباسبا</del> |    |  |
| 14 | 16                  | 18      | 20   | 22                | 24 |  |
|    | Reter               | ntion I | 'ime | (min)             |    |  |

A


| RT             | Area              | Conc 1          |
|----------------|-------------------|-----------------|
| 15,89<br>18,98 | 155453<br>2781524 | 5,293<br>94,707 |
|                | 2026077           | 100 000         |

| RT             | Area             | Conc 1           |
|----------------|------------------|------------------|
| 16,35<br>19,73 | 864727<br>876798 | 49,653<br>50,347 |
|                | 1741525          | 100,000          |


**3c**: glassy solid. 71 % yield (280 mg).  $[\alpha]_D^{20}$  -42.4 (c = 1.15, CHCl<sub>3</sub>). <sup>31</sup>P NMR (81 MHz, CDCl<sub>3</sub>):  $\delta$  = 113.7 (broad q,  $J_{PB}$  = 63.6 Hz); <sup>1</sup>H NMR (200 MHz, CDCl<sub>3</sub>):  $\delta$  = 0.0-1.7 (broad m, 3H), 1.1 (d,  $J_{PH}$  = 14.66 Hz, 9H), 3.7 (broad s, 1H), 7.4-7.6 (m, 3H), 7.7-7.9 (m, 2H); <sup>13</sup>C NMR (50 MHz, CDCl<sub>3</sub>):  $\delta$  = 23.9 (d,  $J_{CP}$  = 3.44 Hz), 31.7 (d,  $J_{CP}$  = 41.1 Hz), 127.9 (d,  $J_{CP}$  = 10.1 Hz), 131.2; 131.4 (d,  $J_{CP}$  = 10.4 Hz); a quaternary carbon was not observed.

The enantiomeric excess was determined by HPLC analysis on a chiralpak AS-H column with a UV detector at  $\lambda = 254$  nm; flow rate 1 mL/min; eluent: hexane/i-PrOH 99:1; (+)-3c:  $t_r$ = 5.2 min, (-)-3c:  $t_r$ = 5.9 min.

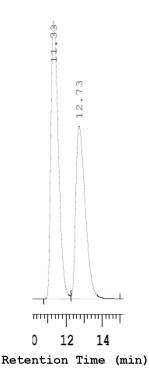
Left: nearly racemic sample. Right: enantioenriched 3c.



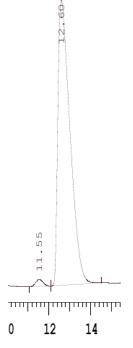
Retention Time (min)



Retention Time (min)


| RT           | Area               | Conc 1           |
|--------------|--------------------|------------------|
| 5,18<br>5,92 | 2686476<br>2391054 | 52,909<br>47,091 |
|              | 5077530            | 100,000          |

| RT           | Area             | Conc 1          |
|--------------|------------------|-----------------|
| 5,19<br>5,92 | 17187<br>3812392 | 0,449<br>99,551 |
|              | 3829579          | 100,000         |


**3d**: white solid. 70 % yield (340 mg).  $[\alpha]_D^{20}$  +3.1 (c = 0.98, CHCl<sub>3</sub>).  $^{31}$ P NMR (81 MHz, CDCl<sub>3</sub>):  $\delta$  = 98.0 (broad q,  $J_{PB}$  = 59.4 Hz);  $^{1}$ H NMR (200 MHz, CDCl<sub>3</sub>):  $\delta$  = 0.2-2.0 (broad m, 3H), 2.17 (s, 3H), 4.2 (broad s, 1H), 7.1-7.2 (m, 1H), 7.2-7.5 (m, 5H), 7.5-7.7 (m, 2H), 7.89 (ddd, 1H,  $J_{HP}$  = 13 Hz,  $J_{HH}$  = 7.4 Hz and 1.4 Hz);  $^{13}$ C NMR (50 MHz, CDCl<sub>3</sub>):  $\delta$  = 21.4 (d,  $J_{CP}$  = 5 Hz, CH<sub>3</sub>), 125.9 (d,  $J_{CP}$  = 12 Hz, CH), 128.7 (d,  $J_{CP}$  = 11 Hz, 2CH), 129.8 (d,  $J_{CP}$  = 63 Hz, C), 130.9 (d,  $J_{CP}$  = 12 Hz, 2CH), 131.6 (d,  $J_{CP}$  = 9 Hz, CH), 131.8 (d,  $J_{CP}$  = 2 Hz, CH), 132.3 (d,  $J_{CP}$  = 2 Hz, CH), 132.9 (d,  $J_{CP}$  = 15 Hz, CH), 132.9 (d,  $J_{CP}$  = 64, C), 141.6 (d,  $J_{CP}$  = 9 Hz, C). IR:  $\nu$  = 3364 (broad band), 2961, 2382, 1590, 1473, 1453, 1437, 1285, 1139, 1115, 1079, 1045, 884, 807, 761, 744, 689, 626 cm<sup>-1</sup>. HRMS (ESI-MS) [M+Na]<sup>+</sup>: found 253.0925; calculated for C<sub>13</sub>H<sub>18</sub>NaOPB: 253.0927.

The enantiomeric excess was determined by HPLC analysis on a chiralpak AS-H column with a UV detector at  $\lambda = 254$  nm; flow rate 1 mL/min; eluent: hexane/i-PrOH 95:5; (-)-3d:  $t_r = 11.33$  min, (+)-3d:  $t_r = 12.73$  min.

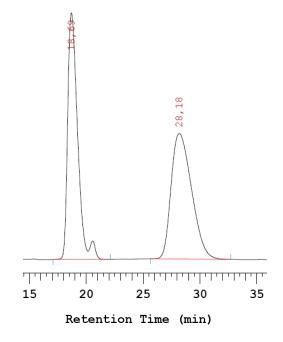
Left: nearly racemic sample. Right: enantioenriched 3d.



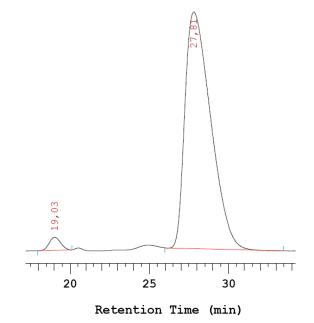
| RT             | Area               | Conc 1           |
|----------------|--------------------|------------------|
| 11.33<br>12.73 | 6742957<br>5276522 | 56.100<br>43.900 |
|                | 12019479           | 100.000          |



Retention Time (min)


| RT             | Area               | Conc 1          |
|----------------|--------------------|-----------------|
| 11.55<br>12.60 | 154728<br>10603839 | 1.438<br>98.562 |
|                | 10758567           | 100.000         |




**3e**: white solid. 84% (245 mg).  $[\alpha]_D^{20}$  -6.6 (c = 0.9, CHCl<sub>3</sub>). <sup>31</sup>P NMR (81 MHz, CDCl<sub>3</sub>):  $\delta$  = 97.4 (broad q,  $J_{PB}$  = 79.8 Hz); <sup>1</sup>H NMR 200 MHz, CDCl<sub>3</sub>):  $\delta$  = 0.1-1.9 (broad m, 3H), 3.8 (broad s, 1H), 6.92 (m, 2H), 7.06-7.40 (m, 9H), 7.42-7.60 (m, 2H), 8.06-8.22 (m, 1H); <sup>13</sup>C NMR (50 MHz, CDCl<sub>3</sub>):  $\delta$  = 127.2 (d,  $J_{CP}$  = 11 Hz, 1CH), 127.5 (s, 1CH), 127.6 (s, 2CH), 128.1 (d,  $J_{CP}$  = 11 Hz, 2CH), 129.7 (s, 2CH), 130.5 (d,  $J_{CP}$  = 12 Hz, 2CH), 130.9 (d,  $J_{CP}$  = 2 Hz, CH), 131.4 (d,  $J_{CP}$  = 60 Hz, C), 131.5 (d,  $J_{CP}$  = 6 Hz, CH), 131.6 (broad s, CH), 133.2 (d,  $J_{CP}$  = 15 Hz, CH), 133.9 (d,  $J_{CP}$  = 65 Hz, C), 140.3 (d,  $J_{CP}$  = 3 Hz, C), 146.3 (d,  $J_{CP}$  = 7 Hz, C). IR:  $\nu$  = 3200 (broad band), 3058, 2953, 2343, 2260, 1952, 1891, 1813, 1763, 1588, 1561, 1467, 1438, 1115, 1062, 906, 883, 623, 614 cm<sup>-1</sup>. HRMS (ESI-MS) [M+Na]<sup>+</sup>: found 315.1075; calculated for C<sub>18</sub>H<sub>18</sub>NaOPB: 315.1084.

The enantiomeric excess was determined by HPLC analysis on a chiralpak AS-H column with a UV detector at  $\lambda = 254$  nm; flow rate 1 mL/min; eluent: hexane/i-PrOH 95:5; (+)-3e:  $t_r = 19.0$  min, (-)-3e:  $t_r = 27.8$  min.

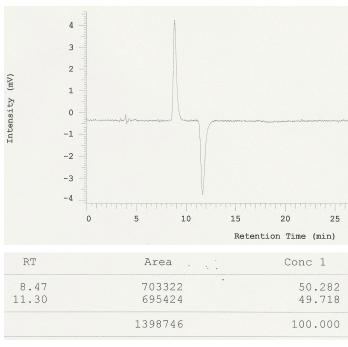
Left: nearly racemic sample. Right: enantioenriched 3e.

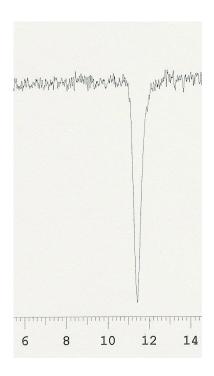


| RT    | Area     | Conc 1  |
|-------|----------|---------|
| 18,69 | 16608345 | 48,931  |
| 28,18 | 17333961 | 51,069  |
|       | 33942306 | 100,000 |



| RT             | Area               | Conc 1          |
|----------------|--------------------|-----------------|
| 19,03<br>27,81 | 698233<br>28859161 | 2,362<br>97,638 |
|                | 29557394           | 100,000         |

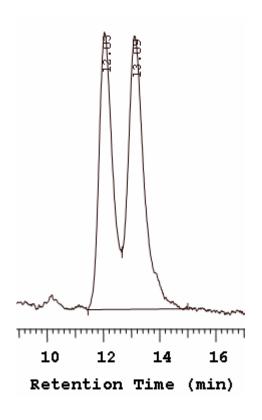

#### Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

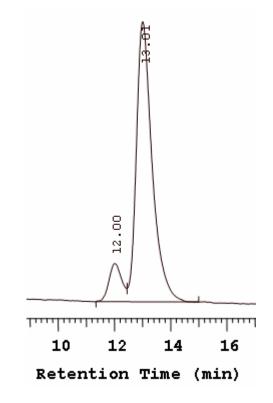



**3f**: white sticky solid. 75 % yield (350 mg).  $[\alpha]_D^{20}$  -33.1 (c = 1.5, CHCl<sub>3</sub>).  $^{31}$ P NMR (81 MHz, CDCl<sub>3</sub>):  $\delta$  = 96.4 (broad q,  $J_{PB}$  = 88 Hz);  $^{1}$ H NMR (200 MHz, CDCl<sub>3</sub>):  $\delta$  = 0.5-2.5 (broad, 3H, BH<sub>3</sub>), 7.3-7.8 (m, 8H), 7.88 (d,  $J_{HH}$  = 8 Hz, 1H), 8.04 (d,  $J_{HH}$  = 8 Hz, 1H), 8.15 (d,  $J_{HH}$  = 9 Hz, 1H), 8.33 (dd,  $J_{HH}$  = 7 and 15 Hz, 1H);  $^{13}$ C NMR (50 MHz, CDCl<sub>3</sub>):  $\delta$  = 124.6 (d,  $J_{PC}$  = 14 Hz, CH), 126.1 (s, CH), 126.6 (s, CH), 126.7 (s, CH), 128.4 (d,  $J_{PC}$  = 10 Hz, CH), 128.8 (s, CH), 129.5 (s, C), 130.5 (d,  $J_{PC}$  = 12 Hz, CH), 131.1 (d,  $J_{PC}$  = 2 Hz, CH), 132.4 (d,  $J_{PC}$  = 7 Hz, C), 133.0 (d,  $J_{PC}$  = 2 Hz, CH), 133.4 (d,  $J_{PC}$  = 16 Hz, CH), 133.6 (d,  $J_{PC}$  = 11 Hz, C), 134.1 (d,  $J_{PC}$  = 59 Hz, C). IR:  $\nu$  = 3500 (broad band), 2922, 2382, 1591, 1437, 1113, 918, 801, 774, 662 cm<sup>-1</sup>. HRMS (ESI-MS) [M+Na]\*: found 289.0927; calculated for C<sub>16</sub>H<sub>16</sub>OBPNa: 289.0927.

The enantiomeric excess was determined by HPLC analysis on a CHIRACEL OD-H column with a CD detector at  $\lambda = 254$  nm; flow rate 1 mL/min; eluent Hexane/EtOH, 8:2; (+)-3f:  $t_r$ = 8.5 min, (-)-3f:  $t_r$ = 11.3 min.

# Left: nearly racemic sample. Right: enantioenriched 3f.




**3g**: oil. 92 % yield (189 mg). [α]<sub>D</sub><sup>20</sup> +5.8 (c = 0.92, CHCl<sub>3</sub>). <sup>31</sup>P NMR (81 MHz, CDCl<sub>3</sub>):  $\delta$  = 78.3 (broad q,  $J_{PB}$  = 62 Hz); <sup>1</sup>H NMR (200 MHz, CDCl<sub>3</sub>):  $\delta$  = 0.1-1.9 (broad m, 3H), 5.4 (broad s, 1H), 6.45 (m, 1H), 7.09 (broad d, J = 3 Hz, 1H), 7.4-7.5 (m, 3H), 7.65 (broad s, 1H), 7.7-7.9 (m, 2H), 7.89 ; <sup>13</sup>C NMR (50 MHz, CDCl<sub>3</sub>):  $\delta$  = 110.8 (d,  $J_{CP}$  = 8 Hz, CH), 122.8 (d,  $J_{CP}$  = 22 Hz, CH), 128.6 (d,  $J_{CP}$  = 11 Hz, 2CH), 131.0 (d,  $J_{CP}$  = 12.2 Hz, 2CH), 131.8 (d,  $J_{CP}$  = 2 Hz, CH), 148.5 (d,  $J_{CP}$  = 6 Hz, CH), quaternary carbons were not observed. IR v = 3312 (broad band), 2386, 2260, 1731, 1553, 1440, 1369, 1195, 1069, 1010, 884, 748, 641 cm<sup>-1</sup>. HRMS (ESI-MS) [M-H]<sup>-</sup>: found 205.0594; calculated for C<sub>10</sub>H<sub>11</sub>O<sub>2</sub>PB: 205.0597.

The enantiomeric excess was determined by HPLC analysis on a chiralpak OD-H column with a UV detector at  $\lambda = 254$  nm; flow rate 1 mL/min; eluent : hexane/i-PrOH 90:10; (-)-3g:  $t_r$ = 12 min, (+)-3g:  $t_r$ = 13 min.

Left: nearly racemic sample. Right: enantioenriched 3g.





| RT    | Area   | Conc 1  |
|-------|--------|---------|
| 12.03 | 154156 | 45.674  |
| 13.09 | 183354 | 54.326  |
|       | 337510 | 100.000 |

| RT    | Area    | Conc 1  |
|-------|---------|---------|
| 12.00 | 166023  | 9.887   |
| 13.01 | 1513172 | 90.113  |
|       | 1679195 | 100.000 |