Nickel catalyzed Cross-Coupling Reactions of Benzylic Zinc Reagents with Aromatic Bromides, Chlorides and Tosylates Supporting Information

Matthias A. Schade, Albrecht Metzger, Stephan Hug and Paul Knochel

Ludwig-Maximilians-Universität München, Department Chemie Butenandtstrasse 5-13, Haus F, 81377 München (Germany)

$$
\text { Fax: (+49) } 089218077680
$$

e-mail: paul.knochel@cup.uni-muenchen.de

General All reactions were carried out under an argon atmosphere in dried glassware. Commercially available starting materials were used without further purification. All benzylic zinc chlorides were prepared as described in the literature. ${ }^{1}$ THF was continuously refluxed and freshly distilled from sodium benzophenone ketyl under nitrogen. NMP was distilled from CaH_{2} and kept under Ar. Yields refer to isolated yields of compounds estimated to be >95 \% pure as determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and high resolution mass spectroscopy (HRMS).

General procedure 1 (GP1): Preparation of the aromatic tosylates:

In a round bottom flask equipped with a magnetic stirring bar, the aromatic alcohol was dissolved in THF, then NEt_{3} (1.1 equiv) and DMAP ($2 \mathrm{~mol} \%$) were added at $25^{\circ} \mathrm{C}$. After that, tosyl chloride (1.1 equiv) was added at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was allowed to warm up to $25{ }^{\circ} \mathrm{C}$ and stirred for the given time. Then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the reaction mixture was washed 3 times with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The combined aqueous layers were extracted 3 times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent in vacuo and recrystallization afforded the analytically pure product.

General procedure 2 (GP2): Nickel-catalyzed cross-coupling reactions:

In a dry argon-flushed Schlenk flask equipped with a septum and a magnetic stirring bar, the aromatic bromide, chloride or tosylate (2.00 mmol) was dissolved in NMP (0.4 mL) and PPh_{3} ($0.1 \mathrm{~mL}, 0.4 \mathrm{~m}$ in THF, $0.40 \mathrm{mmol}, 2 \mathrm{~mol} \%$) was added. Then, $\mathrm{Ni}(\mathrm{acac})_{2}(0.1 \mathrm{~mL}, 0.1 \mathrm{~m}$ in THF, $0.1 \mathrm{mmol}, 0.5 \mathrm{~mol} \%)$ was added. After the addition of the corresponding benzylic zinc reagent ($2.40 \mathrm{mmol}, 1.2$ equiv), the reaction mixture was warmed to $60^{\circ} \mathrm{C}$ and stirred for the given time until GCanalysis showed full conversion of the electrophile. The reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted 3 times with EtOAc. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed in vacuo. The product was purified by flash column chromatography.

Preparation of the aryl tosylates:

Preparation of 4-(toluene-4-sulfonyloxy)-benzoic acid ethyl ester (3h):

4-Hydroxy-benzoic acid ethyl ester (3.34 g, 20.1 mmol) was dissolved in pyridine (20 mL), tosyl chloride (5.00 g, 26.2 mmol) was added portionwise and the reaction mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 20 h . Then, the reaction mixture was poured on ice, EtOAc and 2 m HCl were added. The aqueous layer was extracted 3 times with EtOAc, and the combined organic layers were washed with 2 m HCl , saturated aqueous NaHCO_{3} solution, brine and dried over MgSO_{4}. The solvent was removed in vacuo and flash column chromatographical purification (silica; pentane:Et ${ }_{2} \mathrm{O}, 6: 1$) afforded 3 h as a colorless oil ($6.65 \mathrm{~g}, 20.8 \mathrm{mmol}, 99 \%$)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=7.96(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.69(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}$, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $2.43(\mathrm{~s}, 3 \mathrm{H})$, 1.36 (t, J = $7.1 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})=165.4,152.9,145.7,132.1$, 131.2, 129.8, 129.2, 128.5, 122.2, 61.2, 21.7, 14.2.

MS ($70 \mathrm{eV}, \mathrm{EI}$): m/z (\%): $320\left(\mathrm{M}^{+}, 30\right), 275$ (13), 156 (8), 155 (100), 121 (7), 62 (6), 91 (69), 65 (9).

HRMS: ($\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{~S}$) calculated 320.0718 found 320.0726.
IR (ATR): $\tilde{v}\left(\mathrm{~cm}^{-1}\right)=2980(\mathrm{w}), 2358(\mathrm{w}), 2116$ (vw), 1714 (s$)$, 1598 (m), 1498 (m), 1446 (m), 1372 (s), 1272 (vs), 1198 (s), 1174 (vs), 1152 (vs), 1092 (vs), 1016 (s), 864 (vs), 846 (s), 814 (s), $800(s), 778(s), 734$ (vs), $696(s), 668(s)$.

Preparation of toluene-4-sulfonic acid 2-methoxy-phenyl ester (3i) :

According to GP1 2-methoxy-phenol (3.05 g, 25.0 mmol) was reacted with $\mathrm{NEt}_{3}(2.78 \mathrm{~g}, 27.5 \mathrm{mmol}), \operatorname{DMAP}(61 \mathrm{mg}, 2 \mathrm{~mol} \%)$ and tosyl chloride ($5.24 \mathrm{~g}, 27.5 \mathrm{mmol}$) in THF (40 mL) for 20 h. Recrystallization from heptane/EtOAc afforded 3i as a colorless crystalline solid (5.91 g, 21.2 mmol , 85\%).
mp: 77.1-79.5 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=7.74(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.28(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.11(\mathrm{~m}$, $1 \mathrm{H}), 6.88$ (dd, J $=7.9$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.80(\mathrm{~m}, 1 \mathrm{H})$, 3.54 (s, 3 H), 2.43 (s, 3 H).

```
13}\textrm{C}-\textrm{NMR}(75\textrm{MHz},\mp@subsup{\textrm{CDCl}}{3}{\prime}) \delta (ppm) = 151.8, 144.9, 138.4, 133.3,
129.3, 128.6, 128.0, 124.0, 120.6, 112.7, 55.5, 21.6.
MS (70 eV, EI): m/z (%): 278 (M+, 39), 207 (25), 124 (28), 123
(100), 109 (17), 95 (46), 91 (52), 77 (28), 65 (19), 52 (12).
```

HRMS: ($\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S}$) calculated 278.0613 found 278.0615.
IR (ATR): $\tilde{v}\left(\mathrm{~cm}^{-1}\right)=3065$ (vw) , 2946 (vw), 2845 (vw), 1596 (w),
1498 (m), 1455 (m), 1362 (s), 1287 (m), 1257 (s), 1188 (s),

Supplementary Material (ESI) for Chemical Communications
 This journal is (c) The Royal Society of Chemistry 2008

1166 (s), 1158 (s), 1106 (s), 1086 (s), 1041 (m), 1023 (s), 925 (m), 863 (s), 814 (s), 779 (s), 754 (vs), 713 (s), 700 (s), 659 (s), 611 (m).

Preparation of toluene-4-sulfonic acid quinolin-8-yl ester (3j) :

According to GP1 quinolin-8-ol (3.63 g, 25.0 mmol$)$ was reacted with $\mathrm{NEt}_{3}(2.78 \mathrm{~g}, 27.5 \mathrm{mmol}), \operatorname{DMAP}(61 \mathrm{mg}, 2 \mathrm{~mol} \%)$ and tosyl chloride ($5.24 \mathrm{~g}, 27.5 \mathrm{mmol}$) in THF (40 mL) for 20 h . Recrystallization from heptane/EtOAc afforded 3j as a colorless crystalline solid (6.00 g, $20.0 \mathrm{mmol}, 80 \%$). mp: 116.9-119.7 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=8.85(\mathrm{dd}, \mathrm{J}=4.4$ and 1.7 Hz , $1 \mathrm{H}), 8.16(\mathrm{dd}, \mathrm{J}=8.3$ and $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.76$ (dd, $J=8.3$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62$ (dd, $J=7.5$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.41$ (dd, $J=8.3$ and $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=150.6,145.4,145.0,141.3$, 135.9, 133.1, 129.6, 129.4, 128.8, 126.9, 126.0, 122.5, 121.8, 21.6.

MS (70 eV, EI): m/z (\%): $299\left(\mathrm{M}^{+}, 1\right), 236(79), 234(29), 218$ (33), 155 (34), 145 (100), 117 (87), 91 (87).

HRMS: ($\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}$) calculated 299.0616 found 299.0594.

```
IR (ATR): \tilde{v}(\mp@subsup{\textrm{cm}}{}{-1})=3064 (vw), 1941 (vw), 1596 (m), 1493 (m),
1470 (m), 1422 (w), 1369 (s), 1355 (m), 1309 (m), 1229 (m),
1188 (m), 1177 (s), 1161 (s), 1079 (s), 1073 (m), 1048 (s),
1029 (m), 1021 (m), 907 (m), 886 (s), 828 (s), 811 (s), 799
(s), 771 (s), 762 (vs), 710 (s), 706 (s), 662 (s), 643 (s),
632 (m), 607 (m).
```

Preparation of toluene-4-sulfonic acid 2-methyl-quinolin-4-yl ester (31):

Supplementary Material (ESI) for Chemical Communications
 This journal is (c) The Royal Society of Chemistry 2008

According to GP1 2-methyl-quinolin-4-ol (2.39 g, 15.0 mmol$)$ was reacted with $\mathrm{NEt}_{3}(1.67 \mathrm{~g}, 16.5 \mathrm{mmol})$, DMAP (37 mg , $2 \mathrm{~mol} \%$) and tosyl chloride ($3.15 \mathrm{~g}, 16.5 \mathrm{mmol}$) in THF (40 mL) for 20 h . Recrystallization from heptane afforded 31 as colorless crystalline solid ($3.85 \mathrm{~g}, 12.3 \mathrm{mmol}, 82 \%$).
mp: 113.5-115.4 o C .
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=7.97(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.80(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{dd}, \mathrm{J}=8.8$ and $1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.65 (dt, J = 8.4, 6.9 and $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.38 (dt, J = 8.3, 7.0 and $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.20$ (s, $1 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=159.8,153.2,149.5,146.0$, 132.3, 130.3, 130.0, 128.3, 126.3, 121.3, 120.5, 112.9, 76.4, 25.5, 21.7.

MS ($70 \mathrm{eV}, \mathrm{EI}$) : m/z (\%) : 313 ($\mathrm{M}^{+}, 100$), 159 (13), 155 (87), 130 (20), 91 (33), 65 (14).

HRMS: ($\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{~S}$) calculated 313.0773 found 313.0773.

```
IR (ATR): \tilde{v}(\mp@subsup{\textrm{cm}}{}{-1}) = 3069 (vw), 3049 (vw), 2917 (vw), 1600 (m),
1557 (m), 1498 (m), 1406 (w), 1376 (s), 1332 (m), 1304 (m),
1230 (m), 1188 (s), 1173 (s), 1151 (m), 1091 (m), 1048 (s),
1018 (m), 993 (m), 965 (s), 870 (s), 814 (s), 804 (s), 786
(m), 765 (vs), 746 (vs), 664 (vs).
```

Preparation of toluene-4-sulfonic acid 6-methyl-pyridin-3-yl ester (3m):

According to GP1 6-methyl-pyridin-3-ol (2.70 g, 24.7 mmol) was reacted with $\mathrm{NEt}_{3}(2.78 \mathrm{~g}, 27.5 \mathrm{mmol}), ~ D M A P(61 \mathrm{mg}, 2 \mathrm{~mol} \%)$ and tosyl chloride ($5.24 \mathrm{~g}, 27.5 \mathrm{mmol}$) in THF (40 mL) for 20 h. Recrystallization from heptane/EtOAc afforded 3m as colorless crystalline solid (4.20 g, $16.0 \mathrm{mmol}, 65 \%)$.
mp: 104.7-107.0 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right) \quad \delta(\mathrm{ppm})=7.97(\mathrm{~d}, \quad \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.67(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, ~ J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 2.43$ (s, 3 H).
${ }^{13} \mathrm{C}$-NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta(\mathrm{ppm})=157.2,145.9,144.5,142.7$, 131.7, 130.6, 130.0, 128.5, 123.9, 23.8, 21.7.

MS (70 eV, EI): m/z (\%): 263 ($\mathrm{M}^{+}, 38$), 155 (54), 91 (100), 65 (7), 53 (6).

HRMS: ($\left.\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}\right)$ calculated 263.0616 found 263.0622 .
IR (ATR): $\tilde{\boldsymbol{v}}\left(\mathrm{cm}^{-1}\right)=3351$ (vw), 3259 (Vw), 1596 (m), 1478 (m), 1374 (m), 1365 (s), 1349 (m), 1299 (m), 1284 (m), 1199 (m), 1169 (vs), 1120 (m), 1089 (s), 1021 (s), 923 (m), 860 (s), 845 $(s), 840$ (s), 815 (s), 801 (s), 793 (vs), 731 (s), 715 (vs), 701 (s), 655 (vs), 638 (s).

Preparation of the cross-coupling products:

Preparation of 3-(4-acetyl-benzyl)-benzonitrile (4a):

According to GP2 the benzylic zinc reagent 1 a (1.75 mL, 1.37 m in THF, 2.40 mmol was reacted with 1 -(4-bromo-phenyl)ethanone (3a) (398 mg, 2.00 mmol$)$. The reaction time was 0.5 h. Flash column chromatographical purification (silica; pentane: $\mathrm{Et}_{2} \mathrm{O}, 2: 1$) afforded 4 a as a colorless solid (352 mg, $1.50 \mathrm{mmol}, 75 \%$).
mp: $71.6-73.9^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right) \quad \delta \quad(\mathrm{ppm})=7.90(\mathrm{~d}, \quad J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.53-7.50(\mathrm{~m}, ~ 1 \mathrm{H}), 7.45(\mathrm{~s}, \quad 1 \mathrm{H}), 7.42-7.40(\mathrm{~m}, 2 \mathrm{H})$, $7.25(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{~s}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad \delta(\mathrm{ppm})=197.6,144.8,141.5,135.7$, 133.4, 132.3, 130.2, 129.4, 129.1, 128.9, 126.8, 112.7, 41.3, 26.6.

MS (70 eV, EI) : m/z (\%): 235 ($\mathrm{M}^{+}, 33$) , 220 (100), 201 (83), 199 (90), 116 (24), 89 (43).

HRMS: ($\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}$) calculated 235.0997 found 235.1009 .

```
IR (ATR): \tilde{v}(\mp@subsup{\textrm{cm}}{}{-1})=3516 (m), 2228 (m), 1672 (vs), 1600 (m),
1584 (m), 1568 (w), 1484 (w), 1456 (w), 1412 (m), 1356 (m),
1268 (m), 1200 (w), 1184 (w), 1140 (w), 1112 (w), 1076 (w),
1012 (w), 960 (w), 904 (w), 888 (w), 848 (w), 824 (m), 808
(w), 792 (m), 748 (m), 716 (w), 692 (m), 624 (m), 592 (w), 576
(w), 560 (w).
```


Preparation of 4-(3-cyano-benzyl)-benzoic acid ethyl ester (4b) :

According to GP2 the benzylic zinc reagent la (1.75 mL, 1.37 m in THF, 2.40 mmol was reacted with 4 -chloro-benzoic acid ethyl ester (3b) ($370 \mathrm{mg}, 2.00 \mathrm{mmol}$). The reaction time was 0.5 h. Flash column chromatographical purification (silica; pentane: $\mathrm{Et}_{2} \mathrm{O}, 6: 1$) afforded 4 b as a colorless solid (473 mg, $1.78 \mathrm{mmol}, 89 \%)$.
mp: $60.5-62.4{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=7.98(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.53-7.38 (m, 4 H), 7.22 (d, J = 8.4 Hz, 2 H), 4.36 (q, J = $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{~s}, 2 \mathrm{H}), 1.37(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR} \quad\left(75 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=166.5,144.7,141.9,133.6$, 132.6, 130.4, 130.3, 129.6, 129.3, 129.1, 118.9, 112.9, 61.2, 41.5, 14.6 .

MS (70 eV, EI) : m/z (\%): 265 ($\mathrm{M}^{+}, 37$), 237 (20), 220 (100), 192 (30), 190 (28), 165 (24).

HRMS: ($\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{2}$) calculated 265.1103 found 265.1077.
IR (ATR): $\tilde{v}\left(\mathrm{~cm}^{-1}\right)=3076$ (w), 3052 (w), 3000 (w), 2976 (w), 2956 (w), 2900 (w), 2228 (m), 1708 (vs), 1608 (m), 1576 (w), 1476 (w), 1448 (w), 1436 (w), 1416 (w), 1392 (w), 1364 (m), 1324 (w), 1308 (w), 1276 (vs), 1192 (w), 1176 (m), 1128 (m), 1108 (s), 1020 (m), 980 (w), 940 (w), 908 (w), 876 (w), 856 (w), 788 (m), 764 (m), 728 (m), 700 (w), 688 (m), 652 (w), 560 (w).

Supplementary Material (ESI) for Chemical Communications
 This journal is (c) The Royal Society of Chemistry 2008

According to GP2 the benzylic zinc reagent 1a (1.75 mL, 1.37 m in THF, 2.40 mmol was reacted with 2 -chloro-pyrimidine (3c) $(230 \mathrm{mg}, 2.00 \mathrm{mmol})$. The reaction time was 0.5 h . Flash column chromatographical purification (silica; $\mathrm{Et}_{2} \mathrm{O}$) afforded 4c as a yellow oil ($269 \mathrm{mg}, 1.38 \mathrm{mmol}, 69 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=8.67(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 2 \mathrm{H})$, 7.64 (s, 1 H), $7.60-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.48$ (m, 1 H$), 7.41-$ 7.36 (m, 1 H) , $7.16(t, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.30$ (s, 2 H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=168.7,157.4,139.5,133.7$, 132.7, 130.3, 129.2, 119.0, 118.8, 112.5, 45.3.

MS (70 eV, EI) : m/z (\%): 196 (6), $195\left(\mathrm{M}^{+}, 53\right), 194(100), 193$ (5), 167 (2). 142 (3), 116 (4), $115(5), 114$ (3).

HRMS: ($\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{3}$) calculated 195.0796 found 195.0803.
IR (ATR): $\tilde{v}\left(\mathrm{~cm}^{-1}\right)=3040$ (w), 2972 (vw), 2924 (vw), 2228 (m), 1604 (vw), 1560 (vs), 1484 (w), 1416 (vs), 1320 (vw), 1296 (vw), 1280 (vw), 1232 (w), 1180 (w), 1152 (vw), 1096 (w), 996 (w), 944 (vw), 912 (w), 856 (vw), 792 (m), 716 (w), 688 (m), 636 (w), 584 (w), 564 (w).

Preparation of 4-(1-phenyl-ethyl)-benzoic acid ethyl ester (4d) :

According to GP2 the benzylic zinc reagent 1 b (1.78 mL, 1.35 m in THF, 2.40 mmol) was reacted with 4 -bromo benzoic acid ethyl ester (3d) ($458 \mathrm{mg}, 2.00 \mathrm{mmol})$. The reaction time was 12 h . Flash column chromatographical purification (silica; pentane: $\mathrm{Et}_{2} \mathrm{O}$, 98:2) afforded 4d as a colorless oil (485 mg, $1.91 \mathrm{mmol}, 95 \%)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=7.97(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, 7.33-7.25 (m, 4 H$), 7.23-7.16(\mathrm{~m}, 3 \mathrm{H}), 4.36(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 4.20(q, J=7.1 \mathrm{~Hz}, 1.66(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.37$ (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.

Supplementary Material (ESI) for Chemical Communications
 This journal is (c) The Royal Society of Chemistry 2008

${ }^{13} \mathrm{C}$-NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta(\mathrm{ppm})=166.5,151.5,145.4,129.7$, 128.5, 128.4, 127.6, 127.5, 126.3, 60.7, 44.8, 21.6, 14.3.

MS (70 eV, EI): m/z (\%): $254\left(\mathrm{M}^{+}, 100\right), 239(45), 209(40), 181$ (41), 165 (57).

HRMS: ($\left.\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2}\right)$ calculated 254.1307 found 254.1305.
IR (ATR): $\tilde{\boldsymbol{v}}\left(\mathrm{cm}^{-1}\right)=3028$ (Vw), 2973 (w), 2934 (Vw), 1712 (s$), 1610$ (m) , 1494 (w), 1451 (w),1415 (w),1367 (m), 1310 (w), 1271 (vs),1178 (m),1102 (s),1019 (s), 857 (m),758 (m),738 (m), 698 (vs),646 (w),595 (w).

Preparation of 2,4-dimethoxy-5-(3,4,5-trimethoxy-benzyl)pyrimidine (4e):

According to GP2 the benzylic zinc reagent $1 \mathrm{c}(2.00 \mathrm{~mL}$, 1.21 m in THF, 2.40 mmol was reacted with 5-bromo-2,4-dimethoxy-pyrimidine (3e) (438 mg, 2.00 mmol$)$. The reaction time was 2 h. Flash column chromatographical purification (silica; pentane:Et ${ }_{2} O$, 1:2) afforded 4e as a colorless solid (551 mg, $1.72 \mathrm{mmol}, 86 \%)$.
mp: 74.1-76.3 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=7.94(\mathrm{~s}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 2 \mathrm{H})$, $3.98(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 9 \mathrm{H}), 3.72$ (s, 2 H$)$.

```
[13}\mathbf{C-NMR (75 MHz, CDCl 3) \delta (ppm) = 169.2, 164.2, 157.1, 153.2,
```

136.6, 134.6, 114.5, 105.7, 60.8, 56.1, 54.7, 53.9, 32.7.
MS (70 eV, EI): m/z (\%): $320\left(\mathrm{M}^{+}, 100\right), 305(45), 289(9), 230$ (14), 181 (62).

HRMS: ($\left.\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}\right)$ calculated 320.1372 found 320.1348 .

```
IR (ATR): \tilde{v}(\mp@subsup{\textrm{cm}}{}{-1})=2947(w), 2909 (w), 2842 (w), 2828 (w),
1593 (s), 1573 (s), 1510 (m), 1456 (s), 1403 (s), 1373 (s),
1 3 3 1 ~ ( s ) , ~ 1 2 8 6 ~ ( s ) , ~ 1 2 4 9 ~ ( s ) , ~ 1 2 3 2 ~ ( s ) , ~ 1 1 9 3 ~ ( s ) , ~ 1 1 2 1 ~ ( v s ) ,
1076 (vs), 1005 (vs), 976 (s), 935 (m), 859 (s), 833 (s), 784
(vs), 749 (s), 699 (m), 636 (m), 602 (s).
```

```
Preparation of 2,4-dimethoxy-6-(3,4,5-trimethoxy-benzyl)-
pyrimidine (4f):
```


According to GP2 the benzylic zinc reagent 1c (2.00 mL, 1.21 m in $\mathrm{THF}, 2.40 \mathrm{mmol}$ was reacted with 4-chloro-2,6-dimethoxy-pyrimidine (3f) (349 mg, 2.00 mmol$)$. The reaction time was 2 h. Flash column chromatographical purification (silica; pentan:Et ${ }_{2} \mathrm{O}, ~ 1: 2$) afforded 4 f as a colorless solid $(628 \mathrm{mg}, 1.96 \mathrm{mmol}, 98 \%)$.
mp: 60.8-62.9 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=6.49(\mathrm{~s}, 2 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H})$, $3.98(s, 3 H), 3.91(s, 3 H), 3.84(s, 2 H), 3.82(s, 6 H)$, 3.81 (s, 3 H).

```
'13}\mathbf{C}-\textrm{NMR}(75\textrm{MHz},\mp@subsup{\textrm{CDCl}}{3}{\prime}) \delta (ppm) = 172.0, 171.4, 165.2, 153.2,
```

136.8, 133.2, 106.3, 99.9, 60.8, 56.1, 54.6, 53.7, 44.0.

```
MS (70 eV, EI):m/z (%): 320 (M+, 74), 305 (60), 181 (13), 69
```

(13) , 57 (11), 44 (100).
HRMS: ($\left.\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}\right)$ calculated 320.1372 found 320.1360 .
IR (ATR): $\tilde{v}\left(\mathrm{~cm}^{-1}\right)=3083(\mathrm{w}), 2945(\mathrm{w}), 2932(\mathrm{w}), 2831(\mathrm{w})$,
1588 (s), 1564 (vs), 1505 (s), 1451 (s), 1433 (m), 1419 (s),
1375 (m), 1350 (vs), 1331 (s), 1299 (s), 1244 (s), 1233 (s),
1204 (s), 1193 (m), 1186 (m), 1149 (s), 1121 (vs), 1092 (vs),
1036 (s), $1003(s), 980(s), 922(m), 862(m), 835(s), 826$
$(\mathrm{s}), 816(\mathrm{~m}), 792(\mathrm{~m}), 742(\mathrm{~m}), 729(\mathrm{~s}), 717(\mathrm{~m}), 686(\mathrm{~m}), 612$
(m), 602 (s).

Preparation of 3-(2,4-dimethoxy-pyrimidin-5-ylmethyl)-benzoic acid ethyl ester (4g):

According to GP2 the benzylic zinc reagent 1d (1.74 mL, 1.38 m in THF, 2.40 mmol was reacted with 5 -bromo-2,4-dimethoxy-

Supplementary Material (ESI) for Chemical Communications
 This journal is (c) The Royal Society of Chemistry 2008

pyrimidine (3e) (438 mg, 2.00 mmol$)$. The reaction time was 1.5 h. Flash column chromatographical purification (silica; pentane: $\mathrm{Et}_{2} \mathrm{O}, \mathrm{I}: 1$) afforded 4 g as a colorless oil (505 mg, $1.67 \mathrm{mmol}, 84 \%)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right) \quad \delta(\mathrm{ppm})=7.96(\mathrm{~s}, 1 \mathrm{H}), 7.89-7.86(\mathrm{~m}, 2 \mathrm{H})$, $7.34-7.32(\mathrm{~m}, 2 \mathrm{H}), 4.35(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.95$ $(s, 3 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H}), 1.36(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=169.2,166.5,164.3,157.1,139.4$, 133.0, 130.7, 129.7, 128.4, 127.6, 114.1, 60.9, 54.7, 53.9, 32.3, 14.3.

MS (70 eV, EI) : m/z (\%): $302\left(\mathrm{M}^{+}, 100\right), 301(53), 287(27), 273(33)$, 257 (33), 241 (21), 200 (25).

HRMS: ($\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$) calculated 302.1267 found 302.1269 .
IR (ATR): $\tilde{\boldsymbol{V}}\left(\mathrm{cm}^{-1}\right)=2985(\mathrm{w}), 2957(\mathrm{w}), 2902(\mathrm{w}), 1715(\mathrm{~s}), 1600$ (s), 1567 (s), 1466 (s), 1398 (s), 1379 (vs), 1350 (m), 1273 (vs), 1239 (m), 1190 (s), 1153 (w), 1104 (m), 1070 (s), 1052 (m), 1015 (s), 788 (w), 763 (w), 744 (m), 694 (w).

Preparation of 3-(4-cyano-benzyl)-benzoic acid ethyl ester (4h):

According to GP2 the benzylic zinc reagent 1 b (1.74 mL, 1.38 m in THF, 2.40 mmol was reacted with 4 -chloro-benzonitrile (3 g) $(276 \mathrm{mg}, 2.00 \mathrm{mmol})$. The reaction time was 0.5 h . Flash column chromatographical purification (silica; pentane:Et ${ }_{2} O$, 2:1) afforded 4 h as a colorless solid (482 mg, 1.82 mmol , 91\%). $\mathrm{mp}: 51.0-53.0{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=7.93-7.89(\mathrm{~m}, 1 \mathrm{H}), 7.87-7.85$ $(\mathrm{m}, ~ 1 \mathrm{H}), 7.56(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.27$ $(\mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.36(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{~s}, 2$ H), 1.37 (t, J $=7.2 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=166.3,146.0,139.6,133.3$, 132.4, 131.0, 130.0, 129.6, 128.8, 127.9, 118.8, 110.3, 61.0, 41.7, 14.3.

Supplementary Material (ESI) for Chemical Communications
 This journal is (c) The Royal Society of Chemistry 2008

```
MS (70 eV, EI):m/z (%): 265 (M+, 56), 237 (49), 221 (20), 220
(100), 207 (29), 193 (16), 192 (30), 191 (21), 190 (26), 165
(17).
```

HRMS: $\left(\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{2}\right)$ calculated 265.1103 found 265.1089.
IR (ATR): $\tilde{v}\left(\mathrm{~cm}^{-1}\right)=3054(\mathrm{VW}), 2991(\mathrm{w}), 2983(\mathrm{w}), 2937(\mathrm{w})$, 2912 (w), 2874 (vw), 2228 (m), 1707 (vs), 1669 (w), 1604 (m), 1586 (w), 1477 (w) , 1446 (m) , 1362 (m), 1279 (s), 1188 (s), $1105(\mathrm{~m}), 1024(\mathrm{~m}), 939(\mathrm{~m}), 854(\mathrm{~m}), 796(\mathrm{w}), 762(\mathrm{~m}), 734$ (m), 696 (m), 602 (m).

Preparation of ethyl-3-[4-(ethoxycarbonyl)-benzyl]-benzoate (4i):

According to GP2 the benzylic zinc reagent 1d (1.74 mL, 1.38 m in THF, 2.40 mmol) was reacted with 4-(toluene-4-sulfonyloxy)benzoic acid ethyl ester (3h) (641 mg, 2.00 mmol). The reaction time was 2 h. Flash column chromatographical purification (silica; pentane:Et ${ }_{2} \mathrm{O}$, 9:1) afforded 4i as a yellow oil (385 mg, $1.29 \mathrm{mmol}, 65 \%)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right) \quad \delta(\mathrm{ppm})=7.99(\mathrm{~d}, \quad J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.94-7.91 (m, 2 H), 7.41-7.34 (m, 2 H), 7.27 (d, J = 8.6 Hz, $2 \mathrm{H}), 4.38(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.38(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $4.09(s, 2 \mathrm{H}), 1.40(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}$, 3 H).

```
[13}\mathbf{C-NMR (75 MHz, CDCl 3) \delta (ppm) = 166.5, 166.5, 145.7, 140.4,
140.4, 133.3, 130.8, 130.0, 129.9, 128.8, 128.7, 128.6, 127.6,
61.0, 60.8, 41.6, 14.3.
MS (70 eV, EI): m/z (%): 312 (M+, 40), 268 (17), 267 (100), 240
(14), 239 (37), 167 (15), 166 (16), 165 (36), 111 (11).
```

HRMS: ($\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4}$) calculated 312.1362 found 312.1354 .
IR (ATR): $\tilde{v}\left(\mathrm{~cm}^{-1}\right)=2982(\mathrm{w}), 2937$ (vw), 2906 (vw), 1711 (vs), 1609 (w), 1588 (w), 1444 (w), 1415 (w), 1366 (w), 1270 (vs), 1187 (m), 1177 (m), 1100 (s), 1082 (m), 1020 (m), $940(\mathrm{~m}), 855$ (w), 746 (m), 710 (m), 689 (w), 637 (vw), 590 (w).

Preparation of 3-(2-methoxy-benzyl)-benzoic acid ethyl ester (4j):

According to GP2 the benzylic zinc reagent 1d (1.74 mL, 1.38 m in THF, 2.40 mmol was reacted with toluene-4-sulfonic acid 2-methoxy-phenyl ester (3i) (557 mg, 2.00 mmol$)$. The reaction time was 24 h . Flash column chromatographical purification (silica; pentane:Et ${ }_{2} \mathrm{O}$, 19:1) afforded 4 j as a colorless liquid ($370 \mathrm{mg}, 1.37 \mathrm{mmol}, 69 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right) \quad \delta(\mathrm{ppm})=7.95-7.92(\mathrm{~m}, \quad 1 \mathrm{H}), 7.86(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, \quad 1 \mathrm{H}), 7.40-7.35(\mathrm{~m}, \quad 1 \mathrm{H}), 7.31(\mathrm{t}, \quad J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.20(\mathrm{td}, \quad J=7.8$ and $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.07$ (dd, $J=7.9$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.84(\mathrm{~m}, 2 \mathrm{H}), 4.35(\mathrm{q}, \quad J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{t}, \mathrm{J}=$ 7.1 Hz, 3 H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=166.8,157.3,141.4,133.4$, 130.4, 130.2, 130.1, 129.1, 128.2, 127.6, 127.1, 120.5, 110.5, 60.8, 55.3, 35.8, 14.3.

MS (70 eV, EI) : m/z (\%): 270 ($\mathrm{M}^{+}, 87$), 225 (66), 224 (96), 196 (100), 165 (49), 135 (89), 91 (53).

HRMS: ($\left.\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3}\right)$ calculated 270.1256 found 270.1259 .
IR (ATR): $\tilde{\boldsymbol{v}}\left(\mathrm{cm}^{-1}\right)=2978(\mathrm{w}), 2936(\mathrm{w}), 2835(\mathrm{Vw}), 1713(\mathrm{~s})$,
$1586(\mathrm{~m}), 1492(\mathrm{~m}), 1463(\mathrm{~m}), 1438(\mathrm{~m}), 1366(\mathrm{~m}), 1275(\mathrm{~s})$,
1241 (vs), 1193 (m), 1182 (s), 1102 (s), 1079 (m), 1049 (m), 1026 (s), 1002 (m), 929 (w), 741 (vs), 714 (m), 691 (m), 670 (m), 619 (m).

Preparation of 3 -quinolin-8-ylmethyl-benzoic acid ethyl ester (4k) :

Supplementary Material (ESI) for Chemical Communications
 This journal is (c) The Royal Society of Chemistry 2008

According to GP2 the benzylic zinc reagent 1d (1.74 mL, 1.38 m , 2.40 mmol was reacted with toluene-4-sulfonic acid quinolin-8-yl ester (3j) (599 mg, 2.00 mmol$)$. The reaction time was 3 h . Flash column chromatographical purification (silica; pentane:Et ${ }_{2} \mathrm{O}, 6: 1$) afforded 4 k as a colorless oil (491 mg, $1.69 \mathrm{mmol}, 85 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=8.96(\mathrm{dd}, J=4.3$ and 1.8 Hz , $1 \mathrm{H}), 8.15$ (dd, $J=8.3$ and $1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 8.05-8.02 (m, 1 H$)$, 7.89-7.84 (m, 1 H), 7.72-7.66 (m, 1 H), 7.52-7.47 (m, 1 H), 7.46-7.38 (m, 3 H), $7.32(t, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.73$ (s, 2 H$)$, 4.34 (q, J = $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.36$ (t, J $=7.2 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})=166.8,149.4,146.4,141.6$, 139.5, 136.4, 133.9, 130.5, 130.4, 129.6, 128.4, 128.3, 127.2, 126.5, 126.4, 121.1, 60.8, 36.6, 14.3.

MS (70 eV, EI) : m/z (\%) : 291 ($\mathrm{M}^{+}, 100$), 262 (63), 246 (12), 218 (28), 217 (55), 108 (34).

HRMS: ($\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{2}$) calculated 291.1259 found 129.1261.
IR (ATR): $\tilde{v}\left(\mathrm{~cm}^{-1}\right)=3033$ (vw), 2979 (w), 2928 (w), 2902 (w), 1710 (vs), 1594 (w), 1497 (m), 1442 (m), 1366 (m), 1272 (vs), 1188 (s), 1103 (s), 1081 (s), 1024 (m), 928 (w), 870 (w), 818 (m), 809 (m), 789 (s), 751 (s), 713 (s), 689 (m), 672 (m), 612 (m).

Preparation of 2-(3-pentanoyl-benzyl)-nicotinic acid ethyl ester (4l):

According to GP2 the benzylic zinc reagent le $(2.30 \mathrm{~mL}, 1.06 \mathrm{~m}$ in THF, 2.40 mmol was reacted with 2 -chloro-nicotinic acid ethyl ester (3 k) ($371 \mathrm{mg}, 2.00 \mathrm{mmol}$). The reaction time was 1 h. Flash column chromatographical purification (silica; pentane: $\mathrm{Et}_{2} \mathrm{O}, 6: 1$ then $\left.1: 1\right)$ afforded 41 as a pale yellow liquid (583 mg, $1.79 \mathrm{mmol}, 90 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=8.67(\mathrm{dd}, \mathrm{J}=4.9$ and 1.9 Hz , $1 \mathrm{H}), 8.12$ (dd, J = 7.9 and $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.86$ (m, 1 H$), 7.75$

Supplementary Material (ESI) for Chemical Communications
 This journal is (c) The Royal Society of Chemistry 2008

Abstract

(m, 1 H) , $7.44(\mathrm{~m}, ~ 1 \mathrm{H}), 7.32$ ($\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}$) , 7.24 (dd, $J=8.0$ and $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H}), 4.32(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 2.90$ (t, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 1.67 (quint, $J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 1.37$ (sext, J $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.32$ (t, J = $7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 0.92 ($t, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$).

${ }^{13} \mathrm{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})=200.6,166.3,160.6,151.9$, 140.1, 138.8, 137.1, 133.6, 128.7, 128.4, 126.1, 125.9, 121.4, 61.5, 42.1, 38.3, 26.5, 22.4, 14.1, 13.9.

MS (70 eV, EI): m/z (\%): 325 ($\mathrm{M}^{+}, 79$), 283 (12), 282 (12), 269 (16), 268 (100), $212(10), 211(13), 167(27), 166(24)$.

HRMS: $\left(\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{3}\right)$ calculated 325.1678 found 325.1666 .

```
IR (ATR): \tilde{v}(\mp@subsup{\textrm{cm}}{}{-1})=2958 (m), 2933 (m), 2872 (w), 1719 (vs),
1681 (s), 1582 (m), 1568 (m), 1436 (m), 1366 (m), 1274 (s),
1256 (vs), 1173 (m), 1158 (m), 1130 (s), 1111 (m), 1079 (s),
1057 (m), 1018 (m), 862 (w), 776 (m), 752 (m), 741 (m), 694
(m), 629 (w), 576 (w).
```

Preparation of 1-[3-(2-methyl-quinolin-4-ylmethyl)-phenyl]-pentan-1-one (4m):

According to GP2 the benzylic zinc reagent le $(2.30 \mathrm{~mL}, 1.06 \mathrm{~m}$ in THF, 2.40 mmol) was reacted with toluene-4-sulfonic acid 2 -methyl-quinolin-4-yl ester (31) (627 mg, 2.00 mmol$)$. The reaction time was 16 h . Flash column chromatographical purification (silica; pentane: $E t_{2} \mathrm{O}, 1: 1$ then $\mathrm{Et}_{2} \mathrm{O}$) afforded 4m as a colorless, high viscous oil (585 mg, $1.85 \mathrm{mmol}, ~ 92 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=8.04(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.92(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.44(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H})$, 4.43 (s, 2 H) , $2.89(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}$) , 2.68 (s, 3 H), 1.67 (quint, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$) 1.39 (sext, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 0.91 (t, J $=7.3 \mathrm{~Hz}, 3 \mathrm{H}$).

Supplementary Material (ESI) for Chemical Communications
 This journal is (c) The Royal Society of Chemistry 2008

```
'13}\mathbf{C}-\textrm{NMR}(75\textrm{MHz},\mp@subsup{\textrm{CDCl}}{3}{\prime}) \delta (ppm) = 200.4, 158.8, 148.0, 145.8,
139.3, 137.5, 133.2, 129.3, 129.2, 128.9, 128.3, 126.5, 125.8,
125.6, 123.4, 122.7, 38.4, 38.0, 26.4, 25.3, 22.4, 13.9.
MS (70 eV, EI): m/z (%): 317 (M+, 25), 275 (100), 261 (44), 260
(38), 247 (15), 231 (63), 216 (15), 189 (18), 115 (12).
HRMS: ( }\mp@subsup{\textrm{C}}{22}{}\mp@subsup{\textrm{H}}{23}{}\textrm{NO}\mathrm{ ) calculated 317.1780 found 317.1756.
IR (ATR): \tilde{v}}(\mp@subsup{\textrm{cm}}{}{-1})=3063(\textrm{w}),2954(\textrm{s}),2930(\textrm{m}),2871(m)
1674 (vs), 1601 (s), 1585 (m), 1562 (w), 1511 (m), 1466 (w),
1437 (m), 1415 (m), 1376 (m), 1336 (m), 1274 (m), 1227 (m),
1158 (m), 1024 (w), 964 (w), 910 (w), 869 (w), 763 (s), 756
(s), 733 (m), 700 (m), 637 (w), 570 (w).
```

```
Preparation of 1-[3-(6-methyl-pyridin-3-ylmethyl)-phenyl]-
pentan-1-one (4n):
```


According to GP2 the benzylic zinc reagent le (2.30 mL, 1.06 m , 2.40 mmol was reacted with toluene-4-sulfonic acid-6-methyl-pyridin-3-yl ester (3m) (527 mg, 2.00 mmol$)$. The reaction time was 16 h. Flash column chromatographical purification (silica; pentane: $E t_{2} \mathrm{O}, \quad 1: 1$ then $E t_{2} \mathrm{O}$) afforded 4 n as a pale yellow liquid (448 mg, $1.68 \mathrm{mmol}, 84 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=8.36(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~m}, 2 \mathrm{H})$, $7.35(\mathrm{~m}, ~ 3 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H}), 2.90$ (t, J $=7.4 \mathrm{~Hz}, 2 \mathrm{H}$) , $2.5(\mathrm{~s}, 3 \mathrm{H}), 1.67$ (quint, J $=7.4 \mathrm{~Hz}, 2$ H) , 1.37 (sext, J $=7.4 \mathrm{~Hz}, 2 \mathrm{H}$) 0.92 (t, J $=7.3 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})=200.4,156.4,149.2,140.7$, 137.4, 136.7, 133.2, 132.7, 128.8, 128.2, 126.2, 123.1, 38.5, 38.3, 26.4, 23.9, 22.4, 13.9.

MS (70 eV, EI) : m/z (\%): $268\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 225(26), 224$ (10), 211 (12), 210 (72), 183 (10), 182 (13), 181 (15).

HRMS: ($\left.\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO},[\mathrm{M}+\mathrm{H}]^{+}\right)$calculated 268.1701 found 268.1697.
IR (ATR): $\tilde{v}\left(\mathrm{~cm}^{-1}\right)=2957(\mathrm{~s}), 2930(\mathrm{~m}), 2871(\mathrm{~m}), 1681(\mathrm{vs})$, 1601 (m), 1585 (w), 1568 (w), 1488 (m), 1465 (m), 1438 (m), $1409(\mathrm{w}), 1392(\mathrm{~m}), 1378(\mathrm{w}), 1346(\mathrm{w}), 1320(\mathrm{w}), 1297$ (m),

Supplementary Material (ESI) for Chemical Communications
 This journal is (c) The Royal Society of Chemistry 2008

1266 (m), 1256 (m), 1228 (m), 1176 (m), 1159 (m), 1109 (w), 1096 (w), 1029 (m), 913 (w), 812 (w), 792 (w), 754 (m), 728 (m), 693 (m), 646 (w).

Preparation of 2-(3-acetyl-benzyl)-nicotinic acid ethyl ester (40) :

In a dry argon-flushed Schlenk flask equipped with a septum and a magnetic stirring bar, 2-chloro-nicotinic acid ethyl ester (3k) (371 mg, 2.00 mmol) was dissolved in NMP (0.4 mL), $\mathrm{PPh}_{3}\left(0.1 \mathrm{~mL}, 0.4 \mathrm{~m}\right.$ in THF, $0.40 \mathrm{mmol}, 2 \mathrm{~mol} \%$) and $\mathrm{Ni}(\mathrm{acac})_{2}$ ($0.1 \mathrm{~mL}, 0.1 \mathrm{~m}$ in THF, $0.1 \mathrm{mmol}, 0.5 \mathrm{~mol} \%$) were added. Then, the benzylic zinc reagent $1 \mathrm{f}(2.24 \mathrm{~mL}, 1.07 \mathrm{~m}$ in THF, 2.40 mmol) was added over 30 min via a syringe pump. The reaction time was 2 h . Flash column chromatographical purification (silica; pentane: $E t_{2} \mathrm{O}, 1: 1$ then $1: 3$) afforded 40 as a yellow oil (385 mg, $1.36 \mathrm{mmol}, 68 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=8.67(\mathrm{dd}, \mathrm{J}=4.7$ and 1.8 Hz , $1 \mathrm{H}), 8.19(\mathrm{dd}, \mathrm{J}=7.9$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.85(\mathrm{~m}, 1 \mathrm{H})$, 7.75 (d, J = $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32$ (t, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, \mathrm{J}=7.9$ and $4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.63$ (s, $2 \mathrm{H}), 4.32(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 2.54 (s, 3 H), 1.32 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})=198.2,166.3,160.5,151.9$, 140.1, 138.8, 137.1, 133.8, 129.0, 128.4, 126.2, 126.0, 121.5, 61.5, 42.1, 26.6, 14.1.

MS (70 eV, EI): m/z (\%): 283 (100), 267 (37), 210 (39), 195 (13), 167 (29), 135 (12), 43 (58).

HRMS: $\left(\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{3}\right)$ calculated 283.1208 found 1283.1187.

```
IR (ATR): \tilde{v}(\mp@subsup{\textrm{cm}}{}{-1})=3049 (vw), 2982 (w), 2936 (w), 1718 (s),
1681 (vs), 1601 (w), 1582 (m), 1568 (m), 1484 (w), 1436 (m),
1357 (m), 1296 (m), 1258 (vs), 1173 (m), 1130 (m), 1079 (s),
1057 (m), 1018 (w), 976 (w), 956 (w), 863 (w), 777 (m), 741
(m), 693 (m), 589 (w), 577 (w).
```


Copies of NMR-spectra:

4-(Toluene-4-sulfonyloxy) -benzoic acid ethyl ester (3h):

Toluene-4-sulfonic acid 2-methoxy-phenyl ester (3i):

mical Shift (ppm)

Toluene-4-sulfonic acid quinolin-8-yl ester (3j):

Toluene-4-sulfonic acid 2-methyl-quinolin-4-yl ester (31):

[^0]Toluene-4-sulfonic acid 6-methyl-pyridin-3-yl ester (3m):

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

4-(3-Cyano-benzyl)-benzoic acid ethyl ester (4b):

3-Pyrimidin-2-ylmethyl-benzonitrile (4c):

3-(2,4-Dimethoxy-pyrimidin-5-ylmethyl)-benzoic acid ethyl

 ester (4g) :

[^1]

Ethyl-3-[4-(ethoxycarbonyl)-benzyl]-benzoate (4i):

[^2]

Chloroform-d

1-[3-(2-Methyl-quinolin-4-ylmethyl)-phenyl]-pentan-1-one (4m):

 Chloroform-d

[^3]

Chloroform-d

[^4]
[^0]:

[^1]:

[^2]:

[^3]:

[^4]: ${ }^{1}$ A. Metzger, M. A. Schade, P. Knochel, Org. Lett., 2008, DOI: 10.1021/ol7030697.

