Electronic Supplementary Information for:

Large mixed metal nitride clusters encapsulated in a small cage: The

confinement of the C₆₈-based clusterfullerenes

Shangfeng Yang,*^{a,b} Alexey A. Popov,^{a,c} and Lothar Dunsch*^a

^a Group of Electrochemistry and Conducting Polymers, Leibniz-Institute for Solid State and Materials Research (IFW) Dresden, D-01171 Dresden, Germany

^b Hefei National Laboratory for Physical Sciences at Microscale & Department of Materials

Science and Engineering, University of Science and Technology of China, Hefei 230026, China

^c Department of Chemistry, Moscow State University, Leninskiye Gory, 119992 Moscow, Russia

S1. Synthesis and isolation of $DySc_2N@C_{68}(1)$, $LuSc_2N@C_{68}(2)$ and $Lu_2ScN@C_{68}(3)$:

The three new nitride clusterfullerenes (NCFs) **1-3** are produced by a modified Krätschmer-Huffman DC-arc discharging method with the addition of NH₃ (20 mbar) as described before. ^{1,9,10,13,15} Briefly, a mixture of Dy₂O₃ (Lu₂O₃) and Sc₂O₃ (99.9%, MaTeck GmbH, Germany) and graphite powder was used (molar ratio of Dy:Sc:C(or Lu:Sc:C)=1:1:15). After DC-arc discharging, the soot was pre-extracted by acetone and further Soxhlet-extracted by CS₂ for 20 h. The extracted fullerene mixture is distilled and dissolved in toluene. Fullerene isolation was performed by twostep HPLC. In the first step running in a Hewlett-Packard instrument (series 1050), a linear combination of two analytical 4.6×250 mm Buckyprep columns (Nacalai Tesque, Japan) was applied with toluene as the eluent. The second-step isolation is performed by recycling HPLC (Sunchrom, Germany) using a semi-preparative Buckyprep column (Nacalai Tesque, Japan) and toluene as the eluent. A UV detector set to 320 nm was used for fullerene detection for both steps.

Fig. S1. The first-step HPLC isolations of the $Lu_xSc_{3-x}N@C_{2n}$ and $Dy_xSc_{3-x}N@C_{2n}$ fullerene extract mixtures synthesized by the "reactive gas atmosphere" method (combination of two 4.6 x 250 mm Buckyprep columns; flow rate 1.6 ml/min; injection volume 100 µl; toluene as eluent (mobile phase); 40°C). The dominant peaks with the retention of 30-37 min are the major products $M_xSc_{3-x}N@C_{80}$ (I, II) (M= Lu, Dy, x=0-3).

The typical chromatograms of a $Lu_xSc_{3-x}N@C_{2n}$ and $Dy_xSc_{3-x}N@C_{2n}$ fullerene extract mixtures obtained on two Buckyprep columns are shown in Fig. S1. Together with mass-spectroscopic (MS) analysis it shows that $Dy_xSc_{3-x}N@C_{2n}$ (a) and $Lu_xSc_{3-x}N@C_{2n}$ (b) NCFs (fractions A-D) (retention time 30 - 70 min) are the dominant products. This first step in HPLC results in isolation of fractions **A** and **B**, respectively, which are subject to the second-step isolation by recycling HPLC (Buckyprep column) and the corresponding chromatograms are illustrated in Fig. S2.

Fig. S2. The chromatograms of the isolated fractions A and B by the second-step recycling HPLC (10 x 250 mm Buckyprep-M column; flow rate 5.0 ml/min; injection volume 5 ml; toluene as eluent; 20°C). A1 and B1: $Sc_3N@C_{68}$, A2: $LuSc_2N@C_{68}$ (2), A3: $Lu_2ScN@C_{68}$ (3), B2: $DySc_2N@C_{68}$ (1).

Based on the integrated HPLC peak area, the relative yield of **1** (**2**) to $Sc_3N@C_{68}$ is estimated to be 1:2, while that of **3** to $Sc_3N@C_{68}$ is ca. 1:12 (i.e., the relative yield of **3**:2: $Sc_3N@C_{68} = 1:6:12$) (see Fig. S2).

Besides, for $Lu_xSc_{3-x}N@C_{68}$ (fraction A), there are 3 isolable structures (x=0-2). However, for $Dy_xSc_{3-x}N@C_{68}$ (fraction B), only $Sc_3N@C_{68}$ and $DySc_2N@C_{68}$ (1) formed. This indicates clearly the difference between Lu/Sc and Dy/Sc mixed NCFs.

S2. Comparison of the colors of 1-3 and $Sc_3N@C_{68}$ solutions (in toluene):

Owing to the same cage symmetries (D_3 :6140) of **1-3** and Sc₃N@C₆₈, the electronic absorption properties of **1-3** are almost identical to that of Sc₃N@C₆₈ (see Fig. 2), as a result the colors of **1-3** dissolved in toluene are same to that of Sc₃N@C₆₈ (purple) as clearly shown in Fig. S3.

Fig. S3. Photographs of $Sc_3N@C_{68}$ (left) and $DySc_2N@C_{68}$ (1) (right) dissolved in toluene. The colors of $LuSc_2N@C_{68}$ (2) and $Lu_2ScN@C_{68}$ (3) are same to 1.