Chemical Communications

s-Block metal complexes of a bulky, donor-functionalized allyl ligand

Sophia A. Solomon, Christopher A. Muryn and Richard A. Layfield*

School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.

Electronic supplementary information – experimental, spectroscopic and analytical details

General considerations. All syntheses were carried out using conventional Schlenk techniques. Solvents were pre-dried over sodium wire before being rigorously dried by refluxing over sodium (hexane) or molten potassium (thf). 1,3-*Bis*(trimethylsilyl)propene was prepared according to a literature procedure¹ and all other reagents were obtained from commercial suppliers. NMR spectra were recorded on a Bruker DRX 400 NMR spectrometer. Crystallographic studies were carried out using an Oxford Diffraction XCaliber 2 instrument (compounds **1** and **3**) and a Bruker AXS Diffractometer (compound **2**). Bruker AXS Diffractometer (compound **2**).

Synthesis of (*E*)-(4-(tetrahydrofuran-2-yl)but-1-ene-1,3-diyl)bis(trimethylsilane) (L¹H). A solution of tetrahydrofurfuryl tosylate (5.63 g, 22.0 mmol) in thf (30 ml) was added to a freshly prepared solution of 1,3-bis(trimethylsilyl)allyl lithium (20.0 mmol) in thf (30 ml) at to -78°C. Warming the reaction to room-temperature and stirring for 48 hours afforded a colourless solution and a white precipitate. The thf solvent was evaporated, replaced with an equal volume of hexane and the mixture filtered (Celite, P3) and the hexane removed in vacuo to afford a pale yellow oil. Distillation under reduced pressure (68-72°C, 12 mmHg) afforded L¹H (3.41 g, 63%) as a colourless oil. Anal. calcd. for C₁₄H₃₀OSi₂, C 62.15, H 11.18; found C 61.98, H 11.25 %. ¹H NMR (δ/ppm, 500.13 MHz, CDCl₃, 294.3 K, J/Hz): 5.98, 0.1H, dt, ${}^{3}J = 7.7$ and 18.4, CH–CH=CHSi minor diastereomer; 0.9H, ${}^{3}J = 7.7$ and 18.4, CH-CH=CHSi major diastereomer; 5.42 (major diastereomer) and 5.40 (minor diastereomer), $2 \times dd$, 1H, ${}^{3}J = 18.4$ and 18.4, ${}^{4}J = 0.9$ and 0.9; 3.85-3.74, $2 \times m$, 2H, tetrahydrofurfuryl CHO and CHHO; 3.70-3.63, m, 1H, tetrahydrofurfuryl CHHO; 1.95, m, 1H, tetrahydrofurfuryl CHHCHO; 1.82, m, 2H, tetrahydrofurfuryl CH2CH2O; 1.59, 1H, m, CH-CH=CH; 1.36, m, 1H, tetrahydrofurfuryl CHHCHO. ¹³C NMR (δ/ppm, 125.76 MHz, CDCl₃, 295.8 K): 149.23 and 148.68, CH=CHSi; 127.83 and 127.74, CH=CHSi; 79.71 and 79.63, tetrahydrofurfuryl CHO; 68.64, 68.17 tetrahydrofurfuryl CH₂O; 36.16 and 36.07, CH–CH=CHSi; 35.51 and 35.07; tetrahydrofurfuryl CH₂CHO; 32.86 and 31.39, CH₂CH–CH=; 26.83 and 26.58, tetrahydrofurfuryl CH₂CH₂O; 0.02, 0.01,

2.42 and -2.47, Si(CH₃)₃.

Synthesis of [1]₂. A mixture of L¹H (0.54 g, 2.0 mmol) and hexane (20 ml) was cooled to -78°C and ⁿBuLi in hexanes (1.6M, 1.25 ml, 2.0 mmol) was added dropwise. Slowly warming the reaction to room-temperature and stirring for 16 hours afforded a yellow solution and a precipitate. Gently heating the precipitate afforded a yellow solution which, on storage at room-temperature overnight, resulted in the formation of large colourless blocks of $[L^1H]_2$, $[1]_2$, (0.70 g, 63% based on Li). Anal. calcd. for C₁₄H₂₉LiOSi₂, C 60.81, H 10.57; found C 60.27, H 10.25 %. ¹³C NMR (δ/ppm, 100.65 MHz, benzened₆, 295.8 K): 151.20, central allyl CH; 139.45, central allyl CH; 134.80, allyl C; 89.27, tetrahydrofufuryl CH; 82.33, allyl C; 80.36, tetrahydrofufuryl CH; 68.64, tetrahydrofurfuryl CH₂O; 57.90, terminal allyl CH; 37.69, 35.73, 31.87, 31.45, 26.97, 26.05, 21.61, tetrahydrofurfuryl CH₂; 3.23, 1.70, 0.03, -1.25, Si(CH3)3. ¹H NMR (δ/ppm, 400.23 MHz, benzene-d₆, 294.3 K, J/Hz, non-integer integrals are due to presence of two diastereomers): 7.18, d, integration not possible due to overlap with solvent peak, central allyl CH; 6.00, br m, 1.3H, central allyl CH; 4.10, br m, 0.7H, tetrahydrofufuryl CH; 3.97, br quintet, 1.3H, tetrahydrofurfuryl CH; 3.79, br q, 1.3H, tetrahydrofurfuryl CH₂O; 3.59, br m, 2H, tetrahydrofurfuryl CH₂O; 3.38, br m, 0.7H, tetrahydrofurfuryl CH₂O; 3.15, br d, 0.7H, ${}^{3}J = 16$, terminal allyl CH; 2.64, br m, 1H, tetrahydrofurfuryl SiC–CH₂–CH; 2.49, br m, 3H, tetrahydrofurfuryl SiC-CH₂-CH; 2.27, br dd, 0.7H, ${}^{3}J = 14.6$, ${}^{n}J = 2.3$, 0.7H, terminal allyl CH; 1.55, v br m, 8H, tetrahydrofurfuryl (CH₂)₂–CH₂–O; 0.43, 0.33, 0.16, 0.00, $4 \times s$, 36H, Si(CH₃)₃.

Synthesis of $[\{2(thf)\}_2]_{\infty}$. A solution of $[1]_2$ was freshly prepared from L¹H (0.55 g, 2.02 mmol) and ⁿBuLi (1.6 M, 1.27 ml, 2.03 mmol) and was added drop-wise to a stirred suspension of KO^tBu (0.27 g, 2.02 mmol) in hexane (20 ml) at room-temperature. A viscous red-brown solution was obtained on stirring for 8 hours and evaporation of the hexane solvent afforded a powder, which upon dissolution in thf (2 ml) and storage at +5°C for 2 days afforded amber crystals of $[\{2(thf)\}_2]_{\infty}$ (0.26 g, 34% isolated yield). Anal. calcd. for $C_{18}H_{37}KO_2Si_2$, C 56.78, H 9.79; found C, 55.90, H 9.59 %. ¹³C NMR (δ /ppm, 100.65 MHz, benzene- d_6 , 295.8 K): 139.75, allyl C: 138.69, central allyl CH; 136.78, central allyl CH; 135.48, allyl C; 79.94, 79.79, tetrahydrofurfuryl CH; 68.18, thf CH₂O; 67.93, 67.89, tetrahydrofurfuryl CH₂O; 38.82, terminal allyl CH; 36.08, 35.96, CCH₂CHO; 32.07, 32.02, tetrahydrofurfuryl CH₂CH₂CH₂CH₂O; 26.27, 26.12, CHCH₂CH₂CH₂O; 21.40, thf CH₂CH₂O; 15.36, terminal allyl CH; 3.21, 1.88, 0.03, -1.26, Si(CH₃)₃. ¹H NMR (δ /ppm, 400.23 MHz, benzene- d_6 , 294.3 K, *J*/Hz, non-integer integrals are due to presence of two diastereomers): 6.83, br d, 0.3H, ³*J* = 16.1, central allyl CH; 6.01, m, 1.3H, central allyl CH; 3.84, br m, 3H, tetrahydrofurfuryl CH and CH₂O; 3.56, br m, 4H, thf CH₂O; 2.78, br d, 0.3H, ³*J* = 16.1, terminal allyl CH; 1.77-1.15, very br m, accurate integration not possible, tetrahydrofurfuryl CHCH₂CH₂C; 1.41, br m, 4H, thf CH₂CH₂O; 0.33, 0.29, 0.20, 0.00, 4 × s, 36H, Si(CH₃)₃.

Synthesis of [3]. A mixture of Bu_2Mg (1.0 M, 1.02 ml, 1.02 mmol) and L^1H (0.55 g, 2.03 mmol) in hexane (20 ml) was heated under reflux for 16 hours and cooled to room-temperature. The solvent was evaporated in vacuo until approximately 2 ml remained, affording a faintly cloudy solution, which was heated briefly to reflux using an oil bath and cooled very slowly to room-temperature in the oil to result in the formation of colourless crystals of [3] (0.09 g, 15 % isolated yield). Anal. calcd. for C₂₈H₅₈MgO₂Si₄, C 60.81, H 10.57; found C 60.27, H 10.25 %. ¹³C NMR (δ/ppm, 100.65 MHz, dmsod₆, 295.8 K): 149.33, allyl CH; 148.96, allyl C; 138.49, allyl CH; 134.65, allyl C; 126.34 allyl CH; 79.10 and 78.24, tetrahydrofurfuryl CH; 68.43, 68.03, tetrahydrofurfuryl CH₂O; 35.24, allyl CH; 35.37, 34.96, 31.98, 31.36, tetrahydrofurfuryl CHCH₂CH₂CH₂O; CCH₂CHO; 25.93, 25.69, CHCH₂CH₂CH₂O; 0.02, -0.25, -1.14, -2.80, Si(CH₃)₃. ¹**H NMR** (δ/ppm, 400.23 MHz, dmso-*d*₆, 294.3 K, J/Hz): 3.71, 3.63, 3.53, v br m, 6H, tetrahydrofurfuryl CH and CH₂O; 2.23, br d, ${}^{3}J = 6.7$, =CH– CHSi; 1.73, 1.57, 1.35, v br m, 8H, tetrahydrofurfuryl CHCH₂CH₂CH₂O; 0.00, -0.01, -0.05, -0.09, $4 \times$

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

s, 36H, Si(CH₃)₃.

Crystallographic details for compounds $[1]_2$, $[{2(thf)}_2]_{\infty}$ and [3]

Crystals were mounted on thin glass fibres using perfluoropolyether oil and frozen in situ in a flow of cold nitrogen gas from a Cryostream instrument. Data were collected using an Oxford Diffraction XCaliber 2 instrument (compounds 1 and 3) or a Bruker AXS Diffractometer (compound 2) using monochromated Mo K α radiation ($\lambda = 0.71073$ Å). Structures were solved using direct methods and refined on F^2 using SHELXTL-97.² All non-hydrogen atoms were refined anisotropically for all structures. For [1]₂, [{2(thf)}₂]_{∞} and [3], the allylic hydrogen atoms were located directly in the electron peak difference maps and were allowed to refine freely. All other hydrogen atoms were fixed manually on idealized positions. CCDC reference codes 678934, 678935 and 678936 contain the crystallographic data for for compounds [1]₂, [{2(thf)}₂]_{∞} and [3], respectively, in .cif format. Data can be obtained free of charge *via* the Internet at www.ccdc.cam.ac.uk/conts/retrieving.html or from The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax +44 1223 336 033; e-mail deposit@ccdc.cam.ac.uk.

Table S1 – Crystal data and structure refinement for $[1]_2$

Empirical formula	$C_{28}H_{58}Li_2O_2Si_4$		
Formula weight	552.98		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	<i>P</i> -1		
Unit cell dimensions	a = 10.1331(8) Å	$\alpha = 77.614(7)^{\circ}$.	
	<i>b</i> = 10.8060(9) Å	$\beta = 89.490(6)^{\circ}.$	
	c = 18.5116(14) Å	$\gamma = 65.099(8)^{\circ}.$	
Volume	1788.2(2) Å ³		
Ζ	2		
Density (calculated)	1.027 Mg/m ³		
Absorption coefficient	0.187 mm ⁻¹		
<i>F</i> (000)	608		
Crystal size	0.70 x 0.70 x 0.50 mm ³		
Theta range for data collection	3.82 to 26.37°.		
Index ranges	-12<=h<=12, -13<=k<=13, -23<=l<=21		
Reflections collected	14428		
Independent reflections	7253 [<i>R</i> (int) = 0.0369]		
Completeness to theta = 26.37°	99.1 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.9125 and 0.8805		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	7253 / 12 / 373		
Goodness-of-fit on F^2	1.040		
<pre>Final R indices [I>2sigma(I)]</pre>	R1 = 0.0539, wR2 = 0.1370		
R indices (all data)	R1 = 0.0887, wR2 = 0.1659		
Largest diff. peak and hole	0.624 and -0.460 e.Å ⁻³		

Table S2 – Crystal data and structure refinement for $[{2(thf)}_2]$

Empirical formula	$C_{36}H_{74}K_2O_4Si_4$		
Formula weight	761.51		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	$P2_1$		
Unit cell dimensions	a = 10.9205(18) Å	$\alpha = 90^{\circ}$.	
	b = 18.729(3) Å	$\beta = 97.988(3)^{\circ}.$	
	c = 11.2860(18) Å	$\gamma = 90^{\circ}$.	
Volume	2285.9(6) Å ³		
Ζ	2		
Density (calculated)	1.106 Mg/m ³		
Absorption coefficient	0.344 mm ⁻¹		
<i>F</i> (000)	832		
Crystal size	1.00 x 0.20 x 0.20 mm ³		
Theta range for data collection	3.00 to 26.37°.		
Index ranges	-13<= <i>h</i> <=13, -20<= <i>k</i> <=23, -14<= <i>l</i> <=14		
Reflections collected	13190		
Independent reflections	7188 [$R(int) = 0.0279$]		
Completeness to theta = 26.37°	99.1 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.9344 and 0.7249		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	7188 / 81 / 471		
Goodness-of-fit on F^2	1.042		
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0467, wR2 = 0.1135		
<i>R</i> indices (all data)	R1 = 0.0557, wR2 = 0.1187		
Absolute structure parameter	0.05(4)		
Largest diff. peak and hole	0.614 and -0.511 e.Å ⁻³		

Table S3 – Crystal data and structure refinement for [3]

Empirical formula	$C_{28}H_{58}MgO_2Si_4$		
Formula weight	563.41		
Temperature	100(2) K		
Wavelength	0.71069 Å		
Crystal system	Orthorhombic		
Space group	Pccn		
Unit cell dimensions	a = 12.0480(10) Å	$\alpha = 90^{\circ}$.	
	b = 15.1550(10) Å	$\beta = 90^{\circ}$.	
	c = 19.4280(10) Å	γ= 90°.	
Volume	3547.3(4) Å ³		
Ζ	4		
Density (calculated)	1.055 Mg/m ³		
Absorption coefficient	0.206 mm ⁻¹		
<i>F</i> (000)	1240		
Crystal size	0.8 x 0.1 x 0.1 mm ³		
Theta range for data collection	4.20 to 25.02°.		
Index ranges	-14<= <i>h</i> <=13, -17<= <i>k</i> <=17, -23<= <i>l</i> <=14		
Reflections collected	11765		
Independent reflections	3120 [<i>R</i> (int) = 0.1090]		
Completeness to theta = 25.02°	99.4 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.9797 and 0.8524		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	3120 / 0 / 171		
Goodness-of-fit on F^2	0.925		
<pre>Final R indices [I>2sigma(I)]</pre>	R1 = 0.0572, wR2 = 0.0859		
<i>R</i> indices (all data)	R1 = 0.1348, wR2 = 0.1075		
Largest diff. peak and hole	0.353 and -0.294 e.Å ⁻³		

References

- Fernández-Galán, R.; Hitchcock, P. B.; Lappert, M. F.; Antiñolo, A.; Rodríguez, A. M. J. Chem. Soc., Dalton Trans., 2000, 1743.
- 2. G. M. Sheldrick, SHELXTL Version 6.10, Bruker AXS Inc, Madison, Wisconsin, 1997.