Electronic Supplementary Information

Selective One-Pot Synthesis of Various Phenols from Diarylethanes

Ryota Nakamura, Yasushi Obora, and Yasutaka Ishii*

Department of Chemistry and Material Engineering, Faculty of Chemistry, Materials and Bioengineering & High Technology Research Center, Kansai University, Suita, Osaka 564-8680, Japan. E-mail: ishii@ipcku.kansai-u.ac.jp

Table of Contents

S4-5:	Spectra data for 1i a	and 1n .
-------	-----------------------	-----------------

S5-6: References

S7:	Copies of ¹ H (270 MHz, CDCl ₃) and ¹³ C NMR spectra for $1a$.
S8:	Copies of ¹ H (270 MHz, CDCl ₃) and ¹³ C NMR spectra for 1b .
S9:	Copies of ¹ H (270 MHz, CDCl ₃) and ¹³ C NMR spectra for 1c .
S10:	Copies of ¹ H (270 MHz, CDCl ₃) and ¹³ C NMR spectra for 1d .
S11:	Copies of ¹ H (270 MHz, CDCl ₃) and ¹³ C NMR spectra for 1e .
S12:	Copies of ¹ H (270 MHz, CDCl ₃) and ¹³ C NMR spectra for 1f .
S13:	Copies of ¹ H (270 MHz, CDCl ₃) and ¹³ C NMR spectra for 1h .
S14:	Copies of ¹ H (270 MHz, CDCl ₃) and ¹³ C NMR spectra for 1i .
S15:	Copies of ¹ H (270 MHz, CDCl ₃) and ¹³ C NMR spectra for $1j$.
S16:	Copies of ¹ H (270 MHz, CDCl ₃) and ¹³ C NMR spectra for $1k$.
S17:	Copies of ¹ H (270 MHz, CDCl ₃) and ¹³ C NMR spectra for 11 .
S18:	Copies of 1 H (270 MHz, CDCl ₃) and 13 C NMR spectra for 1m .
S19:	Copies of ¹ H (270 MHz, CDCl ₃) and ¹³ C NMR spectra for 1n .
S20:	Copies of 1 H (270 MHz, CDCl ₃) and 13 C NMR spectra for 10 .
S21:	Copies of ¹ H (270 MHz, CDCl ₃) and ¹³ C NMR spectra for 1p .
S22:	Copies of ¹ H (270 MHz, CDCl ₃) and ¹³ C NMR spectra for 3a .
S23:	Copies of ¹ H (270 MHz, CDCl ₃) and ¹³ C NMR spectra for 3b .
S24:	Copies of ¹ H (270 MHz, CDCl ₃) and ¹³ C NMR spectra for 3c .
S25:	Copies of ¹ H (270 MHz, CDCl ₃) and ¹³ C NMR spectra for 3d .
S26:	Copies of ¹ H (270 MHz, CDCl ₃) and ¹³ C NMR spectra for 3e .

Copies of ¹H (270 MHz, CDCl₃) and ¹³C NMR spectra for **3h**. S27: Copies of ¹H (270 MHz, CDCl₃) and ¹³C NMR spectra for **3i**. S28: Copies of ¹H (270 MHz, CDCl₃) and ¹³C NMR spectra for **3**j. S29: Copies of ¹H (270 MHz, CDCl₃) and ¹³C NMR spectra for **3k**. S30: Copies of ¹H (270 MHz, CDCl₃) and ¹³C NMR spectra for **3n**. S31: Copies of ¹H (270 MHz, CDCl₃) and ¹³C NMR spectra for **4a**. S32: Copies of ¹H (270 MHz, CDCl₃) and ¹³C NMR spectra for **4f**. S33: Copies of ¹H (270 MHz, CDCl₃) and ¹³C NMR spectra for 4g. S34: Copies of ¹H (270 MHz, CDCl₃) and ¹³C NMR spectra for 4I. S35: Copies of ¹H (270 MHz, CDCl₃) and ¹³C NMR spectra for **5a**. S36: Copies of ¹H (270 MHz, CDCl₃) and ¹³C NMR spectra for **9**. S37:

Experimental

Genaral Remarks and Meterials

¹H and ¹³C NMR were measured in CDCl₃ with Me₄Si as the internal standard. Infrared (IR) spectra were measured as thin films on NaCl plate or KBr press disk. A GLC analysis was performed with a flame ionization detector using a 0.22 mm \times 25 m capillary column (BP-5). Mass spectra were determined at an ionizing voltage of 70 eV. The yields of products were estimated from the peak areas based on the internal standard technique using GLC. Diarylethanes 1 except 1b-d, 1g, and 1j, were prepared by Beller method from the corresponding arenes with styrene (for 1a, 1e-f, 1k-m, $(10-p)^{1a}$ or 1-phenylethyl acetate $(1h-i, 1n)^{1b}$ in the presence of iron catalyst. Compounds 1b-d prepared by hydrogenation 1,1-diphenylethylene, and 1j are of 1-(4-methylphenyl)-1-phenylethylene,^{2a} 1-(3-methylphenyl)-1-phenylethylene^{2b} and 1-(4-*tert*-butylphenyl)-1-phenylethylene^{2c} with hydrogen gas (1 atm) on Pd/C.³ All the diarylethanes 1 except 1i and 1n, and the product (3-5) are known compounds and reported previously (1a,^{3a} 1b-c,^{3b} 1d,⁴ 1e-f,^{3a} 1g,⁵ 1h,⁶ 1j,⁷ 1k,⁸ 1l-m,^{3a} 1o,^{3b} 1p,⁹ 3a,¹⁰ **3b-c**,¹¹ **3d**,¹⁰ **3e**,¹² **3h**,¹³ **3i**,¹⁴ **3j**,¹⁵ **3k**,¹⁶ **3n**,¹⁷ **4a**,¹⁸ **4f**,¹⁹ **4g**,²⁰ **4l**,²¹ **5a**,²² and **9**²³) Compound 1g is commercially available and used without any purification.

A typical reaction was carried out as follows (Table 1, Entry 1): A mixture of 1-(4-methoxyphenyl)-1-phenylethane (1a) (637 mg, 3 mmol), NHPI (49 mg, 0.3 mmol, 10 mol%) and AIBN (15 mg, 0.09 mmol, 3 mol%) in acetonitrile (3.0 mL) was placed in a two-necked flask equipped with a balloon filled with O_2 . The mixture was stirred at 75 °C for 15 h. The reaction mixture was treated with a solution of sulfuric acid (29 mg, 0.3 mmol) in acetonitrile (1 mL) at 0 °C for 1 min. Removal of the solvent under

reduced pressure afforded a crude mixture, which was purified by column chromatography on silica gel (*n*-hexane/AcOEt = 15/1) to give the products, 4-methoxyphenol (**3a**) and acetophenone (**4a**) in 52% and 54% isolated yields, respectively as a pure form.

Oxidation of toluene in the presence of 1p (eq 2): An acetic acid (2.5 mL) solution of toluene (7) (92 mg, 1 mmol), NHPI (16 mg, 0.1 mmol, 10 mol%), $Co(OAc)_2$ (1 mg, 0.005 mmol, 0.5 mol%), and 1-mesityl-1-phenylethane (11 mg, 0.05 mmol, 5 mol%) was placed in a two-necked flask equipped with a balloon filled with O₂. The mixture was stirred at 100 °C for 6 h. Removal of the solvent under reduced pressure afforded a cloudy solution. The product were esterified by ethanol (20 mL) and sulfuric acid (100 mg) at 80 °C for 15h. After the reaction, GC-MS analysis was performed. The conversions and yields of products were estimated from the peak areas, based on the GC internal standard technique.

1i: $\delta_{\rm H}$ (270 MHz; CDCl₃, Me₄Si) 0.92 (t, ${}^{3}J({\rm H},{\rm H})=$ 7.3 Hz, 3H), 1.57-1.65 (m, 5 H), 2.53 (t, ${}^{3}J({\rm H},{\rm H})=$ 7.7 Hz, 2H), 4.11 (q, ${}^{3}J({\rm H},{\rm H})=$ 7.3 Hz, 1H) and 7.05-7.35 (m, 9H); $\delta_{\rm C}$ (67.5 MHz; CDCl₃, Me₄Si) 13.92, 21.93, 24.55, 37.62, 44.38, 125.90, 127.39, 127.58, 128.29, 128.38, 140.28, 143.53 and 146.61; $\nu_{\rm max}/{\rm cm}^{-1}$ 3023, 2963, 2928, 2869, 1599, 1505, 1284, 1492, 1451, 1029, 1026, 755 and 699; *m/z* (EI) 224.1566 (M⁺. C₁₇H₂₀ requires 224.1565), 209 (100%), 195 (6), 181 (23), 167 (28), 91 (7) and 77 (8).

1n: $\delta_{\rm H}$ (270 MHz; CDCl₃, Me₄Si) 1.59 (d, ${}^{3}J({\rm H},{\rm H}) = 7.3$ Hz, 3H), 2.23 (s, 6 H), 3.68 (s, 3H), 4.03 (q, ${}^{3}J({\rm H},{\rm H}) = 7.3$ Hz, 1H), 6.85 (s, 2H) and 7.12-7.32 (m, 5H); $\delta_{\rm C}$ (67.5 MHz; CDCl₃, Me₄Si) 16.16, 21.99, 44.18, 59.60, 125.88, 127.49, 127.58, 127.82, 128.28, 130.43, 141.48 and 146.63; $\nu_{\rm max}/{\rm cm}^{-1}$ 3024, 2968, 2930, 2868, 2824, 1598, 1483, 1451,

1220, 1142, 1015, 874, 771, 756 and 699; *m/z* (EI) 240.1505 (M⁺. C₁₇H₂₀ requires 240.1514), 225 (100%), 209 (7), 195 (11), 165 (8), 105 (7), 91 (5) and 77 (5).

References

1 (*a*) J. Kischel, I. Jovel, K. Mertins, A. Zapf, M. Beller, *Org. Lett.* 2006, **8**, 19; (*b*) I. Iovel, K. Mertins, J. Kischel, A. Zapf, M. Beller, *Angew. Chem. Int. Ed.* 2005, **44**, 3913.

2 (a) D. Xing, B. Guan, G. Cai, Z. Fang, L. Yang, Z. Shi, Org. Lett. 2006, 8, 693;
(b) V. D. Ryabov, A. A. Kozyrev, Neftekhimiya, 1988, 28, 338. (c) A. L. Hansen, J.-P. Ebran, T. M. Gogsig, T. Skrydstrup, Chem. Commun., 2006, 39, 4137.

3 (a) R. L. Augustine, *Catalytic Hydrogenation*, Marcel Dekker, New York, 1965, p 188; (b) R. N. Rylander, *Catalytic Hydrogenation in Organic Synthesis*, Academic Press, New York, 1979, p 325.

4 Y. V. Pozdnyakovich, Y. V.; Savyak, R. P.; Shein, S. M. *Zh. Org. Khim.*, 1984, **20**, 1296.

5 N. Yonezawa, T. Hino, Y. Tokita, K. Matsuda, T. Ikeda, *Tetrahedron*, 1997, **53**, 14287.

6 A. I. Grushin, V. V. Grigor'ev, K. V. Prokof'ev, N. M. Kozlova, *Zh. Org. Khim.*, 1985, **21**, 2176.

7 K. S. Grigor'eva, T. I. Yurzhenko, Dokl. Akad. Nauk SSSR, 1954, 94, 881.

8 P. Bercot, R. Quelet, Compt. Rend., 1962, 255, 130.

9 H. -B. Sun, B. Li, R. Hua, Y. Yin, Eur. J. Org. Chem., 2006, 18, 4231.

10 Kianmehr, E.; Yahyaee, M.; Tabatabai, K. Tetrahedron Lett., 2007, 48, 2713.

11 O. Fukuda, S. Sakaguchi, Y. Ishii, Adv. Synth. Catal., 2001, 343, 809.

12 P.Gogoi, D. Konwar, S. Das Sharma, P. K. Gogoi, *Synth. Commun.*, 2006, **36**, 1259.

13 M. A. Pasha, Synth. Commun., 2006, 36, 2183.

14 O. S. Tee, N. R. Iyengar, J. M. Bennett, J. Org. Chem., 1986, 51, 2585.

15 S. Bhatt, S. K. Nayak, Tetrahedron Lett., 2006, 47, 8395.

16 A. Roy, K. R. Reddy, P. K. Mohanta, H. Ila, H. Junjappa, *Synth. Commun.*, 1999, **29**, 3781.

17 R. H. Rosenwald, J. A. Chenicek, J. Am. Oil Chem. Soc., 1951, 28, 185.

18 B. P. Mason, A. R. Bogdan, A. Goswami, D. T. McQuade, *Org. Lett.*, 2007, **9**, 3449.

19 P. Haider, A. Baiker, J. Catal., 2007, 248, 175.

20 M. H. Sarvari, H. Sharghi, Helv. Chim. Acta, 2005, 88, 2282.

21 S. Sanz, L. A. Jones, F. Mohr, M. Laguna, Organometallics, 2007, 26, 952.

22 J.-H. Li, J.-L. Li, D.-P. Wang, S.-F. Pi, Y.-X. Xie, M.-B. Zhang, X.-C. Hu, J. Org. Chem., 2007, **72**, 2053.

23 H. Namai, H. Ikeda, N. Kato, K. Mizuno, J. Phys. Chem. A, 2007, 111, 4436.

