Supporting Information

An anion receptor with NH and OH groups for hydrogen bonds

Jungjae Ju, Mira Park, Jae-min Suk, Myoung Soo Lah,* and Kyu-Sung Jeong*

J. Ju, J.-m. Suk, Prof. Dr. K.-S. Jeong Center for Bioactive Molecular Hybrids and Department of Chemistry, Yonsei University, Seoul 120-749, Korea. Email: ksjeong@yonsei.ac.kr Fax: (+)82-2-364-7050

M. Park, Prof. Dr. M. S. Lah

Department of Chemistry and Applied Chemistry, College of Science and Technology, Hanyang University, 1271 Sa-1-dong, Ansan, Kyunggi-do 426-791, Korea

Contents

- 1. Synthesis
- 2. Binding Studies
- 3. X-ray Crystallographic Analysis

1. Syntheses of receptor 2

Synthesis and physical properties of 2: A dry Schlenk flask was charged with $1^{[1]}$ (0.74 g, 1.2 mmol), CuI (4.5 mg, 0.02 equiv), PdCl₂(Ph₃P)₂ (17 mg, 0.02 equiv). The flask was capped with a rubber septum, and degassed with nitrogen and vacuum two times prior to the addition in 25 mL dry Et₃N/THF(3:2) were added to a Schlenk tube. 2-Methyl-but-3-yn-2-ol (0.35 mL, 3.0 equiv) were added to a Schlenk tube by gastight syringe. After charged from rubber septum to cock, the degassed mixture was stirred under nitrogen at 60~61 °C for 15 h. The reaction mixture was cooled to ambient temperature, the catalysts was filtered through celite with CH₂Cl₂ and evaporated. The residue was dissolved in CH₂Cl₂, and washed with saturated NaHCO₃ solution and brine. The organic layer was dried over anhydrous Na₂SO₄. After concentration, the residue was purified by column chromatography (CH_2Cl_2 / Hexane= 1:2) to give 2 as white solid (0.51 g, 80%) : mp 319-320 °C; IR (KBr): 3354 (OH and NH overlapped), 2214(C≡C), 1160 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆) δ 11.00 (s, 2H; NH), 8.22 (s, 2H), 7.99 (s, 2H), 7.47 (s, 2H), 5.67 (s, 2H, OH), 1.99 (s, 12H), 1.42 (s, 18H); ¹³C NMR (100 MHz, $CDCl_3$) δ 142.5, 138.7, 125.8, 124.9, 124.0, 121.6, 117.3, 104.4, 97.4, 80.1, 77.0, 67.1, 34.8, 32.0. Anal. Calcd for C₃₆H₄₀N₂O₂: C, 81.17; H, 7.47; N, 5.21. Found: C, 81.15; H, 7.66; N, 5.31.

2. Binding Studies

Titrations were conducted using the UV-visible spectroscopy ($K_a > 5 \times 10^3 \text{ M}^{-1}$) and ¹H NMR spectroscopy ($K_a < 5 \times 10^3 \text{ M}^{-1}$) at 24 ±1 °C.

1) Titrations

a) UV-Visible titration: A stock solution of 2 (2.0×10^{-5} M) in 1% v/v H₂O/CH₃CN (50 mL) was first prepared for the UV/visible titration. Using this solution as a solvent, a stock solution of an anion (0.3-10 mM) was prepared. Small portions of the anion solution were added to the solution of 2 (2.0 mL), and the spectrum was recorded after each addition and 12-15 data points were obtained. Upon addition of the anion solution, the UV/Vis spectra were gradually changed, showing clear isosbestic points at three or four wavelengths as shown below. The association constants (K_a) were determined by nonlinear curve fitting of the titration curves,^[2] plotting absorbance at 340 and 385 nm against equivalents of the anion added. All of the titration curves were well fitted to the expression of a 1:1 binding isotherm.

 ⁽a) K.-J. Chang, D. Moon, M. S. Lah and K.-S. Jeong, Angew. Chem. Int. Ed., 2005, 44, 7926-7929; (b) N.-K. Kim, K.-J. Chang, D. Moon, M. S. Lah and K.-S. Jeong, Chem. Commun., 2007, 3401-3403.
 [2] J. R. Long, R. S. Drago, J. Chem. Edu. 1982, 59, 1037-1089 b) K. A. Connors, Binding Constants; John Wiley & Sons: New York, 1987.

b) ¹H NMR titration: A stock solution (2.0-3.0 mM) of **1** (or **2**) and a stock solution (9-100 mM) of an anion as a tetrabutylammonium in 1% (v/v) H₂O/CD₃CN (1.5 -2.0 mL) were separately prepared. A 500 μ L portion of **1** (or **2**) was transferred to a NMR tube, and an initial NMR spectrum was taken to determine the initial chemical shift of free host. Aliquots of the anion solution were added to the solution of **1** (or **2**) and the spectrum was recorded after each addition. The association constants (*K_a*) were determined by using the non-linear least squares fitting of the titration curves plotting the chemical shift changes of the host NH, OH, and/or CH signals against the molar equivalent of the anion. All of the titration curves were well fitted to the expression of a 1:1 binding isotherm.

a) $\mathbf{2} + TBA^{+}Cl^{-}$

c) $\mathbf{2} + TBA^{+}H_{2}PO_{4}^{-}$

Figure S1. The UV/Vis spectra of **2** upon addition of an anion (left), and experimental (dots) and theoretical (lines) titration curves between **2** and anions (middle, right).

Figure S2. The ¹H NMR titration curves (dot: experimental, line: theoretical) based on chemical shift changes in the NH and OH signals of **2** (1% H₂O/CD₃CN, 24 ±1 °C).

Figure S3. Experimental (dots) and theoretical (lines) titration curves between 1 and anions (left: NH peak, right: aromatic CH) in 1% H₂O/CD₃CN at 24 ±1 °C

2) Job's plots:^[3]

a) UV/Visible spectroscopy: Stock solutions of host (80 μ M) and guest (80 μ M) in 1% H₂O/CH₃CN were prepared in separate volumetric flasks. To an UV/visible cell, a total 2.00 mL solution of a host and guest was added in the following ratios:10:0, 9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, 1:9 and each other spectrum was recorded. Job's plots were constructed by plotting [*HG*]· α against mol fraction.

$$A = A_H + A_{HG}$$

Here, A is the observed UV absorbance of the each solution, and A_H and A_{HG} are corresponding to the UV absorbance of the free host and its complex, respectively.

According to Beer-Lambert's law and by substituting $\alpha = \frac{\varepsilon_{HG}}{\varepsilon_{H}} - 1 = \frac{\Delta \varepsilon_{HG}}{\varepsilon_{H}}$, the above equation becomes

$$[HG]\alpha = \frac{A}{b\varepsilon_H} - [H]_0$$

^[3] K. A. Connors, Binding Constants; John Wiley & Sons: New York, 1987.

b) ¹H NMR spectroscopy: Stock solutions of host (2.0 mM) and guest (2.0 mM) in 1% H_2O/CH_3CN (5.0 mL) were prepared in separate volumetric flasks. Ten 5mm-o.d. NMR tubes were separately filled with total 500 µL solution of the host and guest in the following ratios (µL, host/guest) at 297±1 K: 10:0, 9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, 1:9. The ¹H NMR spectra were obtained for each tube and the host NH signal was used to calculate the complex concentration, [HG] = [H]_t x (δ_{obsd} - δ_{free})/(δ_{com} - δ_{free}). This value was plotted again the mole fraction.

Figure S4. Job's plots between 2 and $Bu_4N^+Cl^-(^{1}H NMR)$, $Bu_4N^+H_2PO_4^-(UV/vis)$, and $Bu_4N^+N_3^-(^{1}H NMR)$

3. X-ray crystallographic Analysis

X-ray crystallographic analysis of [(tetrabutylammonium)₂(2Cl)₂][.]0.5(methylene chloride): A crystal freshly harvested from the mother liquor was coated with paratone oil and the diffraction data were collected at 173 K with a Bruker Smart CCD diffractometer with graphite monochromated Mo-K α radiation ($\lambda = 0.71073$ Å) using SMART and SAINT software packages.^[4] Empirical absorption corrections were applied by use of SADABS program.^[5] The crystal structure was solved by direct method and refined by full-matrix least-squares calculations with SHELXTL-PLUS software package.^[6]

Crystal data: $C_{52,25}H_{76,5}Cl_{1,5}N_3O_2$, fw = 831.84 g mol⁻¹, triclinic, space group P-1, a =16.103(2), b = 17.066(2), c = 22.027(3) Å, α = 112.499(2)°, β = 90.721(3)°, γ = 111.326(2)°, V = 5128.2(13) Å³, T = 173(2) K, Z = 4, μ (Mo K α , λ = 0.71073 Å) = 0.140 mm^{-1} , 26506 reflections were collected, 17623 were unique [R_{int} = 0.0229]. Two 2s, two chlorides, two tetrabutylammonium cations, and a methylene chloride of a half occupancy were found as an asymmetric unit. Some electron densities around a crystallographic inversion center were found in a difference Fourier map and assigned as a non-coordinating methylene chloride molecule with a half occupancy. All non-hyd rogen atoms except the minor occupancy sites of a tert-butyl group of 2 and a tetrabutylammonium cation were refined anisotropically; all hydrogen atoms involved in hydrogen bonds could be found in a difference Fourier map and were refined with assigned isotropic displacement coefficients U(H) = 1.2 (N) or 1.5U (O), while the remaining hydrogen atoms were allowed to ride on their respectiv e atoms with assigned isotropic displacement coefficients U(H) = 1.2 (C) or 1.5U (C_{methyl}). The disordered tert-butyl group and the disordered parts of the tetrabutylammonium cation were restrained in ideal geometries during the least squares refinement. Refinement of the structure converged at a final R1 = 0.0655, wR2 = 0.1571for 12486 reflections with $I > 2\sigma(I)$, R1 = 0.0921, wR2 = 0.1708, GOF = 1.042 for all 26506 reflections. The largest difference peak and hole were 0.669 and -0.443 e·Å⁻³, respectively.

X-ray crystallographic analysis of [(tetrabutylammonium)₂(2H₂PO₄)₂]·3(methylene chloride): A crystal freshly harvested from the mother liquor was coated with paratone oil. The diffraction data were measured at 89 K with synchrotron radiation ($\lambda = 0.70000$ Å) on a 4AMXW ADSC Quantum-210 detector with a Pt-coated Si double crystal

^[4] SMART and SAINT, Area Detector Software Package and SAX Area detector Integration Program; Bruker Analytical X-ray: Madison, WI, 1997.
[5] SADABS, Area Detector Absorption Correction Program; Bruker Analytical X-Ray; Madison, WI, USA, 1997.
[6] G. M. Sheldrick, SHELXTL-PLUS, Crystal Structure Analysis Package; Bruker Analytical X-ray, Madison, WI, 1997.

monochromator at the Pohang Accelerator Laboratory, Korea. The HKL2000 (Ver. 0.98.694)^[7] was used for data collection, cell refinement, reduction, and absorption correction. The structure was solved by direct methods and refined by full-matrix least-squares calculations with the SHELXTL-PLUS software package.

Crystal data: $C_{107}H_{162}Cl_6N_6O_{12}P_2$, fw = 1999.07 g mol⁻¹, monoclinic, space group $P2_1/n$, $a = 15.618(3), b = 25.838(5), c = 30.105(5) Å, \beta = 101.50(3)^{\circ}, V = 11905(4) Å^{3}, T =$ 90(2) K, Z = 4, μ (Mo K α , λ = 0.70000 Å) = 0.226 mm⁻¹, 80737 reflections were collected, 21000 were unique [$R_{int} = 0.0595$]. Two 2s, two dihydrogen phosphates, two tetrabutylammonium cations, four disordered methylene chloride sites were found as an asymmetric unit. Refinement of the structure converged at a final R1 = 0.0880, wR2 =0.2519 for 13091 reflections with I > $2\sigma(I)$. Although four disordered solvent sites were identified, the PLATON SQUEEZE calculation for the disordered solvent region (2432 Å³ 20.4% of the crystal volume)^[8] shows there are 510 solvent electrons per unit cell, which approximately correspond to three CH₂Cl₂ molecules per formula. The structure refinement after modification of the data led to better refinement and data convergence. All non-hydrogen atoms were refined anisotropically; all hydrogen atoms involved in hydrogen bonding could be found in a difference Fourier map and were refined with assigned isotropic displacement coefficients U(H) = 1.2 (N) or 1.5U (O), while the remaining hydrogen atoms were allowed to ride on their respective atoms with assigned isotropic displacement coefficients U(H) = 1.2 (C) or 1.5U (C_{methyl}). The C-C distances of the minor occupancy sites in a disordered tetrabutylammonium cation were restrained in ideal distance during the least-squares refinement. Refinement of the structure converged at a final R1 = 0.0664, wR2 = 0.1843 for 12812 reflections with I > $2\sigma(I)$, R1 = 0.0975, wR2 = 0.2006 for all 21000 reflections. The largest difference peak and hole were 0.433 and -0.578 $e \cdot Å^{-3}$, respectively.

CCDC 674972 and 679730 contain the supplementary crystallographic data for this paper. The data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK.

^[7] Z.Otwinowski and W.Minor, In *Methods in Enzymology*, ed. C. W. Carter, Jr. and R. M. Sweet, Academic Press, New York, Vol. 276, part A, 1997, pp. 307-326.
[8] A. L. Spek, Acta Crystallogr. Sect. A 1990, 46, 194-201.

Figure S9 Two different views of ORTEP plots for the crystal structure of $2 \cdot Bu_4 N^+ Cl^-$ with 20% probability ellipsoids.

Figure S10 Two different views of ORTEP plots for the crystal structure of $(2 \cdot Bu_4N^+H_2PO_4^-)_2$ with 30% probability ellipsoids.

Table S1. Crystal data and structure refinement for [(tetrabutylammonium)₂(**2**Cl)₂]·0.5(methylene chloride).

Empirical formula	C52.25 H76.50 Cl1.50 N3 O2		
Formula weight	831.84		
Temperature	173(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	<i>P</i> -1		
Unit cell dimensions	a = 16.103(2) Å	α=112.499(2)°.	
	b = 17.066(2) Å	β=90.721(3)°.	
	c = 22.027(3) Å	$\gamma = 111.326(2)^{\circ}$.	
Volume	5128.2(13) Å ³		
Z	4		
Density (calculated)	1.077 Mg/m ³		
Absorption coefficient	0.140 mm ⁻¹		
F(000)	1810		
Crystal size	0.95 x 0.75 x 0.43 mm ³		
Theta range for data collection	1.35 to 25.00°.		
Index ranges	-12<=h<=19, -20<=k<=18, -25<=l<=26		
Reflections collected	26506		
Independent reflections	17623 [R(int) = 0.0229]		
Completeness to theta = 25.00°	97.5 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.9424 and 0.8788		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	17623 / 10 / 1160		
Goodness-of-fit on F ²	1.042		
Final R indices [I>2sigma(I)]	R1 = 0.0655, wR2 = 0.1571		
R indices (all data)	R1 = 0.0921, $wR2 = 0.1708$		
Largest diff. peak and hole	0.669 and -0.443 e.Å ⁻³		

Table S2. Crystal data and structure refinement for [(tetrabutylammonium)₂(**2**H₂PO₄)₂]·3(methylene chloride).

Empirical formula	C107 H162 Cl6 N6 O12	C107 H162 Cl6 N6 O12 P2		
Formula weight	1999.07	1999.07		
Temperature	90(2) K			
Wavelength	0.70000 Å			
Crystal system	Monoclinic			
Space group	$P2_1/n$			
Unit cell dimensions	a = 15.618(3) Å	<i>α</i> = 90°.		
	b = 25.838(5) Å	β=101.50(3)°.		
	c = 30.105(6) Å	$\gamma = 90^{\circ}$.		
Volume	11905(4) Å ³			
Z	4			
Density (calculated)	1.138 Mg/m ³	1.138 Mg/m ³		
Absorption coefficient	0.226 mm ⁻¹	0.226 mm ⁻¹		
F(000)	4296	4296		
Crystal size	0.25 x 0.22 x 0.12 mm ³	0.25 x 0.22 x 0.12 mm ³		
Theta range for data collection	1.35 to 25.00°.	1.35 to 25.00°.		
Index ranges	-18<=h<=18, -29<=k<=	-18<=h<=18, -29<=k<=29, -36<=l<=36		
Reflections collected	80737	80737		
Independent reflections	21000 [R(int) = 0.0595]	21000 [R(int) = 0.0595]		
Completeness to theta = 25.00°	95.7 %	95.7 %		
Absorption correction	Empirical	Empirical		
Max. and min. transmission	0.9734 and 0.9457	0.9734 and 0.9457		
Refinement method	Full-matrix least-square	Full-matrix least-squares on F ²		
Data / restraints / parameters	21000 / 10 / 1204	21000 / 10 / 1204		
Goodness-of-fit on F ²	0.971	0.971		
Final R indices [I>2sigma(I)]	R1 = 0.0664, wR2 = 0.1	R1 = 0.0664, WR2 = 0.1843		
R indices (all data)	R1 = 0.0975, wR2 = 0.2	R1 = 0.0975, wR2 = 0.2006		
Extinction coefficient	0.0048(4)	0.0048(4)		
Largest diff. peak and hole	0.433 and -0.578 e.Å ⁻³	0.433 and -0.578 e.Å ⁻³		

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(2A)-H(2A)Cl(1A)	0.91(3)	2.31(3)	3.186(2)	162(2)
N(1A)-H(1A)Cl(1A)	0.88(3)	2.36(3)	3.206(3)	161(3)
O(2A)-H(2OA)Cl(1A)	0.87(4)	2.26(4)	3.124(2)	178(3)
O(1A)-H(1OA)Cl(1A)	0.90(5)	2.22(5)	3.114(3)	175(4)
N(2B)-H(2B)Cl(1B)	0.87(3)	2.46(3)	3.303(2)	162(3)
N(1B)-H(1B)Cl(1B)	0.84(3)	2.46(3)	3.264(2)	161(3)
O(2B)-H(2OB)Cl(1B)	0.91(4)	2.27(4)	3.172(2)	177(3)
O(1B)-H(1OB)Cl(1B)	0.88(4)	2.32(4)	3.192(3)	178(4)

Table S3. Hydrogen bonds for [(tetrabutylammonium)₂(2Cl)₂] \cdot 0.5(methylene chloride) [Å and °].

Table S4. Hydrogen bonds for [(tetrabutylammonium)₂($2H_2PO_4$)₂]·3(methylene chloride) [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1A)-H(1OA)O(1P)	0.857(18)	1.81(2)	2.627(3)	158(4)
O(2A)-H(2OA)O(2B)	0.833(18)	1.89(2)	2.683(3)	160(3)
N(1A)-H(1A)O(2P)	0.87(3)	1.96(3)	2.758(3)	152(3)
N(2A)-H(2A)O(2P)	0.81(3)	2.09(3)	2.845(3)	155(3)
O(3P)-H(3OP)O(2A)	0.858(18)	1.83(2)	2.656(3)	162(3)
O(4P)-H(4OP)O(6P)	0.817(18)	1.806(19)	2.616(3)	172(3)
O(1B)-H(1OB)O(1A)	0.865(19)	2.04(2)	2.895(3)	170(4)
O(2B)-H(2OB)O(6P)	0.850(18)	1.85(2)	2.669(3)	161(4)
N(1B)-H(1B)O(5P)	0.81(3)	2.25(3)	2.967(3)	148(3)
N(2B)-H(2B)O(5P)	0.84(3)	1.89(3)	2.690(3)	158(3)
O(7P)-H(7OP)O(1P)	0.821(18)	2.12(3)	2.640(3)	122(3)
O(8P)-H(8OP)O(1A)	0.859(18)	1.86(2)	2.688(3)	160(3)