<u>Supporting Information</u> Effect of 2' Fluorine Substitutions on DNA i-motif Structure and Stability

Clare P. Fenna[†], Victoria J. Wilkinson[†], John R.P. Arnold[†], Richard Cosstick^{§*}, and Julie Fisher^{†*}.

School of Chemistry, University of Leeds, Leeds, LS2 9JT (UK); Department of Chemistry, University of Liverpool, Crown St., Liverpool, L69 7ZD, UK.

Experimental Details.

Oligonucleotide Synthesis and Purification.

Oligonucleotide strands were synthesised on a solid phase support using phosphoramidite chemistry with an Applied Biosystems ABI 391 PCR-MateTM EP oligonucleotide synthesiser. Phosphoramidites purchased from Glen Research (UK). Standard procedures were adopted for cleavage from CPG and deprotection^[1] except for the modified sequences for which the reaction time was reduced to 5 hours to prevent further reaction at the fluorine modifications.

Samples were purified by reverse phase and ion-exchange High Performance Liquid Chromatography (HPLC) as required ^[1]. Samples were then desalted using a pre-packed sephadex column.

In preparation for UV and NMR experiments samples were heated to 95 0 C for 5 minutes and allowed to cool slowly to room temperature. They were then stored for 1 week at 4 $^{\circ}$ C prior to data collection.

UV Absorbance Melting Experiments.

Ultraviolet absorbance melting experiments were performed on a Hewlett Packard 8452A UV diode array spectrometer with a computer controlled Peltier device..Samples of 5 μ M concentration were heated from 19 °C to 90 °C at intervals of 0.5 °C, with each temperature interval maintained for 5 minutes. T_m values were taken from the first derivative of the signmoidal absorbance versus temperature plots.

NMR spectroscopy.

¹H NMR spectra were recorded for samples in 90% $H_2O/10\%$ D₂O solutions (of 50 mM citrate buffer) at 10 ⁰C using a Bruker DRX 500. 2D NOESY spectra were collected with a mixing time of 200 ms and in 2048 data points. Water suppression was achived using the WATERGATE sequence. Prior to Fourier transformation a window function with gb= 0.02 and lb= -10 was applied in both dimensions.

¹⁹F NMR experiments were run on a Varian Unity 500 Inova spectrometer using an H/F/C probe. The ¹⁹F operating frequency was 470 MHz. A spectral width of 2000 Hz collected in 8192 pairs of complex points was used, giving an acquisition time of 4.1 s. Prior to Fourier transformation a line broadening of - Supplementary Material (ESI) for Chemical Communications This journal is $\textcircled{\mbox{\scriptsize C}}$ The Royal Society of Chemistry 2008

1 Hz and a Gaussian parameter of 0.06 was applied. The solvent induced isotope shift experiments were performed on samples in 5 mm diameter NMR tubes with a co-axial insert containing approximately 60 ul of D_2O external lock. The field position was not changed between samples/experiments.

Imino	TCCCCC δ/ppm	TCC Cf CC δ/ppm
T1	11.431	11.431
C2	15.880	15.831
C3	15.646	15.548
C4	15.438	15.258
C5	15.646	15.625

Table S1. Imino proton shifts for d(TCCCCC) and d(TCCCfCC)

Spectrum 1:¹⁹F NMR spectrum of d(TCCCfCC) in H₂O at 20 °C.

Spectrum 2: ¹⁹F NMR spectrum of d(TCCCfCC) in D₂O at 20 °C

Spectrum 3: The imino-imino region of the 2D NOESY spectrum recorded for d(TCCCfCC) in 90% $H_2O/10\% D_2O$, (50 mM citrate buffer), at 10 ^{0}C .

Supplementary Material (ESI) for Chemical Communications This journal is $\textcircled{\mbox{\scriptsize C}}$ The Royal Society of Chemistry 2008

pKa data for 2' Fluorocytidine

рН	Frequency\Hz
2.7	2738.85
3.0	2734.62
3.2	2753.97
3.4	2782.68
3.6	2821.9
3.8	2877.15
4.0	2932.52
4.1	2989.43
4.2	3021.3
4.3	3059.16
4.4	3084.92
4.5	3117.22
4.6	3140.8
4.7	3154.78
4.8	3179.9
4.9	3200.41
5.0	3219.5
5.2	3251.29
5.4	3270.77
5.6	3286.41
5.8	3296.02
6.0	3304.23
6.5	3313

pH was adjusted using NaOD (40 wt. %, 100 μ l) in RNase free water (900 μ l) and DCl (35 wt. %, 100 μ l) in RNase free water (900 μ l), even though the sample was in 90% H₂O /10 % D₂O.

Spectra were recorded using an HFC triple resonance probe with a 19 F operating frequency of 470 MHz. A Boltzman fit of this data calculates the pKa of the N3 proton to be 4.18 ± 0.02 . The pKa in the

•

oligonucleotide sequence is likely to be a little higher, in line with observations made for each of the natural nucleosides/nucleotides [2].

[1] Murray, J.B.; Collier, A.K; Arnold, J.R.P. *Analytical Biochemistry* 1994, 218, 177.
[2] Blackburn, G.M.; Gait, M.J.; Loakes, D.; Williams, D.M. Ed., *Nucleic Acids in Chemistry and Biology*. 3rd Ed. RSCPublishing, Cambridge, 2006. pg 16.