## **Supporting Information of**

Hydrogen Bonding Assisted Tautomerization of Pyridine Moieties in the

# Coordination Sphere of an Ir(I) Complex

Guoyong Song, Yongxin Li, Shanshan Chen, and Xingwei Li\*

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences,

Nanyang Technological University, Singapore 637616

| General procedures              | S2        |
|---------------------------------|-----------|
| Synthesis of ligands 1, 2 and 3 | S2-S4     |
| Synthesis of iridium complexes  | \$4-\$6   |
| NMR spectra                     |           |
| Crystal data for complex 5a     | \$10-\$21 |

#### **General procedures**

All manipulations were carried out using standard Schlenk techniques or in nitrogen-filled glove-box, except where otherwise noted. All solvent were distilled under N<sub>2</sub> before use and stored glove-box. CDCl<sub>3</sub> was dried by 4Å molecular sieve and CD<sub>2</sub>Cl<sub>2</sub>, DMSO- $d_6$  were obtained in sealed ampules from CIL and were used without further purification. Air-sensitive product were stored and weighted in glove-box.

NMR spectra were obtained on a Bruker DPX 300, AMX400 or 500 spectrometer. All spectra were collected at 298K unless otherwise specified. The chemical shift is given as dimensionless  $\delta$  values and is frequency referenced relative to TMS for <sup>1</sup>H and <sup>13</sup>C NMR. Assignment of <sup>13</sup>C signals were facilitated by HMQC and HMBC spectra. Elemental analyses were performed in the Division of Chemistry and Biological Chemistry, Nanyang Technological University. HRMS spectra were obtained in EI or ESI mode on a Finnigan MAT95XP GC/HRMS system (Thermo Electron Corp.). X-ray crystallographic analysis was performed on a Bruker X8 APEX diffractometer.

#### Synthesis of ligands 1, 2 and 3



Ligand 1 was synthesized from Negishi coupling. 3-Bromopyridine (300 mg, 1.90 mmol) and Pd(PPh<sub>3</sub>)<sub>4</sub> (110 mg, 5mol %) were dissolved in dry toluene (4 ml), to which was added via syringe a 2-Pyridylzinc bromide solution (0.5 M in THF, 3.8 ml, 1.90 mmol). The mixture was then stirred for 24 hours under reflux. All volatiles were then removed and water was added. The mixture was then extracted with dichloromethane and dried over sodium sulfate. Silica gel chromatography (EtOAc/hexane 1:1) gave 1 as a light-yellow oil (225 mg, 1.44 mmol, 76%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$ 9.19 (d, *J* = 2.2 Hz, 1H), 8.73 (d, *J* = 4.7 Hz, 1H), 8.65 (d, *J* = 4.7 Hz, 1H), 8.33 (d, *J* = 8.0 Hz, 1H), 7.75-7.82 (m, 2H), 7.41 (dd, *J* = 8.0, *J* = 2.0 Hz, 1H), 7.29-7.31 (m, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$ 154.8, 150.1, 149.9, 148.2, 137.1, 133.9, 134.4, 123.6, 122.9, 120.7. HRMS: 156.0722 (calculated 156.0682)



Ligand **2** was synthesized from the Stille coupling reaction. 3-Bromo-4-methylpyridine (200 mg, 1.16 mmol) and Pd(PPh<sub>3</sub>)<sub>4</sub> (67 mg, 5 mol %) were dissolved in dry toluene (4 ml), and to which was added 2-(tri-*n*-butylstannyl)pyridine (475 mg, 1.28 mmol). The mixture was stirring for 24 hours under reflux. After removal of toluene under vacuum, the residue was dissolved in

dichloromethane and the palladium black was removed by filtration through Celite. Analytically pure **2** was obtained as an oil after silica gel chromatography using hexanes/ethyl acetate (1:1) as an eluent. Yield: 139 mg (70%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$ 8.71-8.72 (m, 1H), 8.58 (s, 1H), 8.48 (d, *J* = 5.1 Hz, 1H), 7.79 (td, *J* = 7.7, *J* = 1.8 Hz, 1H), 7.41 (d, *J* = 7.8 Hz, 1H), 7.29 (dd, *J* = 7.5, *J* = 4.7 Hz, 1H), 7.20 (d, *J* = 5.0 Hz, 1H), 2.40 (s, 3H, CH<sub>3</sub>). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  156.8, 149.9, 149.6, 149.1, 145.3, 136.6, 136.3, 125.6, 124.1, 122.3, 19.8. HRMS: 170.0833 (calculated 170.0838).



Ligands **3a-e** was synthesized through a directly analogous method for **2**.



N-(4-methyl-5-(pyridin-2-yl)pyridin-2-yl)acetamide (**3a**), white solid, yield 65%. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  8.92 (br, 1H, N*H*), 8.74 (d, *J* = 4.3 Hz, 1H), 8.31 (s, 1H), 8.19 (s, 1H), 7.80 (td, *J* = 7.8, *J* = 1.8 Hz, 1H), 7.41 (d, *J* = 7.8 Hz, 1H), 7.28-7.31 (m, 1H), 2.46 (s, 3H), 2.24 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  168.9, 156.4, 151.1, 149.7, 148.2, 147.9, 136.5, 132.8, 124.2, 122.2, 115.3, 24.8, 20.5. Anal. Calcd for C<sub>13</sub>H<sub>13</sub>N<sub>3</sub>O (227.3): C, 68.70; H, 5.77; N, 18.49; Found: C, 68.88; H, 5.31; N, 18.19.



N-(3-methyl-5-(pyridin-2-yl)pyridin-2-yl)acetamide (**3b**), white solid, yield 60%. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  8.83 (s, 1H), 8.80 (br, 1H, N*H*), 8.72 (d, *J* = 4.8 Hz, 1H), 8.21 (s, 1H), 7.79 (t, *J* = 6.7, 1H), 7.72 (d, *J* = 7.9 Hz, 1H), 7.28-7.30 (m, 1H), 2.38 (s, 3H), 2.33 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  172.1, 154.4, 150.1, 150.0, 144.0, 138.2, 137.0, 132.8, 127.7, 122.6, 120.4, 24.8, 20.5. Anal. Calcd for C<sub>13</sub>H<sub>13</sub>N<sub>3</sub>O (227.3): C, 68.70; H, 5.77; N, 18.49; Found: C, 68.56; H, 5.38; N, 18.30.



N-(3-methyl-5-(pyridin-2-yl)pyridin-2-yl)propionamide (**3c**), white solid, yield 67%. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$ 9.05 (br, 1H, N*H*), 8.83 (d, *J* = 2.0 Hz, 1H), 8.70 (d, *J* = 4.2 Hz, 1H), 8.19 (s, 1H), 7.78 (td, *J* = 7.8, *J* = 1.7 Hz, 1H), 7.71 (d, *J* = 7.9 Hz, 1H), 7.27-7.29 (m, 1H), 2.56 (q, *J* = 7.4 Hz, 2H, CH<sub>2</sub>), 2.37 (s, 3H), 1.26 (t, *J* = 7.6 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$ 173.4, 154.4, 150.3, 149.9, 143.9, 138.3, 137.1, 132.8, 128.2, 122.7, 120.4, 29.9, 18.4, 9.7. Anal. Calcd C<sub>14</sub>H<sub>15</sub>N<sub>3</sub>O (241.3): C, 69.69; H, 6.27; N, 17.41; Found: C, 69.78; H, 6.01; N, 17.50.



N-(5-(pyridin-2-yl)pyridin-2-yl)acetamide (**3d**), white solid, yield 78%. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$ 8.94 (s, 1H), 8.93 (br, 1H, N*H*), 8.70 (d, *J* = 4.7 Hz, 1H), 8.33-8.35 (m, 2H), 7.78 (t, *J* = 7.9 Hz, 1H), 7.71 (d, *J* = 7.9 Hz, 1H), 7.26-7.29 (m, 1H), 2.27 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$ 168.9, 154.4, 151.9, 150.0, 146.3, 137.0, 136.8, 131.1, 122.5, 120.0, 113.8, 24.8. Anal. Calcd C<sub>12</sub>H<sub>11</sub>N<sub>3</sub>O (213.2): C, 67.59; H, 5.20; N, 19.71; Found: C, 67.90; H, 5.31; N, 19.51.



N-(5-(pyridin-2-yl)pyridin-2-yl)propionamide (**3e**), white solid, yield 70%. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): 8.93 (s, 1H), 8.71 (d, J = 4.5 Hz, 1H), 8.67 (br, 1H, N*H*), 8.32-8.37 (m, 2H), 7.78 (td, J = 7.8, J = 1.6Hz, 1H), 7.71 (d, J = 8.0 Hz, 1H), 7.26-7.29 (m, 1H), 2.48 (q, J = 7.5 Hz, 2H), 1.28 (t, J = 7.5 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  172.6, 154.5, 151.9, 149.9, 146.3, 137.0, 136.8, 131.0, 122.5, 120.1, 113.7, 30.8, 9.4. Anal. Calcd C<sub>13</sub>H<sub>13</sub>N<sub>3</sub>O (227.3): C, 68.70; H, 5.77; N, 18.49; Found C, 68.51; H, 5.83; N, 18.64.

#### Synthesis of iridium complexes 4a-e

**General procedure:** To a stirred solution of ligands **3a-e** (0.2mmol) in dry acetone (3ml) was added an acetone solution (2 mL) of  $Ir(COD)_2BF_4$  (0.2 mmol) at room temperature. After stirred for 1 h, the solution became dark green and dark green to black precipitates formed. The solution was concentrated to ca. 0.5 mL, followed by addition of diethyl ether (5 mL). Filtration gives complexes **4a-e** in nearly quantitative yield.

**Complex 4a:** Complex **4a** was synthesized by following the above general procedure using **3a** and Ir(COD)<sub>2</sub>BF<sub>4</sub> in acetone. Yield: 98%. Single crystals suitable for X-ray analysis were obtained by slow diffusion of ether into a CH<sub>2</sub>Cl<sub>2</sub> solution of **4a** after one day. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  13.9 (br, 1H, N*H* of carbene), 10.3 (br, 1H, N*H* of amide), 8.26 (d, *J* = 5.2 Hz, 1H), 7.99-8.06 (m, 2H), 7.44 (td, *J* = 7.8, *J* = 1.4 Hz, 1H), 7.05 (d, *J* = 1.4 Hz, 1H), 5.01 (d, *J* = 2.4 Hz, 2H, COD), 3.85 (t, *J* = 2.3 Hz, 2H, COD), 2.71 (s, 3H, CH<sub>3</sub>), 2.34 (s, 3H, CH<sub>3</sub>), 2.33-2.37 (m, 3H, COD), 2.17-2.25 (m, 3H, COD), 2.12 (s, 2H, COD). <sup>13</sup>C NMR (75 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  180.0 (Ir-*C*), 175.2, 164.4, 151.8, 150.7, 146.6, 142.2, 141.0, 124.6, 123.5, 112.6, 91.1, 63.9, 32.8, 30.0, 24.1 ppm. Anal. Calcd for C<sub>21</sub>H<sub>25</sub>BF<sub>4</sub>IrN<sub>3</sub>O (614.5): C, 41.05; H, 4.10; N, 6.84; Found: C, 41.21; H, 4.31; N, 6.48.

**Complex 4b.** Complex **4b** was synthesized by following the above general procedure using **3a** and Ir(COD)<sub>2</sub>BF<sub>4</sub> in acetone. Yield: 95%. <sup>1</sup>H NMR (300 MHz, DMSO-*d*<sub>6</sub>):  $\delta$ 14.2 (br, 1H, N*H* of carbene), 10.8 (br, 1H, N*H* of amide), 8.72 (s, 1H), 8.66 (d, *J* = 5.4 Hz, 1H), 8.33 (d, *J* = 8.0Hz, 1H), 8.14 (t, *J* = 7.7 Hz, 1H), 7.51 (t, *J* = 6.3 Hz, 1H), 3.80 (br, 4H, COD), 2.35 (s, 3H, CH<sub>3</sub>), 2.34 (s, 3H), 2.27-2.29 (m, 3H, COD), 2.01-2.08 (m, 5H, COD). <sup>13</sup>C NMR (75 MHz, DMSO-*d*<sub>6</sub>):  $\delta$ 175.4 (Ir-*C*), 175.0, 160.1, 150.5, 147.4, 140.4, 138.8, 137.8, 124.9, 121.1, 116.3, 33.0 (br), 24.8, 16.3. Anal. Calcd for C<sub>21</sub>H<sub>25</sub>BF<sub>4</sub>IrN<sub>3</sub>O (614.5): C, 41.05; H, 4.10; N, 6.84; Found: C, 41.43; H, 4.44; N, 6.61.

**Complex 4c.** Complex **4c** was synthesized by following the above general procedure using **3c** and Ir(COD)<sub>2</sub>BF<sub>4</sub> in acetone. Yield: 97%. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  14.5 (br, 1H, N*H* of carbene), 9.6 (br, 1H, N*H* of amide), 8.32 (d, *J* = 4.3 Hz, 1H), 8.06-8.10 (m, 2H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.48 (t, *J* = 6.6 Hz, 1H), 4.92 (br, 2H, COD), 3.88 (br, 2H, COD), 2.84 (q, *J* = 7.4Hz, 2H, CH<sub>2</sub>), 2.69 (s, 3H, CH<sub>3</sub>), 2.38-2.56 (m, 4H, COD), 2.18-2.24 (m, 4H, COD), 1.25 (t, *J* = 7.4 Hz, 1H). <sup>13</sup>C NMR (100 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$ 179.6, 177.6 (Ir-*C*), 163.3, 150.2, 147.2, 142.7, 141.1, 137.7, 125.0, 119.9, 118.4, 90.8, 62.6, 33.1, 30.1, 15.9, 8.3. Anal. Calcd for C<sub>22</sub>H<sub>27</sub>BF<sub>4</sub>IrN<sub>3</sub>O (628.5): C, 42.04; H, 4.33; N, 6.69; Found: C, 41.91; H, 4.52 N, 6.60.

**Complex 4d.** Complex **4d** was synthesized by following the above general procedure using **3d** and Ir(COD)<sub>2</sub>BF<sub>4</sub> in acetone. Yield 96%. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  13.8 (br, 1H, N*H* of carbene), 12.0 (br, 1H, N*H* of amide), 8.74 (d, *J* = 8.6 Hz, 1H), 8.64 (d, *J* = 5.1 Hz, 1H), 8.30 (d, *J* = 7.9 Hz, 1H), 8.14 (t, *J* = 7.6 Hz, 1H), 7.52 (t, *J* = 6.2 Hz, 1H), 7.04 (d, *J* = 8.5 Hz, 1H), 3.78 (br, 4H, COD), 2.27 (s, 3H, CH<sub>3</sub>), 2.25-2.28 (m, 4H, COD), 2.03-2.08 (m, 4H, COD) ppm. <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  178.7 (Ir-C), 174.2, 160.0, 150.4, 149.0, 140.0, 137.9, 137.4, 124.9, 121.0, 106.4, 32.9, 24.7. Anal. Calcd for C<sub>20</sub>H<sub>23</sub>BF<sub>4</sub>IrN<sub>3</sub>O (600.4): C, 40.01; H, 3.86; N, 7.00; Found: C, 40.22; H, 3.91; N, 6.85.

**Complex 4e.** Complex **4e** was synthesized by following the above general procedure using **3e** and  $Ir(COD)_2BF_4$  in acetone. Yield: 98%. <sup>1</sup>H NMR (300 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  14.2 (br, 1H, N*H* of carbene), 10.4 (br, 1H, N*H* of amide), 8.21-8.25 (m, 2H), 8.07 (td, J = 8.0, J = 1.5 Hz, 1H), 7.80 (d,

J = 8.0 Hz, 1H), 7.48 (t, J = 6.0 Hz, 1H), 7.30 (dd, J = 8.7, J = 2.0 Hz, 1H), 5.09 (br, 2H, COD), 3.93 (br, 2H, COD), 2.70 (q, J = 7.4 Hz, 1H), 2.36-2.41 (m, 4H, COD), 2.19-2.28 (m, 4H, COD), 1.24 (t, J = 7.4 Hz, 3H). <sup>13</sup>C NMR (75 MHz, DMSO- $d_6$ ):  $\delta$  178.6 (Ir-*C*), 177.6, 160.0, 150.4, 149.0, 139.9, 137.8, 137.4, 124.8, 121.0, 106.4, 33.0, 31.2, 8.9. Anal. Calcd for C<sub>21</sub>H<sub>25</sub>BF<sub>4</sub>IrN<sub>3</sub>O (614.5): C, 41.05; H, 4.10; N, 6.84; Found 41.24; H, 4.01; N, 6.99.







S9

| Empirical formula                       | Empirical formula C <sub>21</sub> H <sub>25</sub> BF <sub>4</sub> IrN <sub>3</sub> O |                         |  |
|-----------------------------------------|--------------------------------------------------------------------------------------|-------------------------|--|
| Formula weight                          | 614.45                                                                               |                         |  |
| Temperature                             | 173(2) K                                                                             |                         |  |
| Wavelength                              | 0.71073 Å                                                                            |                         |  |
| Crystal system                          | Monoclinic                                                                           |                         |  |
| Space group                             | $P2_1/n$                                                                             |                         |  |
| Unit cell dimensions                    | a = 7.7588(2) Å                                                                      | α= 90°.                 |  |
|                                         | b = 16.9174(5) Å                                                                     | β=103.7470(10)°.        |  |
|                                         | c = 15.9163(5) Å                                                                     | $\gamma = 90^{\circ}$ . |  |
| Volume                                  | 2029.31(10) Å <sup>3</sup>                                                           |                         |  |
| Ζ                                       | 4                                                                                    |                         |  |
| Density (calculated)                    | 2.011 Mg/m <sup>3</sup>                                                              |                         |  |
| Absorption coefficient                  | 6.635 mm <sup>-1</sup>                                                               |                         |  |
| F(000)                                  | 1192                                                                                 |                         |  |
| Crystal size                            | 0.30 x 0.04 x 0.04 mm <sup>3</sup>                                                   |                         |  |
| Theta range for data collection         | 2.41 to 30.54°.                                                                      |                         |  |
| Index ranges                            | -11<=h<=11, -24<=k<=24, -20<=l<=22                                                   |                         |  |
| Reflections collected                   | 32967                                                                                |                         |  |
| Independent reflections                 | 6170 [R(int) = 0.0256]                                                               |                         |  |
| Completeness to theta = $30.54^{\circ}$ | 99.2 %                                                                               |                         |  |
| Absorption correction                   | Semi-empirical from equivaler                                                        | nts                     |  |
| Max. and min. transmission              | 0.7772 and 0.2408                                                                    |                         |  |
| Refinement method                       | Full-matrix least-squares on F <sup>2</sup>                                          |                         |  |
| Data / restraints / parameters          | 6170 / 77 / 343                                                                      |                         |  |
| Goodness-of-fit on F <sup>2</sup>       | 1.061                                                                                |                         |  |
| Final R indices [I>2sigma(I)]           | R indices [I>2sigma(I)] $R1 = 0.0179$ , wR2 = 0.0411                                 |                         |  |
| R indices (all data)                    | R1 = 0.0246, wR2 = 0.0451                                                            |                         |  |
| Largest diff. peak and hole             | 1.377 and -0.610 e•Å-3                                                               |                         |  |

Table 1. Crystal data and structure refinement for complex 4a.

| Table 2.  | Atomic coordinates ( $x \ 10^4$ ) and equivalent isotropic displacement parameters (Å <sup>2</sup> x 10 <sup>3</sup> ) for |
|-----------|----------------------------------------------------------------------------------------------------------------------------|
| 4a. U(eq) | is defined as one third of the trace of the orthogonalized $U^{ij}$ tensor.                                                |

|       | Х        | у        | Z        | U(eq) |
|-------|----------|----------|----------|-------|
| Ir(1) | 7498(1)  | 10208(1) | 2914(1)  | 18(1) |
| B(1)  | 1336(5)  | 7364(2)  | 2333(2)  | 35(1) |
| C(1)  | 8340(30) | 10538(8) | 1731(10) | 38(4) |
| C(2)  | 6801(17) | 10959(9) | 1745(8)  | 26(2) |
| C(1A) | 8470(20) | 10579(7) | 1762(9)  | 36(3) |
| C(2A) | 6717(18) | 10834(9) | 1670(8)  | 37(3) |
| C(3)  | 5336(11) | 10557(5) | 1062(5)  | 31(2) |
| C(4)  | 4289(12) | 9961(6)  | 1492(5)  | 32(2) |
| C(3A) | 4759(11) | 10614(4) | 1264(5)  | 32(2) |
| C(4A) | 4527(11) | 9718(5)  | 1314(4)  | 29(2) |
| C(5)  | 5529(3)  | 9437(2)  | 2197(2)  | 29(1) |
| C(6)  | 7214(4)  | 9108(2)  | 2251(2)  | 27(1) |
| C(7A) | 8376(13) | 9068(7)  | 1587(6)  | 31(2) |
| C(8A) | 8368(13) | 9863(4)  | 1126(5)  | 30(2) |
| C(7)  | 7852(15) | 9107(6)  | 1420(7)  | 31(2) |
| C(8)  | 9088(12) | 9802(5)  | 1359(6)  | 33(2) |
| C(9)  | 9243(3)  | 11810(1) | 3446(2)  | 25(1) |
| C(10) | 9948(3)  | 12423(1) | 3997(2)  | 29(1) |
| C(11) | 9927(3)  | 12361(1) | 4851(2)  | 30(1) |
| C(12) | 9229(3)  | 11687(1) | 5146(2)  | 26(1) |
| C(13) | 8538(3)  | 11080(1) | 4575(1)  | 19(1) |
| C(14) | 7787(3)  | 10325(1) | 4798(1)  | 19(1) |
| C(15) | 7296(3)  | 9812(1)  | 4070(1)  | 18(1) |
| C(16) | 7519(3)  | 10096(1) | 5607(1)  | 20(1) |
| C(17) | 7979(3)  | 10578(2) | 6418(2)  | 26(1) |
| C(18) | 6793(3)  | 9350(1)  | 5681(1)  | 22(1) |
| C(19) | 6373(3)  | 8848(1)  | 4981(1)  | 20(1) |
| C(20) | 5424(3)  | 7524(1)  | 4408(2)  | 27(1) |
| C(21) | 4674(5)  | 6766(2)  | 4663(2)  | 41(1) |
| F(1)  | 2435(3)  | 6708(1)  | 2479(1)  | 54(1) |
| F(2)  | -103(2)  | 7195(1)  | 1626(1)  | 38(1) |
| F(3)  | 680(3)   | 7530(1)  | 3049(1)  | 54(1) |
| F(4)  | 2229(3)  | 8016(1)  | 2119(1)  | 57(1) |

| N(1) | 8559(2) | 11151(1) | 3715(1) | 20(1) |
|------|---------|----------|---------|-------|
| N(2) | 6635(2) | 9089(1)  | 4212(1) | 19(1) |
| N(3) | 5653(3) | 8107(1)  | 5033(1) | 24(1) |
| O(1) | 5808(3) | 7626(1)  | 3718(1) | 34(1) |
|      |         |          |         |       |

Table 3. Bond lengths [Å] and angles  $[\circ]$  for **4a**.

| 1.999(2)   |
|------------|
| 2.0860(19) |
| 2.123(2)   |
| 2.125(2)   |
| 2.200(10)  |
| 2.205(11)  |
| 2.212(10)  |
| 2.232(9)   |
| 1.383(3)   |
| 1.386(4)   |
| 1.387(4)   |
| 1.413(4)   |
| 1.392(11)  |
| 1.551(11)  |
| 1.532(11)  |
| 1.401(11)  |
| 1.569(11)  |
| 1.548(11)  |
| 1.552(12)  |
| 1.567(8)   |
| 1.531(11)  |
| 1.511(7)   |
| 1.406(4)   |
| 1.518(10)  |
| 1.544(8)   |
| 1.532(10)  |
| 1.534(10)  |
| 1.348(3)   |
| 1.385(3)   |
| 1.367(4)   |
| 1.391(4)   |
| 1.390(3)   |
| 1.378(3)   |
| 1.483(3)   |
| 1.407(3)   |
| 1.425(3)   |
|            |

| C(15)-N(2)  | 1.366(3) |
|-------------|----------|
| C(16)-C(18) | 1.397(3) |
| C(16)-C(17) | 1.497(3) |
| C(18)-C(19) | 1.377(3) |
| C(19)-N(2)  | 1.350(3) |
| C(19)-N(3)  | 1.383(3) |
| C(20)-O(1)  | 1.216(3) |
| C(20)-N(3)  | 1.383(3) |
| C(20)-C(21) | 1.503(3) |
|             |          |

| C(15)-Ir(1)-N(1)  | 78.44(8)  |
|-------------------|-----------|
| C(15)-Ir(1)-C(5)  | 94.90(9)  |
| N(1)-Ir(1)-C(5)   | 158.03(9) |
| C(15)-Ir(1)-C(6)  | 98.20(9)  |
| N(1)-Ir(1)-C(6)   | 162.35(9) |
| C(5)-Ir(1)-C(6)   | 38.64(10) |
| C(15)-Ir(1)-C(2A) | 157.6(5)  |
| N(1)-Ir(1)-C(2A)  | 99.6(4)   |
| C(5)-Ir(1)-C(2A)  | 78.6(4)   |
| C(6)-Ir(1)-C(2A)  | 90.0(5)   |
| C(15)-Ir(1)-C(1)  | 167.0(5)  |
| N(1)-Ir(1)-C(1)   | 100.0(5)  |
| C(5)-Ir(1)-C(1)   | 91.0(5)   |
| C(6)-Ir(1)-C(1)   | 79.3(4)   |
| C(2A)-Ir(1)-C(1)  | 35.3(9)   |
| C(15)-Ir(1)-C(2)  | 155.5(5)  |
| N(1)-Ir(1)-C(2)   | 93.2(4)   |
| C(5)-Ir(1)-C(2)   | 84.2(3)   |
| C(6)-Ir(1)-C(2)   | 96.3(4)   |
| C(2A)-Ir(1)-C(2)  | 6.3(8)    |
| C(1)-Ir(1)-C(2)   | 36.7(3)   |
| C(15)-Ir(1)-C(1A) | 165.0(5)  |
| N(1)-Ir(1)-C(1A)  | 97.2(4)   |
| C(5)-Ir(1)-C(1A)  | 94.1(5)   |
| C(6)-Ir(1)-C(1A)  | 81.6(3)   |
| C(2A)-Ir(1)-C(1A) | 36.8(3)   |
| C(1)-Ir(1)-C(1A)  | 3.1(10)   |
| C(2)-Ir(1)-C(1A)  | 37.8(8)   |
|                   |           |

| F(3)-B(1)-F(1)    | 110.9(3)  |
|-------------------|-----------|
| F(3)-B(1)-F(4)    | 110.2(2)  |
| F(1)-B(1)-F(4)    | 110.8(3)  |
| F(3)-B(1)-F(2)    | 108.8(3)  |
| F(1)-B(1)-F(2)    | 108.0(2)  |
| F(4)-B(1)-F(2)    | 108.1(3)  |
| C(2)-C(1)-C(8)    | 144.8(18) |
| C(2)-C(1)-Ir(1)   | 71.9(6)   |
| C(8)-C(1)-Ir(1)   | 109.6(8)  |
| C(1)-C(2)-C(3)    | 104.8(16) |
| C(1)-C(2)-Ir(1)   | 71.4(6)   |
| C(3)-C(2)-Ir(1)   | 109.5(7)  |
| C(2A)-C(1A)-C(8A) | 105.7(16) |
| C(2A)-C(1A)-Ir(1) | 70.3(6)   |
| C(8A)-C(1A)-Ir(1) | 109.8(7)  |
| C(1A)-C(2A)-C(3A) | 143.3(16) |
| C(1A)-C(2A)-Ir(1) | 72.8(6)   |
| C(3A)-C(2A)-Ir(1) | 107.0(7)  |
| C(2)-C(3)-C(4)    | 110.7(8)  |
| C(3)-C(4)-C(5)    | 112.7(6)  |
| C(4A)-C(3A)-C(2A) | 109.4(8)  |
| C(5)-C(4A)-C(3A)  | 108.6(6)  |
| C(6)-C(5)-C(4A)   | 116.5(4)  |
| C(6)-C(5)-C(4)    | 132.2(4)  |
| C(4A)-C(5)-C(4)   | 20.7(3)   |
| C(6)-C(5)-Ir(1)   | 70.77(14) |
| C(4A)-C(5)-Ir(1)  | 116.9(3)  |
| C(4)-C(5)-Ir(1)   | 106.2(4)  |
| C(5)-C(6)-C(7)    | 116.0(5)  |
| C(5)-C(6)-C(7A)   | 131.4(4)  |
| C(7)-C(6)-C(7A)   | 16.3(6)   |
| C(5)-C(6)-Ir(1)   | 70.59(15) |
| C(7)-C(6)-Ir(1)   | 114.6(4)  |
| C(7A)-C(6)-Ir(1)  | 111.7(5)  |
| C(8A)-C(7A)-C(6)  | 110.7(7)  |
| C(7A)-C(8A)-C(1A) | 112.0(8)  |
| C(6)-C(7)-C(8)    | 113.1(8)  |
| C(7)-C(8)-C(1)    | 107.1(10) |

| N(1)-C(9)-C(10)   | 123.0(2)   |
|-------------------|------------|
| C(11)-C(10)-C(9)  | 118.4(2)   |
| C(10)-C(11)-C(12) | 119.8(2)   |
| C(13)-C(12)-C(11) | 120.3(2)   |
| N(1)-C(13)-C(12)  | 119.4(2)   |
| N(1)-C(13)-C(14)  | 114.22(19) |
| C(12)-C(13)-C(14) | 126.3(2)   |
| C(16)-C(14)-C(15) | 120.5(2)   |
| C(16)-C(14)-C(13) | 127.5(2)   |
| C(15)-C(14)-C(13) | 112.03(19) |
| N(2)-C(15)-C(14)  | 116.66(19) |
| N(2)-C(15)-Ir(1)  | 124.57(16) |
| C(14)-C(15)-Ir(1) | 118.70(15) |
| C(18)-C(16)-C(14) | 118.5(2)   |
| C(18)-C(16)-C(17) | 116.0(2)   |
| C(14)-C(16)-C(17) | 125.6(2)   |
| C(19)-C(18)-C(16) | 120.7(2)   |
| N(2)-C(19)-C(18)  | 119.3(2)   |
| N(2)-C(19)-N(3)   | 118.5(2)   |
| C(18)-C(19)-N(3)  | 122.1(2)   |
| O(1)-C(20)-N(3)   | 122.1(2)   |
| O(1)-C(20)-C(21)  | 124.0(2)   |
| N(3)-C(20)-C(21)  | 113.9(2)   |
| C(9)-N(1)-C(13)   | 119.1(2)   |
| C(9)-N(1)-Ir(1)   | 124.50(16) |
| C(13)-N(1)-Ir(1)  | 116.40(14) |
| C(19)-N(2)-C(15)  | 124.30(19) |
| C(20)-N(3)-C(19)  | 126.04(19) |
|                   |            |

Symmetry transformations used to generate equivalent atoms:

Table 4.Anisotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for 4a. The anisotropic displacement factorexponent takes the form:  $-2\pi^2$ [ h<sup>2</sup>a<sup>\*2</sup>U<sup>11</sup> + ... + 2 h k a\* b\* U<sup>12</sup> ]

|       | U <sup>11</sup> | U <sup>22</sup> | U <sup>33</sup> | U <sup>23</sup> | U <sup>13</sup> | U <sup>12</sup> |
|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Ir(1) | 23(1)           | 18(1)           | 12(1)           | 0(1)            | 5(1)            | 0(1)            |
| B(1)  | 45(2)           | 37(2)           | 26(2)           | -12(1)          | 12(1)           | -6(1)           |
| C(1)  | 69(6)           | 24(5)           | 26(6)           | -7(4)           | 18(5)           | -20(5)          |
| C(2)  | 55(4)           | 10(4)           | 9(3)            | 0(3)            | -3(3)           | -6(3)           |
| C(1A) | 69(6)           | 26(5)           | 27(5)           | -1(4)           | 37(5)           | -3(5)           |
| C(2A) | 75(5)           | 14(5)           | 17(4)           | -5(3)           | -1(3)           | -11(3)          |
| C(3)  | 31(4)           | 34(3)           | 24(3)           | 7(3)            | 0(2)            | 4(3)            |
| C(4)  | 35(4)           | 44(5)           | 15(3)           | -3(3)           | 0(3)            | -4(3)           |
| C(3A) | 37(4)           | 33(3)           | 22(3)           | -2(2)           | -4(2)           | 11(3)           |
| C(4A) | 32(3)           | 39(4)           | 14(3)           | -4(2)           | 0(2)            | -1(3)           |
| C(5)  | 31(1)           | 36(1)           | 18(1)           | 2(1)            | 2(1)            | -11(1)          |
| C(6)  | 41(1)           | 26(1)           | 18(1)           | -7(1)           | 13(1)           | -9(1)           |
| C(7A) | 38(4)           | 38(4)           | 20(4)           | -9(3)           | 15(3)           | 0(3)            |
| C(8A) | 39(4)           | 26(3)           | 30(4)           | -4(3)           | 22(3)           | 4(3)            |
| C(7)  | 52(6)           | 16(3)           | 31(5)           | -1(3)           | 17(4)           | 1(4)            |
| C(8)  | 34(4)           | 41(4)           | 28(4)           | -3(3)           | 17(3)           | 0(3)            |
| C(9)  | 30(1)           | 22(1)           | 24(1)           | 2(1)            | 7(1)            | 0(1)            |
| C(10) | 30(1)           | 18(1)           | 37(2)           | 2(1)            | 6(1)            | 1(1)            |
| C(11) | 32(1)           | 23(1)           | 35(1)           | -8(1)           | 4(1)            | -1(1)           |
| C(12) | 30(1)           | 26(1)           | 21(1)           | -6(1)           | 5(1)            | 0(1)            |
| C(13) | 19(1)           | 21(1)           | 17(1)           | -1(1)           | 4(1)            | 3(1)            |
| C(14) | 19(1)           | 25(1)           | 11(1)           | -5(1)           | 0(1)            | 1(1)            |
| C(15) | 19(1)           | 20(1)           | 17(1)           | 0(1)            | 5(1)            | 2(1)            |
| C(16) | 17(1)           | 26(1)           | 15(1)           | 0(1)            | 3(1)            | 4(1)            |
| C(17) | 30(1)           | 34(1)           | 15(1)           | -6(1)           | 6(1)            | -1(1)           |
| C(18) | 24(1)           | 28(1)           | 14(1)           | 2(1)            | 6(1)            | 3(1)            |
| C(19) | 20(1)           | 24(1)           | 17(1)           | 4(1)            | 5(1)            | 3(1)            |
| C(20) | 32(1)           | 25(1)           | 26(1)           | 1(1)            | 10(1)           | -2(1)           |
| C(21) | 63(2)           | 29(1)           | 37(2)           | -1(1)           | 24(1)           | -12(1)          |
| F(1)  | 56(1)           | 52(1)           | 48(1)           | -11(1)          | 1(1)            | 9(1)            |
| F(2)  | 40(1)           | 50(1)           | 27(1)           | -10(1)          | 11(1)           | -3(1)           |
| F(3)  | 87(2)           | 50(1)           | 32(1)           | -17(1)          | 28(1)           | -11(1)          |
| F(4)  | 60(1)           | 49(1)           | 68(1)           | -11(1)          | 29(1)           | -19(1)          |

| -    |       | -     | -     |       |       |       |
|------|-------|-------|-------|-------|-------|-------|
| N(1) | 23(1) | 19(1) | 20(1) | 0(1)  | 6(1)  | 2(1)  |
| N(2) | 23(1) | 21(1) | 14(1) | 0(1)  | 6(1)  | -1(1) |
| N(3) | 31(1) | 24(1) | 18(1) | 2(1)  | 10(1) | -2(1) |
| O(1) | 50(1) | 30(1) | 24(1) | -4(1) | 16(1) | -9(1) |
|      |       |       |       |       |       |       |

|        | Х        | у        | Z        | U(eq) |
|--------|----------|----------|----------|-------|
|        |          |          |          |       |
| H(1)   | 9348     | 10916    | 1914     | 46    |
| H(2)   | 6837     | 11548    | 1799     | 32    |
| H(1A)  | 9452     | 10974    | 1827     | 43    |
| H(2A)  | 6755     | 11413    | 1798     | 45    |
| H(3A)  | 5871     | 10276    | 641      | 37    |
| H(3B)  | 4514     | 10963    | 744      | 37    |
| H(4A)  | 3575     | 9614     | 1040     | 39    |
| H(4B)  | 3459     | 10257    | 1762     | 39    |
| H(3A1) | 3973     | 10886    | 1579     | 39    |
| H(3A2) | 4428     | 10787    | 653      | 39    |
| H(4A1) | 3253     | 9586     | 1222     | 35    |
| H(4A2) | 4992     | 9453     | 859      | 35    |
| H(5)   | 4830(40) | 9204(17) | 2573(17) | 35    |
| H(6)   | 7520(40) | 8670(14) | 2687(16) | 33    |
| H(7A1) | 9608     | 8929     | 1887     | 37    |
| H(7A2) | 7919     | 8651     | 1156     | 37    |
| H(8A1) | 7271     | 9906     | 660      | 36    |
| H(8A2) | 9392     | 9885     | 856      | 36    |
| H(7A)  | 6810     | 9129     | 921      | 38    |
| H(7B)  | 8487     | 8606     | 1381     | 38    |
| H(8A)  | 9122     | 9895     | 749      | 39    |
| H(8B)  | 10307    | 9688     | 1697     | 39    |
| H(9)   | 9243     | 11856    | 2851     | 31    |
| H(10)  | 10433    | 12877    | 3787     | 35    |
| H(11)  | 10388    | 12776    | 5242     | 36    |
| H(12)  | 9224     | 11640    | 5740     | 31    |
| H(17A) | 9266     | 10660    | 6588     | 39    |
| H(17B) | 7593     | 10300    | 6881     | 39    |
| H(17C) | 7380     | 11092    | 6315     | 39    |
| H(18)  | 6588     | 9188     | 6221     | 26    |
| H(21A) | 3617     | 6619     | 4218     | 61    |
| H(21B) | 4350     | 6840     | 5217     | 61    |
| H(21C) | 5565     | 6347     | 4721     | 61    |

Table 5. Hydrogen coordinates (  $x \ 10^4$ ) and isotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for **4a**.

| H(2N) | 6362 | 8758 | 3774 | 23 |
|-------|------|------|------|----|
| H(3N) | 5309 | 7996 | 5508 | 28 |

| Table 6. | Hydrogen | bonds for <b>4a</b> | [Å and ° | ١. |
|----------|----------|---------------------|----------|----|
|          |          |                     | L .      |    |

| d(D-H) | d(HA)                  | d(DA)                                  | <(DHA)                                                       |
|--------|------------------------|----------------------------------------|--------------------------------------------------------------|
| 0.88   | 1.96                   | 2.629(3)                               | 131.8                                                        |
| 0.88   | 1.91                   | 2.782(2)                               | 171.7                                                        |
|        | d(D-H)<br>0.88<br>0.88 | d(D-H) d(HA)<br>0.88 1.96<br>0.88 1.91 | d(D-H) d(HA) d(DA)   0.88 1.96 2.629(3)   0.88 1.91 2.782(2) |

Symmetry transformations used to generate equivalent atoms:

#1 x+1/2,-y+3/2,z+1/2