Total Syntheses of Amythiamicins A, B and C

K.C. Nicolaou,* Dattatraya H. Dethe and David Y.-K. Chen*

Contribution from Chemical Synthesis Laboratory@Biopolis, Institute of Chemical and Engineering Sciences (ICES), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, The Helios Block, #03–08, Singapore 138667 (Singapore) Email: <u>kcn@scripps.edu</u>; <u>david_chen@ices.a=star.edu.sg</u>

Supporting Information Available

- I) Experimental section
- II) Abbreviations
- III) References
- IV) ¹H and ¹³C NMR of all compounds

I) Experimental Section

Experimental Data for Compounds

General Procedures. All reactions were carried out under a nitrogen or argon atmosphere with dry solvents under anhydrous conditions, unless otherwise noted. Dry ethylene glycol dimethyl ether (DME), methylene chloride (CH₂Cl₂) and toluene were obtained by passing commercially available pre-dried, oxygen-free formulations through activated alumina columns. N,N'-dimethylformamide (DMF) and pyridine were purchased in anhydrous form and used without further purification. Water (H₂O), methanol (MeOH) and ethyl acetate (EtOAc) were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Reagents were purchased at the highest commercial quality and used without spectroscopically (¹H NMR) homogeneous materials, unless otherwise stated. Reactions were monitored by thin-layer

chromatography (TLC) carried out on 0.25 mm E. Merck silica gel plates (60F-254) using UV light as visualizing agent and an ethanolic solution of phosphomolybdic acid and cerium sulfate and heat as developing agents. E. Merck silica gel (60, particle size 0.040–0.063 mm) was used for flash column chromatography. Preparative thin-layer chromatography separations were carried out on 0.25 or 2.0 mm E. Merck silica gel plates (60F-254). NMR spectra were recorded on Bruker AV-600 instrument and calibrated using residual undeuterated solvent as an internal reference. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, pent = pentet, hex = hexet, br = broad. IR spectra were recorded on a Perkin-Elmer Spectrum One FTIR spectrometer with diamond ATR accessory. Optical rotation ([α]_D) were recorded on a Perkin-Elmer Model 341 polarimeter at 25 °C using thermostable optical glass cell (100mm path length). LC/MS data were recorded on an Agilent 1100 series LC system coupled to a multimode ESI/APCI Agilent MSD. High-resolution mass spectra (HRMS) were recorded on an Agilent ESI TOF (time of flight) mass spectrometer at 3500 V emitter voltage.

Bis-thiazole 6: To a solution of thioamide **5** (300 mg, 1.29 mmol) in DMF (5 mL) were added pre-dried 4Å MS (1.0 g) and thiazole **4** (540 mg, 1.94 mmol) at 0 °C. The reaction mixture was

warmed to room temperature over a period of 18 h before it was soc concentrated in *vacuo*. The residue was dissolved in EtOAc/H₂O (3:1, 40 mL) and the resulting solution was filtered through a mixture

 EtO_2C **6** of silica gel and Celite[®]. The organic layer was separated, the aqueous was layer extracted with EtOAc (2 × 30 mL), and the combined organic layers were dried (Na₂SO₄) and then concentrated in *vacuo*. To a solution of the resulting residue in CH₂Cl₂

(5 mL) were added pyridine (0.31 mL, 3.87 mmol) and TFAA (0.27 mL, 1.93 mmol) at 0 °C. The resulting mixture was stirred for 3 h, and then Et₃N was added until pH 7–8 was reached. The mixture was concentrated in *vacuo* and the resulting residue was dissolved in EtOAc (40 mL) and brine (10 mL). The aqueous layer was extracted with EtOAc (2 × 20 mL), and the combined organic layers were dried (Na₂SO₄) and then concentrated in *vacuo*. Flash column chromatography (silica, hexanes:EtOAc 5:1 \rightarrow 4:1) afforded bis-thiazole **6** (414 mg, 78 %) as a yellow oil. **6**: $R_{\rm f}$ = 0.30 (silica, hexanes:EtOAc 4:1); $[\alpha]_{\rm D}^{25}$ = -16.7(CH₂Cl₂, *c* = 1.2); IR (film) $v_{\rm max}$ 3443, 3119, 2957, 2930, 2857, 1714, 1486, 1367, 1295, 1236, 1207, 1167, 1096, 1072, 1020, 837, 777 cm⁻¹; ¹H NMR (600 MHz, CD₃CN): δ = 8.26 (s, 1 H), 8.00 (s, 1 H), 6.06–6.02 (m, 1 H), 4.85–4.77 (m, 1 H), 4.37 (q, *J* = 7.2 Hz, 2 H), 2.38–2.30 (m, 1 H), 1.47 (s, 9 H), 1.39 (t, *J* = 7.2 Hz, 3 H), 0.97 (d, *J* = 6.6 Hz, 3 H), 0.95 ppm (d, *J* = 6.6 Hz, 3 H); ¹³C NMR (150 MHz, CD₃CN): δ = 175.2, 163.0, 161.1, 155.8, 148.2, 147.8, 128.3, 116.9, 79.2, 73.9, 61.3, 58.5, 32.8, 27.6, 18.7, 17.1, 13.6 ppm; HRMS(ESI): calcd for C₁₈H₂₅N₃O₄S₂ Na⁺ [M + Na⁺] 434.1178, found 434.1188.

Aldehyde 7: To a solution of ethyl ester 6 (350 mg, 0.85 mmol) in toluene (10 mL) was added DIBAL-H (1.0 M in toluene, 0.85 mL, 0.85 mmol) at -78 °C. The reaction mixture was stirred

separated, and the aqueous layer was extracted with EtOAc (2×40 mL), and the combined

OHO

organic layers were dried (Na₂SO₄) and then concentrated in *vacuo*. Flash column chromatography (silica, hexanes:EtOAc 5:1 \rightarrow 4:1) afforded aldehyde 7 (265 mg, 85 %) as a yellow foam. 7: $R_{\rm f}$ = 0.32 (silica, hexanes:EtOAc 4:1); $[\alpha]_{\rm D}^{25}$ = -25.0 (CH₂Cl₂, *c* = 1.0); IR (film) $v_{\rm max}$ 2931, 1702, 1483, 1368, 1250, 1167, 1100, 1072, 839, 780, 692 cm⁻¹; ¹H NMR (600 MHz, CD₃CN): δ = 9.97 (s, 1 H), 8.37 (s, 1 H), 8.05 (s, 1 H), 6.06–6.00 (m, 1 H), 4.85–4.77 (m, 1 H), 2.38–2.28 (m, 1 H), 1.44 (s, 9 H), 0.98 (d, *J* = 6.6 Hz, 3 H), 0.96 ppm (d, *J* = 6.6 Hz, 3 H); ¹³C NMR (150 MHz, CD₃CN): δ = 184.6, 175.3, 163.9, 155.8, 148.0, 130.5, 79.2, 58.5, 32.8, 27.6, 18.7, 17.1 ppm; HRMS(ESI): calcd for C₁₆H₂₁N₃O₃S₂Na⁺ [M +Na⁺] 390.0916, found 390.0902.

Thiazolidine 9: To a solution of thiazole (290 mg, 0.78 mmol) in CH₂Cl₂ (2 mL) was added TFA (2 mL) at 0 °C. The reaction mixture was warmed to room temperature and stirred for 4 h

before it was concentrated in *vacuo*. The residue was dissolved in MeOH (5 mL) and H₂O (5 mL) and then concentrated in *vacuo*. Addition and evaporation of MeOH (5 mL) and H₂O (5 mL) was repeated two more times. To a solution of the resulting crude thioamine (**8**) in H₂O/MeOH (1:3.75, 12.5 mL) were added aldehyde **7** (240 mg, 0.65 mmol), and KHCO₃ (650 mg, 6.5 mmol) at 0 °C. The reaction mixture was warmed to room temperature over a period of 16

h before it was concentrated in *vacuo*. The residue was extracted with CH_2Cl_2 (2 × 25 mL), and the combined organic layers were dried (Na₂SO₄) and then concentrated in *vacuo*. Flash column chromatography (silica, hexanes:EtOAc 3:1 \rightarrow 1:1) afforded thiazolidine **9** (304 mg, 80 %; ca. 7:3 mixture of diastereoisomers) as a yellow foam. **9**: R_f = 0.39 and 0.29 (silica, hexanes:EtOAc 1:1); IR (film) v_{max} 3442, 3112, 2954, 2929, 2857, 1719, 1493, 1366, 1249, 1216, 1167, 1097, 1071, 838, 777, 701 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆, 50 °C): $\delta = 8.49$ (s, 0.7 H), 8.46 (s, 0.3 H), 8.13 (s, 0.7 H), 8.05 (s, 0.3 H), 7.74 (d, *J* = 8.4 Hz, 1 H), 7.73 (s, 0.7 H), 7.64 (s, 0.3 H), 5.88 (d, *J* = 9.6 Hz, 0.3 H), 5.71 (d, *J* = 9.6 Hz, 0.7 H), 5.32–5.27 (m, 1 H), 4.85 (dd, *J* = 10.8, 7.2 Hz, 0.3 H), 4.66–4.60 (m, 1 H), 4.57 (dd, *J* = 10.8, 7.2 Hz, 0.7 H), 4.35–4.25 (m, 2 H), 3.63 (dd, *J* = 10.8, 3.6 Hz, 0.7 H), 3.59 (dd, *J* = 10.8, 3.6 Hz, 0.3 H), 3.51 (dd, *J* = 10.2, 6.0 Hz, 1 H), 2.28–2.19 (m, 1 H), 1.41 (s, 9 H), 1.32 (t, *J* = 7.2 Hz, 3 H), 0.96 (d, *J* = 7.2 Hz, 3 H), 0.91 ppm (d, *J* = 7.2 Hz, 3 H); ¹³C NMR (150 MHz, DMSO-*d*₆, 25 °C): $\delta = 176.0$, 174.3, 174.2, 170.8, 162.8, 161.2, 156.2, 156.1, 148.2, 146.6, 130.3, 118.5, 117.3, 116.8, 79.0, 66.8, 65.7, 61.2, 60.2, 59.0, 55.4, 32.7, 28.7, 21.2, 19.7, 18.6, 14.7, 14.6 ppm; HRMS(ESI): calcd for C₂₄H₃₁N₅O₄S₄Na⁺ [M + Na⁺] 604.1151, found 604.1142.

Dehydropiperidine 11: To a solution of thiazolidine **9** (150 mg, 0.257 mmol) in pyridine (15 mL) were added BnNH₂ (56 μ L, 0.51 mmol), Ag₂CO₃ (71 mg, 0.257 mmol) and DBU (10 μ L, 0.065 mmol) at -12 °C. The resulting mixture was stirred for 1 h. Cold brine (10 mL) was added

to the black reaction mixture while maintaining the internal solution temperature at -12 °C, followed by addition of EtOAc (30 mL). The reaction mixture was allowed to warm to room temperature over a period of 1 h before it was filtered through a mixture of Celite[®] and silica gel. The organic layer was separated, washed with H₂O (2 × 10

mL), brine (10 mL), dried (Na₂SO₄) and then concentrated in *vacuo* while maintaining the water bath temperature at 28 °C. Flash column chromatography (silica, hexanes:EtOAc 1:1 \rightarrow 3:7, 0.5 % Et₃N) afforded dehydropiperidine **11** (49 mg, 51 %; ca. 1:1 mixture of diastereoisomers) as a yellow foam. **11**: $R_f = 0.26$ (silica, hexanes:EtOAc 3:7); IR (film) ν_{max} 2853, 2052, 1695, 1672, 1620, 1496, 1251, 1166, 1096, 840, 778 cm⁻¹; ¹H NMR (600 MHz, CD₃CN): $\delta = 8.43-8.38$ (m, 1 H), 8.19–8.11 (m, 1 H), 7.75 (s, 1 H), 7.38–7.18 (m, 3 H), 6.15–6.05 (br s, 1 H), 4.80–4.70 (m, 1 H), 4.40–4.25 (m, 2 H), 3.15–2.95 (m, 2 H), 2.88–2.80 (m, 1 H), 2.55–2.40 (m, 7 H), 1.43 (s, 9 H), 1.36 (t, J = 6.6 Hz, 3 H), 0.94 ppm (d, J = 6.6 Hz, 6 H), ¹³C NMR (150 MHz, CD₃CN): $\delta = 170.2$, 163.5, 162.4, 161.6, 161.4, 161.1, 160.8, 155.7, 147.7, 147.2, 139.5, 131.6, 130.9, 128.4, 128.2, 127.3, 126.9, 118.2, 115.7, 115.5, 79.2, 69.7, 67.2, 61.3, 61.0, 60.6, 58.4, 56.7, 46.2, 42.6, 36.3, 32.8, 32.2, 27.6, 23.9, 22.0, 18.7, 17.1, 13.6, 8.1 ppm; HRMS(ESI) calcd for C₃₂H₃₉N₇O₆S₄Na⁺ [M + Na⁺] 768.1736, found 768.1736.

Pyridine 12: To a solution of dehydropiperidine **11** (20 mg, 0.027 mmol) in EtOAc (2 mL) was added DBU (20 μ L, 0.135 mmol) at room temperature. The resulting mixture was heated at

reflux for 5 h. After cooling to room temperature, the reaction mixture was concentrated in *vacuo*. Flash column chromatography (silica, hexanes:EtOAc 2:1 \rightarrow 1:2) afforded pyridine **12** (7.0 mg, 36 %) as a yellow foam. **12**: $R_{\rm f} = 0.40$ (silica, EtOAc/hexane, 1:1); $[\alpha]_{\rm D}^{25} = -14.6$ (c = 2.0, CHCl₃); IR (film): $v_{\rm max} = 2926$, 2855, 1719, 1492,

1244 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 8.43 (d, *J* = 7.8 Hz, 1 H), 8.35 (d, *J* = 7.8 Hz, 1 H), 8.34 (s, 1 H), 8.29 (s, 1 H), 8.02 (s, 1 H), 7.53 (s, 1 H), 5.24 (d, *J* = 9.0 Hz, 1 H), 4.93–4.88 (m, 1 H), 4.48 (q, *J* = 7.2 Hz, 2 H), 4.44 (q, *J* = 7.2 Hz, 2 H), 2.45–2.38 (m, 1 H), 1.51 (s, 9 H), 1.46 (t, *J* = 7.2 Hz, 3 H), 1.41 (t, *J* = 7.2 Hz, 3 H), 1.02 (d, *J* = 6.6 Hz, 3 H), 0.95 ppm (d, *J* = 6.6 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ = 173.2, 168.8, 165.7, 162.4, 161.4, 155.5, 152.9, 150.8, 150.1, 148.6, 148.2, 147.1, 140.2, 130.2, 129.2, 129.2, 127.2, 121.8, 119.3, 116.7, 80.2, 61.6, 57.9, 33.3, 29.7, 28.4, 19.3, 17.4, 14.4 ppm; HRMS (ESI): calcd for $C_{32}H_{34}N_6O_6S_4Na^+$ [M + Na⁺]: 749.1314 found: 749.1313.

Tripeptide 14: To a solution of bis-thiazole carboxylic acid **13** (200 mg, 0.38 mmol) in CH_2Cl_2 (5 mL) was added glycine methyl ester (40 mg, 0.46 mmol), HATU (175 mg, 0.46 mmol) and

*i*Pr₂NEt (0.33 mL, 1.9 mmol) at room temperature. The resulting mixture was stirred for 12 h before it was concentrated in *vacuo*. Flash column chromatography (silica, hexanes:EtOAc 1:2 \rightarrow 0:1) afforded tripeptide 14 (136 mg, 60 %) as an oil. 14: $R_{\rm f}$

= 0.40 (silica, EtOAc); $[\alpha]_D^{25} = -35.0$ (CHCl₃, c = 0.8); IR (film) v_{max} 3333, 2962, 2925, 1746, 1712, 1660, 1547, 1500 cm⁻¹; ¹H NMR (600 MHz, CD₃CN): $\delta = 8.12$ (d, J = 8.4 Hz, 1 H), 8.07–8.02 (m, 1 H), 8.06 (s, 1 H), 6.60 (d, J = 6.6 Hz, 1 H), 6.55 (br s, 1 H), 5.27 (dd, J = 9.0, 6.0 Hz, 1 H), 5.20–5.13 (m, 1 H), 4.13 (t, J = 5.4 Hz, 2 H), 3.87 (d, J = 5.4 Hz, 1 H), 3.73 (s, 3 H), 2.84 (d, J = 6.0 Hz, 1 H), 2.75 (s, 3 H), 2.63 (d, J = 4.8 Hz, 3 H), 2.53–2.42 (m, 1 H), 1.45 (s, 9 H), 1.03 (d, J = 6.6 Hz, 3 H), 1.02 ppm (d, J = 6.6 Hz, 3 H); ¹³C NMR (150 MHz, CD₃CN): $\delta = 172.4$, 170.6, 170.5, 168.7, 162.0, 161.0, 155.2, 149.2, 141.8, 141.7, 123.6, 79.5, 56.1, 51.8, 49.9, 48.9, 40.7, 38.9, 36.3, 33.1, 27.6, 25.3, 18.7, 17.4, 11.8 ppm; HRMS (ESI): calcd for C₂₅H₃₆N₆O₇S₂Na⁺ [M +Na⁺] 619.1979, found 619.1974.

Tetrapeptide 17: To a solution of bis-thiazole **14** (143 mg, 0.24 mmol) in DME/H₂O (4:1, 5 mL) was added LiOH (50 mg, 1.2 mmol) at room temperature. The reaction mixture was stirred

for 2 h before it was concentrated in *vacuo*. HCl (1.0 N aq) was added until pH 3 was reached. The resulting mixture was extracted with EtOAc (3×5 mL), the combined organic layers were dried (Na₂SO₄) and the solution was concentrated in *vacuo*. The resulting crude carboxylic acid **15** was used directly without further purification. To a solution of Boc-carbamate **12** (145 mg, 0.2 mmol) in CH₂Cl₂ (4 mL) was added TFA (1 mL) at room temperature. The reaction mixture was

stirred for 2 h before it was concentrated in *vacuo*. The resulting crude amine **16** was used directly without further purification. To a solution of **16** in CH₂Cl₂ (5 mL) were added crude carboxylic acid **15**, HATU (114 mg, 0.3 mmol) and *i*Pr₂NEt (0.17 mL, 1.0 mmol) at room temperature. The resulting mixture was stirred for 16 h before it was concentrated in *vacuo*. Flash column chromatography (silica, hexanes:EtOAc 1:2 \rightarrow 0:1) afforded tetrapeptide **17** (142 mg, 60 % for the two steps) as a white foam. **17**: $R_f = 0.30$ (silica, EtOAc); $[\alpha]_D^{25} = -45.3$ (CHCl₃, *c* = 1.1); IR (film) v_{max} 3351, 2968, 2925, 1715, 1667, 1547, 1494 cm⁻¹; ¹H NMR (600 MHz, CD₃CN): $\delta = 8.43$ (s, 1 H), 8.37 (s, 1 H), 8.32 (d, *J* = 8.4 Hz, 1 H), 8.26 (d, *J* = 8.4 Hz, 1 H), 8.18–8.13 (m, 2 H), 8.12 (s, 1 H), 8.07 (s, 1 H), 7.51 (s, 1 H), 7.45 (d, *J* = 8.4 Hz, 1 H), 6.67–6.60 (m, 2 H), 5.28 (dd, *J* = 9.0, 6.0 Hz, 1 H), 5.19-5.09 (m, 1 H), 4.41 (q, *J* = 7.2 Hz, 2 H), 4.33 (q, *J* = 7.2 Hz, 2 H), 4.19 (dd, *J* = 17.4, 4.8 Hz, 1 H), 4.10 (dd, *J* = 17.4, 4.8 Hz, 1 H), 2.85–2.75 (m, 2 H), 2.71 (s, 3 H), 2.57 (d, *J* = 4.8 Hz, 3 H), 2.45–2.30 (m, 2 H), 1.42 (s, 9 H),

1.41 (t, J = 7.2 Hz, 3 H), 1.33 (t, J = 7.2 Hz, 3 H), 0.98 (d, J = 6.6 Hz, 6 H), 0.96 ppm (d, J = 6.6 Hz, 6 H); ¹³C NMR (150 MHz, CD₃CN): $\delta = 173.1$, 171.9, 170.5, 169.5, 168.7, 168.4, 165.3, 162.0, 162.0, 161.9, 161.7, 161.1, 161.1, 161.0, 153.5, 150.8, 149.3, 148.5, 148.3, 146.8, 141.7, 140.3, 130.8, 130.1, 129.2, 123.6, 122.4, 118.7, 116.3, 79.4, 61.2, 61.1, 56.9, 55.9, 49.8, 42.5, 38.8, 33.4, 32.9, 27.6, 25.3, 18.7, 18.6, 17.2, 13.6, 11.8 ppm; HRMS (ESI): calcd for $C_{51}H_{58}N_{12}O_{10}S_6$ [M + H⁺] 1191.2795, found 1191.2820.

Amythiamicin B (2): To a solution of **17** (100 mg, 0.084 mmol) in DME/H₂O (4:1, 5 mL) was added LiOH (35 mg, 0.84 mmol) at room temperature. The resulting mixture was stirred for 5 h,

at room temperature before it was acidified with HCl (1.0 N, aq). The crude bis-carboxylic acid **18** was used directly without further purification. To a solution of bis-acid **18** in CH₂Cl₂ (4.0 mL) was added TFA (1.0 mL) at room temperature. The reaction mixture was stirred for 2 h before it was concentrated in *vacuo*. To a solution of the resulting crude amino bis-acid in CH₂Cl₂ (67 mL) and DMF (17 mL) were added HATU (160 mg, 0.42 mmol) and *i*Pr₂NEt (0.14 mL, 0.84 mmol) at 0 °C. The reaction mixture was stirred for 3 h at 0 °C before HCl salt of prolinamide-serine

conjugate (21) (100 mg, 0.42 mmol) was added. The reaction mixture was stirred for 24 h before it was concentrated in *vacuo*. Flash column chromatography (silica, EtOAc:MeOH 3:1) afforded amythiamicin B (2) (25 mg, 25 % for the three steps) as a white powder. 2: $R_f = 0.32$ (silica,

EtOAc:MeOH 3:1); $[\alpha]_D^{25} = +154.0$ (MeOH, c = 0.1); IR (film) v_{max} 3397, 2964, 1658, 1539, 1070 cm⁻¹; ¹H NMR (600 MHz, pyridine- d^5): $\delta = 10.19$ (d, J = 6.6 Hz, 1 H), 9.57 (d, J = 9.0 Hz, 1 H), 9.19 (d, J = 7.2 Hz, 1 H), 9.14 (d, J = 7.2 Hz, 1 H), 9.13–9.11 (m, 1 H), 8.84 (s, 1 H), 8.67 (s, 1 H), 8.43 (s, 1 H), 8.37 (s, 1 H), 8.23 (br s, 1 H), 8.20 (br s, 1 H), 8.15 (d, J = 7.8 Hz, 1 H), 8.07 (m, 1 H), 8.03 (d, J = 7.8 Hz, 1 H), 7.70 (s, 1 H), 7.36 (m, 1 H), 5.73 (m, 1 H), 5.64 (m, 1 H), 5.47 (m, 1 H), 5.40 (m, 1 H), 5.33 (m, 1 H), 4.53 (m, 1 H), 4.47 (m, 1 H), 4.20 (m, 1 H), 4.02 (m, 1 H), 3.45 (d, J = 15.6 Hz, 1 H), 2.66 (d, J = 3.6 Hz, 3 H), 2.61 (s, 3 H), 2.30 (m, 1 H), 2.26 (m, 1 H), 2.13 (m, 1 H), 2.11 (m, 1 H), 1.97 (m, 1 H), 1.75 (m, 1 H), 1.71 (m, 1 H), 1.05 (d, J = 6.6 Hz, 3 H), 0.94 (d, J = 6.6 Hz, 3 H), 0.93 (d, J = 6.6 Hz, 3 H), 0.80 ppm (d, J = 7.2 Hz, 3 H); ¹³C NMR (150 MHz, pyridine- d^5): $\delta = 175.5$, 175.0, 171.3, 170.5, 170.4, 169.5, 169.0, 168.5, 165.7, 162.0, 161.7, 161.6, 161.0, 160.8, 154.8, 152.1, 151.1, 149.1, 143.2, 141.0, 140.3, 128.0, 127.4, 126.4, 124.6, 118.6, 115.6, 63.8, 61.0, 60.0, 56.2, 54.0, 49.2, 47.8, 42.0, 39.0, 35.3, 33.9, 30.0, 26.3, 25.1, 19.7, 19.3, 18.5, 18.2, 12.2 ppm; HRMS (ESI): calcd for C₅₀H₅₃N₁₅O₉S₆Na⁺[M + Na⁺] 1222.2367, found 1222.2388.

Table 1. NMR comparison for natural versus synthetic amythiamicin B (2)

Proton	Natural ^[1]	Synthetic	Position	Natural ^[1]	Synthetic
	(Pyridine- <i>d</i> ⁵ , 600 MHz, 25 °C)	(Pyridine- d^5 , 600 MHz, 25 °C)		(Pyridine-d ⁵ ,	(Pyridine- d^5 ,
	δ^{1} H [ppm, mult, J (Hz)]	δ^{1} H [ppm, mult, J (Hz)]		150 MHz,	150 MHz,
				25 °C)	25 °C)
				δ^{13} C (ppm)	δ^{13} C (ppm)
2-Н	8.01 (d, J = 8.1 Hz)	8.03 (d, <i>J</i> = 7.8 Hz)	1	150.9	obscured ^[a]
3-Н	8.15 (d, J = 8.1 Hz)	8.15 (d, J = 7.8 Hz)	2	118.6	118.6
7-H	8.84 (s)	8.84 (s)	3	141.0	141.0
10-H	5.73 (dt, J = 8.9, 3.1 Hz)	5.73 (m)	4	128.0	128.0
11-H _a	1.70 (br dd)	1.71 (m)	5	150.6	obscured ^[a]
11 - H _b	3.45 (dd, J = 16.5, 3.1 Hz)	3.45 (d, J = 15.6 Hz)	6	165.6	165.7
13-H ₃	2.62 (d, J = 4.6 Hz)	2.66 (d, J = 3.6 Hz)	7	126.3	126.4
16-H ₃	2.61 (s)	2.61 (s)	8	151.0	151.1
19-H	$5.47 (\mathrm{dd}, J = 7.7, 4.7 \mathrm{Hz})$	5.47 (m)	9	161.5	161.6
20-Н	2.30 (m)	2.30 (m)	10	49.1	49.2
21-H ₃	0.94 (d, J = 6.7 Hz)	0.93 (d, J = 6.6 Hz)	11	38.9	39.0
22-H ₃	0.95 (d, J = 6.7 Hz)	0.94 (d, J = 6.6 Hz)	12	170.4	170.5
24-H	8.43 (s)	8.43 (s)	13	26.2	26.3
27-H _a	4.18 (dd, <i>J</i> = 17.1, 3.7 Hz)	4.20 (m)	14	169.5	169.5
27-H _b	5.40 (dd, J = 17.1, 9.3 Hz)	5.40 (m)	15	140.2	140.3
29-Н	$5.33 (\mathrm{dd}, J = 7.8, 6.7 \mathrm{Hz})$	5.33 (m)	16	12.1	12.2
30-H	2.11 (m)	2.11 (m)	17	143.1	143.2
31-H ₃	0.80 (d, J = 6.6 Hz)	0.80 (d, J = 7.2 Hz)	18	162.0	162.0
32-H ₃	1.05 (d, J = 6.6 Hz)	1.05 (d, J = 6.6 Hz)	19	56.2	56.2
34-Н	7.71 (s)	7.70 (s)	20	35.3	35.3
37-Н	8.38 (s)	8.37 (s)	21	18.2	18.2
40-H	8.67 (s)	8.67 (s)	22	18.5	18.5
1′ - H	5.64 (ddd, <i>J</i> = 7.7, 7.1, 6.7 Hz)	5.64 (m)	23	169.0	169.0
2 [′] -H _a	4.47 (m)	4.47 (m)	24	124.6	124.6

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2 [′] -H _b	4.55 (m)	4.53 (m)	25	150.0	obscured ^[a]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2'-OH	7.36 (t, J = 5.2 Hz)	7.36 (m)	26	161.7	161.7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4 [′] -H _a	3.85 (m)	3.84 (m)	27	41.9	42.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 [′] -H _b	4.03 (m)	4.02 (m)	28	171.3	171.3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5 [′] -H _a	1.76 (m)	1.75 (m)	29	60.0	60.0
	5 [′] -H _b	1.96 (m)	1.97 (m)	30	33.8	33.9
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6 [′] -H _a	2.14 (m)	2.13 (m)	31	19.3	19.3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6′-H _b	2.26 (m)	2.26 (m)	32	19.7	19.7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7 [′] -H	$5.10 (\mathrm{dd}, J = 7.5, 4.0 \mathrm{Hz})$	Obscured ^[a]	33	175.5	175.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10-NH	9.58 (d, $J = 8.9$ Hz)	9.57 (d, $J = 9.0$ Hz)	34	115.6	115.6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	12-NH	8.07 (br q, $J = 4.5$ Hz)	8.07 (m)	35	149.0	149.1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	19-NH	9.14 (d, $J = 7.7$ Hz)	9.14 (d, J = 7.2 Hz)	36	160.8	160.8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	27-NH	9.08 (dd, $J = 9.3$, 3.7 Hz)	9.13–9.11 (m)	37	124.2	obscured ^[a]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	29-NH	10.18 (d, J = 6.7 Hz)	10.19 (d, J = 6.6 Hz)	38	154.8	154.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1'-NH	9.19 (d, $J = 7.7$ Hz)	9.19 (d, $J = 7.2$ Hz)	39	168.4	168.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8′-NH _a	8.21	8.20 (br s)	40	127.4	127.4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8'-NH _b	8.22	8.23 (br s)	41	152.1	152.1
$ \begin{vmatrix} 1' & 53.9 & 54.0 \\ 2' & 63.8 & 63.8 \\ 3' & 170.4 & 170.4 \\ 4' & 47.8 & 47.8 \\ 5' & 25.0 & 25.1 \\ 6' & 29.8 & 30.0 \\ 7' & 61.1 & 61.0 \\ 8' & 174.9 & 175.0 \\ \end{vmatrix} $				42	160.9	161.0
$ \begin{vmatrix} 2' & 63.8 & 63.8 \\ 3' & 170.4 & 170.4 \\ 4' & 47.8 & 47.8 \\ 5' & 25.0 & 25.1 \\ 6' & 29.8 & 30.0 \\ 7' & 61.1 & 61.0 \\ 8' & 174.9 & 175.0 \end{vmatrix} $				1΄	53.9	54.0
3' 170.4 170.4 4' 47.8 47.8 5' 25.0 25.1 6' 29.8 30.0 7' 61.1 61.0 8' 174.9 175.0				2'	63.8	63.8
$ \begin{vmatrix} 4' & 47.8 & 47.8 \\ 5' & 25.0 & 25.1 \\ 6' & 29.8 & 30.0 \\ 7' & 61.1 & 61.0 \\ 8' & 174.9 & 175.0 \end{vmatrix} $				3΄	170.4	170.4
5' 25.0 25.1 6' 29.8 30.0 7' 61.1 61.0 8' 174.9 175.0				4΄	47.8	47.8
6 29.8 30.0 7 61.1 61.0 8 174.9 175.0				5΄	25.0	25.1
7' 61.1 61.0 8' 174.9 175.0				6΄	29.8	30.0
8 174.9 175.0				7	61.1	61.0
				8′	174.9	175.0

a. signal obscured by NMR solvent

Amythiamicin A (1): To a solution of amythiamicin B (2) (10 mg, 0.0083 mmol) in CH_2Cl_2 (2 mL) was added DAST (2 μ L, 0.013 mmol) at 25 °C. The reaction mixture was stirred for 1 h

before it was concentrated in *vacuo*. Flash column chromatography (silica, EtOAc:MeOH 3:1) afforded amythiamicin A (1) (6.9 mg, 70 %) as a white powder. 1: $R_f = 0.34$ (silica, EtOAc:MeOH 3:1); $[\alpha]_D^{25} = +124$ (DMSO, c = 0.1); IR (film) v_{max} 3300, 2980, 1657, 1539, 1495, 990 cm⁻¹; ¹H NMR (600 MHz, pyridine d^5): $\delta = 10.15$ (br s, 1 H), 9.56 (d, J = 9.0 Hz, 1 H), 9.12 (d, J = 7.8 Hz, 1 H), 9.08 (br s, 1 H), 8.81 (s, 1 H), 8.40 (s, 1 H), 8.40 (s, 1 H), 8.40 (br s, 1 H), 8.38 (s, 1 H), 8.37 (m, 1 H), 8.34 (br s, 1 H), 8.12 (d, J =

7.8 Hz, 1 H), 8.03 (m, 1 H), 7.68 (s, 1 H), 5.72 (m, 1 H), 5.46 (m, 1 H), 5.46 (m, 1 H), 5.36 (m, 1 H), 5.32 (m, 1 H), 5.30 (m, 1 H), 4.40 (m, 1 H), 4.38 (m, 1 H), 4.18 (dd, J = 16.8, 3.0 Hz, 1 H), 3.98 (m, 1 H), 3.42 (dd, J = 14.4 Hz, 1 H), 2.64 (d, J = 4.2 Hz, 3 H), 2.58 (s, 3 H), 2.29 (m, 1 H), 2.23 (m, 1 H), 2.12 (m, 1 H), 1.97 (m, 1 H), 1.78 (m, 1 H), 1.69 (br dd, 1 H), 1.04 (d, J = 6.6 Hz, 3 H), 0.93 (d, J = 6.7 Hz, 3 H), 0.92 (d, J = 6.7 Hz, 3 H), 0.78 ppm (d, J = 6.6 Hz, 3 H), 1.69 MHz, pyridine- d^5): $\delta = 175.4, 174.7, 171.3, 170.4, 167.5, 169.1, 169.0, 168.5, 165.6, 161.9, 161.7, 161.6, 160.8, 160.4, 154.7, 151.2, 151.0, 149.0, 146.1, 143.1, 141.0, 140.1, 128.2, 127.9, 126.2, 124.5, 124.2, 118.7, 115.5, 69.5, 69.4, 61.1, 60.0, 56.3, 49.1, 47.7, 41.9, 38.9, 35.2, 33.8, 29.8, 26.2, 25.0, 19.7, 19.7, 18.5, 18.2, 12.1 ppm; HRMS (ESI): calcd for C₅₀H₅₁N₁₅O₈S₆Na⁺ [M + Na⁺] 1204.2261, found 1204.2292.$

Table 2. NMR comparison for natural versus synthetic amythiamicin A (1)

Proton	Natural ^[1]	Synthetic	Position	Natural ^[1]	Synthetic
	(Pyridine- <i>d</i> ⁵ , 600 MHz, 25 °C)	(Pyridine-d ⁵ , 600 MHz, 25 °C)		(Pyridine- d^5 ,	(Pyridine- d^5 ,
	δ^{1} H [ppm, mult, J (Hz)]	δ^{1} H [ppm, mult, J (Hz)]		150 MHz,	150 MHz,
				25 °C)	25 °C)
				δ^{13} C (ppm)	δ^{13} C (ppm)
2-Н	8.37 (d, J = 7.9 Hz)	8.37 (m)	1	151.1	151.2
3-Н	8.15 (d, J = 7.9 Hz)	8.12 (d, J = 7.8 Hz)	2	118.6	118.7
7-H	8.83 (s)	8.81 (s)	3	141.1	141.0
10-H	5.73 (dt, J = 9.1, 3.0 Hz)	5.72 (m)	4	127.9	127.9
11 - H _a	1.70 (br dd)	1.69 (br dd)	5	150.6	obscured ^[a]
11 - H _b	3.44 (dd, <i>J</i> = 16.5, 3.0 Hz)	$3.42 (\mathrm{dd}, J = 14.4 \mathrm{Hz})$	6	165.6	165.6
13-H ₃	2.66 (d, J = 4.3 Hz)	2.64 (d, J = 4.2 Hz)	7	126.3	126.2
16-H ₃	2.61 (s)	2.58 (s)	8	151.0	151.0
19 - H	$5.46 (\mathrm{dd}, J = 7.6, 4.6 \mathrm{Hz})$	5.46 (m)	9	161.5	161.6
20-Н	2.30 (m)	2.29 (m)	10	49.0	49.1
21-H ₃	0.94 (d, J = 6.7 Hz)	0.92 (d, J = 6.7 Hz)	11	38.9	38.9
22-H ₃	0.94 (d, J = 6.7 Hz)	0.93 (d, J = 6.7 Hz)	12	170.4	170.4
24-Н	8.43 (s)	8.40 (s)	13	26.2	26.2
27-H _a	4.18 (dd, J = 17.1, 3.7 Hz)	$4.18 (\mathrm{dd}, J = 16.8, 3.0 \mathrm{Hz})$	14	169.5	169.5
27-H _b	5.46 (dd, J = 17.1, 8.8 Hz)	5.46 (m)	15	140.2	140.1
29-Н	$5.30 (\mathrm{dd}, J = 7.8, 7.0 \mathrm{Hz})$	5.30 (m)	16	12.1	12.1
30-Н	2.12 (m)	2.12 (m)	17	143.1	143.1
31-H ₃	0.81 (d, J = 6.6 Hz)	0.78 (d, J = 6.6 Hz)	18	162.0	161.9
32-H ₃	1.05 (d, J = 6.6 Hz)	1.04 (d, J = 6.6 Hz)	19	56.3	56.3
34-Н	7.70 (s)	7.68 (s)	20	35.3	35.2
37-Н	8.38 (s)	8.38 (s)	21	18.2	18.2
40-H	8.42 (s)	8.40 (s)	22	18.5	18.5
1 [′] -H	$5.36 (\mathrm{dd}, J = 9.5, 7.4 \mathrm{Hz})$	5.36 (m)	23	169.0	169.0
2′-H _a	4.40 (dd, J = 17.1, 9.5 Hz)	4.40 (m)	24	124.6	124.5

2 [′] -H _b	5.32 (dd, J = 17.1, 7.4 Hz)	5.32 (m)	25	150.0	obscured ^[a]
4′-H _a	3.98 (m)	3.98 (m)	26	161.7	161.7
4 [′] -H _b	4.38 (m)	4.38 (m)	27	41.9	41.9
5'-Ha	1.79 (m)	1.78 (m)	28	171.3	171.3
5′-H _b	2.12 (m)	2.12 (m)	29	60.0	60.0
6′-H _a	1.97 (m)	1.97 (m)	30	33.8	33.8
6 [′] -H _b	2.25 (m)	2.23 (m)	31	19.3	19.3
7′-H	$4.93 (\mathrm{dd}, J = 8.4, 3.6 \mathrm{Hz})$	Obscured ^[a]	32	19.7	19.7
10-NH	9.57 (d, $J = 9.1$ Hz)	9.56 (d, J = 9.0 Hz)	33	175.4	175.4
12-NH	8.05 (br q, $J = 4.3$ Hz)	8.03 (m)	34	115.5	115.5
19-NH	9.14 (d, $J = 7.6$ Hz)	9.12 (d, $J = 7.8$ Hz)	35	149.0	149.0
27-NH	9.08 (dd, $J = 8.8$, 3.7 Hz)	9.08 (br s)	36	160.8	160.8
29-NH	10.16 (d, J = 7.0 Hz)	10.15 (br s)	37	124.2	124.2
8 [′] -NH _a	8.21	8.34 (br s)	38	154.8	154.7
8′-NH _b	8.40	8.40 (br s)	39	169.1	169.1
			40	128.2	128.2
			41	146.0	146.1
			42	160.4	160.4
			1΄	69.3	69.4
			2	69.5	69.5
			3'	168.5	168.5
			4	47.7	47.7
			5΄	25.0	25.0
			6΄	29.9	29.8
			7′	61.1	61.1
			8΄	174.7	174.7
o cian	al abcourad by NMP calvant				

a. signal obscured by NMR solvent

Amythiamicin C (3): Amythiamicin A (1) (3.0 mg, 0.0025 mmol) was treated with HC1 (1.0 N, aq, 3 ml) at 110 °C for 1 h in a sealed tube before it was concentrated under reduced pressure.

Preparative TLC purification (silica, EtOAc:MeOH 3:1) afforded amythiamicin C (**3**) (1.8 mg, 60 %) as a white powder. **3**: $R_f = 0.2$ (silica, EtOAc:MeOH 3:1); ¹H NMR (600 MHz, pyridine- d^5): $\delta = 10.18$ (d, J = 6.6Hz, 1 H), 9.82 (br s, 1 H), 9.57 (d, J = 8.4 Hz, 1 H), 9.14 (d, J = 7.8 Hz, 1 H), 9.08 (m, 1 H), 8.84 (s, 1 H), 8.53 (s, 1 H), 8.42 (s, 1 H), 8.35 (s, 1 H), 8.30 (d, J =8.4 Hz, 1 H), 8.17 (d, J = 8.4 Hz, 1 H), 8.06 (m, 1 H), 7.70 (s, 1 H), 5.73 (m, 1 H), 5.46 (dd, J = 7.8, 4.8 Hz, 1 H), 5.40 (m, 1 H), 5.40 (m, 1 H), 5.32 (dd, J = 7.8, 7.2 Hz, 1 H), 5.15 (dd, J = 10.8, 5.4 Hz, 1 H), 4.85 (m,

1 H), 4.29 (t, *J* = 7.8 Hz, 1 H), 4.18 (d, *J* = 15.6 Hz, 1 H), 3.63 (m, 1 H), 3.48 (m, 1 H), 3.45 (m, 1 H), 2.65 (br s, 3 H), 2.59 (s, 3 H), 2.30 (m, 1 H), 2.30 (m, 1 H), 2.23 (m, 1 H), 2.10 (m, 1 H), 1.69 (m, 1 H), 1.67 (m, 1 H), 1.65 (m, 1 H), 1.04 (d, *J* = 6.0 Hz, 3 H), 0.93 (d, *J* = 6.6 Hz, 3 H), 0.80 ppm (d, *J* = 6.6 Hz, 3 H).

Table 3. NMR correct	mparison for	natural v	versus s	ynthetic	amythiamicii	n C	(3))
----------------------	--------------	-----------	----------	----------	--------------	-----	-----	---

Proton	Natural ^[1]	Synthetic
	(Pyridine- d^5 , 600 MHz, 25 °C)	(Pyridine- <i>d</i> ⁵ , 600 MHz, 25 °C)
	δ^{1} H [ppm, mult, J (Hz)]	δ^{1} H [ppm, mult, J (Hz)]
2-Н	8.30 (d, J = 8.2 Hz)	8.30 (d, J = 8.4 Hz)
3-H	8.17 (d, J = 8.2 Hz)	8.17 (d, J = 8.4 Hz)
7-H	8.85 (s)	8.84 (s)
10-H	5.73 (dt, $J = 9.1$, 3.2 Hz)	5.73 (m)
11-H _a	1.70 (m)	1.69 (m)
11 - H _b	3.45 (dd, J = 16.1, 3.2 Hz)	3.45 (m)
13-H ₃	2.66 (d, J = 4.6 Hz)	2.65 (br d)
16-H ₃	2.61 (s)	2.59 (s)
19 - H	$5.46 (\mathrm{dd}, J = 7.9, 4.6 \mathrm{Hz})$	$5.46 (\mathrm{dd}, J = 7.8, 4.8 \mathrm{Hz})$
20-Н	2.30 (m)	2.30 (m)
21-H ₃	0.94 (d, J = 6.7 Hz)	0.93 (d, J = 6.6 Hz)
22-H ₃	0.94 (d, J = 6.7 Hz)	0.93 (d, J = 6.6 Hz)
24-H	8.43 (s)	8.42 (s)
27-H _a	$4.18 (\mathrm{dd}, J = 17.1, 3.7 \mathrm{Hz})$	4.18 (d, J = 15.6 Hz)
27-H _b	$5.40 (\mathrm{dd}, J = 17.1, 9.0 \mathrm{Hz})$	5.40 (m)
29-Н	$5.30 (\mathrm{dd}, J = 7.8, 7.1 \mathrm{Hz})$	5.32 (dd, J = 7.8, 7.2 Hz)
30-H	2.10 (m)	2.10 (m)
31-H ₃	0.81 (d, J = 6.7 Hz)	0.80 (d, J = 6.6 Hz)
32-H ₃	1.05 (d, J = 6.7 Hz)	1.04 (d, J = 6.0 Hz)
34-H	7.71 (s)	7.70 (s)
37-Н	8.36 (s)	8.35 (s)
40-H	8.54 (s)	8.53 (s)
1′ - H	4.86 (br dd, $J = 6.4$, 3.3 Hz)	4.85 (m)
2′-H _a	5.15 (dd, <i>J</i> = 11.6, 6.4 Hz)	5.15 (dd, J = 10.8, 5.4 Hz)
2′-H _b	5.40 (dd, J = 11.6, 3.3 Hz)	5.40 (m)
4 [′] -H _a	3.50 (m)	3.48 (m)

$4'-H_b$	3.63 (m)	3.63 (m)
5 [′] -H _a	1.67 (m)	1.67 (m)
5 [′] -H _b	2.30 (m)	2.30 (m)
6 [′] -H _a	1.65 (m)	1.65 (m)
6 [′] -H _b	2.23 (m)	2.23 (m)
7 [′] -H	4.29 (t, J = 8.2 Hz)	4.29 (t, J = 7.8 Hz)
10-NH	9.57 (d, $J = 9.1$ Hz)	9.57 (d, $J = 8.4$ Hz)
12-NH	8.06 (br q, $J = 4.6$ Hz)	8.06 (m)
19-NH	9.14 (d, J = 7.7 Hz)	9.14 (d, $J = 7.8$ Hz)
27-NH	9.08 (dd, $J = 9.0, 3.7$ Hz)	9.08 (m)
29-NH	10.18 (d, J = 7.1 Hz)	10.18 (d, J = 6.6 Hz)
1 [′] -NH	9.82 (br s)	9.82 (br s)

II) Abbreviations

- TFA = trifluoroacetic acid
- TFAA = trifluoroacetic anhydride
- DIBAL-H = diisobutylaluminium hydride
- Bn = benzyl
- DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene

HATU = O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate

DAST = N, N' -diethylaminosulfur trifluoride

III) References

K. Shimanaka, Y. Takahashi, H. Iinuma, H. Naganawa and T. Takeuchi, J. Antibiot.
1994, 47, 1153–1159.

IV) ¹H and ¹³C NMR of all compounds

¹H NMR spectrum (600 MHz, CD₃CN)

¹H NMR spectrum (600 MHz, CD₃CN)

¹³C NMR spectrum (150 MHz, CD₃CN)

