Double decarboxylative Claisen rearrangement reactions: microwave-assisted *de novo* synthesis of pyridines

Donald Craig, Federica Paina and Stephen C. Smith

General experimental:

Melting points were determined using Stuart Scientific SMP1 melting point apparatus and are uncorrected. Infrared spectra were recorded on a Mattson 5000 FTIR spectrometer and on a Perkin-Elmer Spectrum RX FT-IR System. Proton magnetic resonance (¹H NMR) and carbon magnetic resonance (¹³C NMR) spectra were recorded in CDCl₃ unless otherwise stated on a Jeol GSX-270, a Bruker DRX-300, a Bruker AV-400 or a Bruker AV-500 spectrometer. Chemical shifts are in part per million (ppm) and are referenced relative to the residual proton-containing solvent (¹H NMR: 7.26 ppm for CDCl₃; ¹³C NMR: 77.0 ppm for CDCl₃). The following abbreviations are used to indicate the multiplicities: s, singlet, bs, broad signal; d, doublet; t, triplet; m multiplet. Mass spectra (CI) were recorded using Micromass AutoSpec-Q, Micromass Platform II or Micromass AutoSpec Premier instruments. Elemental analyses were performed at the microanalytical laboratory of the London Metropolitan University. Analytical thin layer chromatography (TLC) was performed on pre-coated aluminium-backed Merck Kiesegel 60 F₂₅₄ plates. Visualisation was effected with ultraviolet light, potassium permanganate or vanillin as appropriate. Flash chromatography was performed using BDH (40-63 µm) silica gel unless otherwise stated. DMSO and CH₂Cl₂ were distilled under nitrogen from CaH₂ prior to use. All other solvents were reagent-grade. Petrol refers to the fraction with bp₇₆₀ 40-60 °C. All liquid reagents except HCl and Me₂S were distilled prior to use. KOAc was oven-dried at 120 °C for several days prior to use. All other reagents were purchased from Aldrich, Fluka, Acros, Alfa Aesar Lancaster and used as such unless otherwise stated. Microwave-assisted reactions were carried out in a Biotage Initiator instrument. Ozonolyses were performed with using an Ozonia Triogen LAB2B ozone generator.

General procedure for the preparation of diallylic 2-(*p*-toluenesulfonyl)malonates 3a–f: To a solution of diallylic malonates (2 equiv.) in DMSO (*ca.* 2 M) was added very slowly, at rt and under nitrogen solid potassium *tert*-butoxide (2 equiv.). The reaction was stirred for 30 min before the addition of *p*-toluenesulfonyl fluoride (1 equiv.). After stirring overnight at rt, the mixture was poured into aqueous HCl (10%) and extracted twice with ether. The combined organic layers were dried (MgSO₄) and concentrated under reduced pressure. Chromatography gave the diallylic (*p*-toluenesulfonyl)malonates **3a–f** and excess starting malonates. Yields cited for **3** are based on *p*-toluenesulfonyl fluoride; yields cited for recovered starting material are calculated from the total recoverable amount based on the yield of **3** and the amount of malonate used (2 equiv.). For example, a 70% yield of **3** means the total recoverable amount of malonate is (2 - 0.7) = 1.3 equiv.; 74% recovery means that $(0.74 \times 1.3) = 0.962$ equiv. of starting material was recovered.

General procedure for the preparation of pyridines 7a–i: Ozone was bubbled through a solution of a diastereoisomeric mixture of dienes 4 and 6 (1 equiv.) in MeOH:CH₂Cl₂ (1:5, c ~ 0.1 M) at -78 °C, until a blue colour persisted. After bubbling O₂ through the reaction mixture until it returned colourless, the reducing agent was added. After stirring for 3 h at -78 °C the mixture was concentrated under reduced pressure, previous filtering of the resin when solid supported PPh₃ was used as the reducing agent. To a solution of the crude dicarbonyl compound in MeOH (0.1–0.4 M) was added NH₄HCO₃ (*ca.* 8 equiv.) and the mixture was exposed to microwave irradiation for 10 min at 100 °C. The solution was concentrated under reduced pressure. The residue was dissolved in CH₂Cl₂ and then washed twice with H₂O. The organic layer was dried (MgSO₄) and concentrated under reduced pressure to give products, which were purified by chromatography to give the pyridines **7a–i**.

2-(*p*-Toluenesulfonyl)malonic acid allyl ester cinnamyl ester (3a)¹

According to the general procedure, malonic acid allyl ester cinnamyl ester (10.89 g, 41.82 mmol, 2 equiv.) was combined with potassium tert-butoxide (4.707 g, 41.94 mmol, 2 equiv.) and p-toluenesulfonyl fluoride (3.670 g, 21.07 mmol, 1 equiv.) in DMSO (20 mL). Chromatography (10% AcOEt–petrol) gave 2-(p-toluenesulfonyl)malonic acid allyl ester cinnamyl ester **3a** (6.585 g, 76%) as a colourless gum and excess starting malonate (5.627 g, 83% unreacted); v_{max} (film) 3058, 3027, 2946, 1743, 1667, 1596, 1494, 1449, 1336, 1305, 1292, 1276, 1193, 1180, 1151, 1084, 988, 970, 939, 846, 815, 747, 705, 694, 673 cm⁻¹; $\delta_{\rm H}$ (270 MHz) 7.84 (2H, d, J 8.5 Hz, ortho Ts), 7.35-7.25 (7H, m, Ph and meta Ts), 6.63 (1H, d, J 16.0 Hz, =CHPh), 6.21-6.10 (1H, m, CH=CHPh), 5.89-5.76 (1H, m, CH=CH₂), 5.35-5.21 (2H, m, CH=CH₂), 5.02 (1H, s, CHTs), 4.80 (2H, d, J 6.5 Hz, CH₂CH=CHPh), 4.66 (2H, d, J 6.5 Hz, CH₂CH=CH₂), 2.37 (3H, s, CH₃); δ_C (100 MHz) [160.6 and 160.6 (2 x C=O)], 145.9 (*ipso* Ts), [135.7 and 134.0 (*ipso* Ph and para Ts)], 135.6 (CH=CH₂), [130.4, 128.3 and 121.2 (para Ph, =CHPh and CH=CHPh)], [130.1, 129.4, 128.6 and 126.6 (ortho Ph, meta Ph, ortho Ts and meta Ts)] 119.5 (CH₂=CH), 74.4 (CHTs), [67.3 and 67.3 (2 x CH₂O)], 21.6 (CH₃ Ts); m/z (CI) 432 [M+NH₄]⁺, 388, 356 [M+NH₄-CH₃Ph]⁺, 272, 202, 188, 174 [M+NH₄-Ts-CH=CHPh]⁺, 134, 117 (Found: [M+NH₄]⁺, 432.1481. C₂₂H₂₂O₆S requires [M+NH₄]⁺, 432.1481) (Found: C, 63.78; H, 5.40. C₂₂H₂₂O₆S requires C, 63.75; H, 5.35%). Data were in agreement with those previously reported.

2-(*p*-Toluenesulfonyl)malonic acid allyl ester (*E*)-2-methyl-3-phenyl-2-propenyl ester (3b)

According to the general procedure, malonic acid allyl ester (*E*)-2-methyl-3-phenyl-2-propenyl ester (4.491 g, 16.37 mmol, 2 equiv.) was combined with potassium *tert*-butoxide (1.849 g, 16.47 mmol, 2 equiv.) and *p*-toluenesulfonyl fluoride (1.433 g, 8.226 mmol, 1 equiv.) in DMSO

¹ Craig, D.; Lansdell, M. I.; Lewis, S. E. *Tetrahedron Lett.* **2007**, *48*, 7861.

(8.2 mL). Chromatography (10% AcOEt–hexane) gave 2-(p-toluenesulfonyl)malonic acid allyl ester (E)-2-methyl-3-phenyl-2-propenyl ester **3b** (2.517 g, 72%) as a colourless gum and excess starting malonate (2.495 g, 87% unreacted); R_f 0.15 (10% AcOEt–petrol); v_{max} (film) 2937, 1743, 1596, 1446, 1335, 1292, 1276, 1150, 1082, 1019, 992, 937, 815, 749 cm⁻¹; δ_H (270 MHz) 7.85 (2H, d, *J* 8.5 Hz, ortho Ts), 7.31-7.25 (7H, m, Ph and meta Ts), 6.49 (1H, s, =CHPh), 5.88-5.76 (1H, m, CH=CH₂), 5.35-5.21 (2H, m, CH=CH₂), 5.03 (1H, s, CHTs), 4.72 (2H, s, CH₂CMe=), 4.67-4.64 (2H, m, CH₂CH=CH₂), 2.40 (3H, s, CH₃Ts), 1.83 (3H, d, *J* 1.5 Hz, CH₃C=); δ_C (67.5 MHz) [160.9 and 160.8 (2 x C=O)], 146.2 (*ipso* Ts), [136.3, 133.9 and 131.3 (*ipso* Ph, *para* Ts and CH₂CMe=)], [130.6, 129.8 and 127.1 (*para* Ph, =CHPh and CH=CH₂)], [130.2, 129.7, 129.0 and 128.3 (*ortho* Ph, *meta* Ph, *ortho* Ts and *meta* Ts)] 119.7 (CH=CH₂), 74.6 (CHTs), [72.7 and 67.5 (2 x CH₂O)], 21.8 (CH₃ Ts), 15.5 (CH₃C=); *m*/*z* (CI) 446 [M+NH₄]⁺, 362, 356 [M+NH₄-CH₃Ph]⁺, 344, 292 [M+NH₄-Ts-CMe=CHPh-CH=CH₂]⁺, 131 (Found: [M+NH₄]⁺, 446.1625. C₂₃H₂₄O₆S requires [M+NH₄]⁺, 446.1638) (Found: C, 64.45; H, 5.54. C₂₃H₂₄O₆S requires C, 64.47; H, 5.65%).

2-(*p*-Toluenesulfonyl)malonic acid methallyl ester (*E*)-2-methyl-3-phenyl-2-propenyl ester (3c)

According to the general procedure, malonic acid methallyl ester ((*E*)-2-methyl-3-phenyl-2propen)yl ester (3.586 g, 12.44 mmol, 2 equiv.) was combined with potassium *tert*-butoxide (1.405 g, 12.52 mmol, 2 equiv.) and *p*-toluenesulfonyl fluoride (1.087 g, 6.240 mmol, 1 equiv.) in DMSO (6.2 mL). Chromatography (10% AcOEt–petrol) gave 2-(*p*-*toluenesulfonyl)malonic acid methallyl ester* (*E*)-2-*methyl-3-phenyl-2-propenyl ester* **3c** (1.958 g, 71%) as a yellow gum and excess starting malonate (2.111 g, 91% unreacted); R_f 0.14 (10% AcOEt–petrol); v_{max} (film) 2928, 1742, 1653, 1596, 1447, 1335, 1292, 1150, 1083, 1027, 916, 814 cm⁻¹; $\delta_{\rm H}$ (270 MHz) 7.85 (2H, d, *J* 8.5 Hz, *ortho* Ts), 7.37-7.22 (7H, m, Ph and *meta* Ts), 6.49 (1H, s, =CHPh), 5.04 (1H, s, CHTs), [4.98 (1H, bs) and 4.93 (1H, bs), =CH₂], [4.71 (2H, s) and 4.58 (2H, s), 2 x CH₂O], 2.39 (3H, s, CH₃ Ts), [1.83-1.82 (3H, m) and 1.70 (3H, s), CH₃C=CH₂ and CH₃C=CHPh]; $\delta_{\rm C}$ (67.5 MHz) [160.9 and 160.8 (2 x C=O)], [146.1, 138.5, 136.7, 134.3 and 131.3 (*ipso* Ph, *ipso* Ts, *para* Ts, *CMe*=CHPh and *CMe*=CH₂)], [130.2, 129.6, 129.0 and 128.3 (*ortho* Ph, *meta* Ph, *ortho* Ts and *meta* Ts)], [129.9 and 127.1 (*para* Ph and CMe=CHPh)], 114.7 (CMe=CH₂), 74.7 (CHTs), [72.8 and 70.2 (2 x CH₂O)], 21.8 (CH₃ Ts), [19.4 and 15.5 (CCH₃=CHPh and CCH₃=CH₂)]; m/z (CI) 460 [M+NH₄]⁺, 286 [M+NH₄-Ts]⁺, 188, 174, 148 [M+NH₄-Ts-CMe=CHPh-CMe=CH₂]⁺, 131 (Found: [M+NH₄]⁺, 460.1802. C₂₄H₂₆O₆S requires [M+NH₄]⁺, 460.1794) (Found: C, 65.07; H, 5.97. C₂₄H₂₆O₆S requires C, 65.14; H, 5.92%).

2-(*p*-Toluenesulfonyl)malonic acid (*E*)-2-methyl-2-butenyl ester (*E*)-2-methyl-3-phenyl-2propenyl ester (3d)

According to the general procedure, malonic acid ((E)-2-methyl-2-buten)yl ester ((E)-2-methyl-3-phenyl-2-propen)yl ester (9.284 g, 30.71 mmol, 2 equiv.) was combined with potassium tertbutoxide (3.466 g, 30.89 mmol, 2 equiv.) and p-toluenesulfonyl fluoride (2.705 g, 15.53 mmol, 1 equiv.) in DMSO (15 mL). Chromatography $(5\% \rightarrow 10\% \text{ AcOEt-petrol})$ gave 2-(ptoluenesulfonyl)malonic acid (E)-2-methyl-2-butenyl ester (E)-2-methyl-3-phenyl-2-propenyl ester 3d (4.946 g, 71%) as a colourless gum and excess starting malonate (4.862 g, 81%) unreacted); R_f 0.17 (10% AcOEt-petrol); v_{max} (film) 2924, 1741, 1645, 1598, 1446, 1335, 1290, 1180, 1151, 1082, 814, 702, 665 cm⁻¹; $\delta_{\rm H}$ (270 MHz) 7.85 (2H, d, J 8.0 Hz, ortho Ts), 7.37-7.22 (7H, m, Ph and meta Ts), 6.49 (1H, s, =CHPh), 5.56-5.50 (1H, m, CMe=CHMe), 5.02 (1H, s, CHTs), [4.71 (2H, s) and 4.54 (2H, s), 2 x CH₂O], 2.39 (3H, s, CH₃ Ts), 1.82 (3H, d, J 1.0 Hz, CH₃C=CHPh), 1.60-1.57 (3H, m, CMe=CHCH₃), 1.57 (3H, s, CH₃C=CHMe); $\delta_{\rm C}$ (100 MHz) 160.9 (2 x C=O), [145.9, 136.6, 134.3, 131.3 and 129.6 (ipso Ph, ipso Ts, para Ts, CMe=CHPh and CMe=CHMe)], [130.2, 129.5, 128.9 and 128.2 (ortho Ph, meta Ph, ortho Ts and meta Ts)], [129.8, 127.0 and 125.9 (para Ph, CHPh=CMe and CHMe=CMe)], 74.7 (CHTs), [72.9 and 72.6 $(2 \times CH_2O)$], [21.7, 15.4, 13.5 and 13.3 (4 x CH₃)]; m/z (CI) 474 [M+NH₄]⁺, 362, 323, 300, 174, 148 [M+NH₄-Ts-CMe=CHPh-CMe=CHMe]⁺, 131 (Found: [M+NH₄]⁺, 474.1947. C₂₅H₂₈O₆S requires [M+NH₄]⁺, 474.1950) (Found: C, 65.79; H, 6.12. C₂₅H₂₈O₆S requires C, 65.77; H, 6.18%).

2-(p-Toluenesulfonyl)malonic acid methallyl ester cyclohex-1-enylmethyl ester (3e)

According to the general procedure, malonic acid methallyl ester cyclohex-1-enylmethyl ester (1.619 g, 6.418 mmol, 2 equiv.) was combined with potassium tert-butoxide (740 mg, 6.59 mmol, 2 equiv.) and p-toluenesulfonyl fluoride (561 mg, 3.22 mmol, 1 equiv.) in DMSO (3.2 mL). Chromatography $(2\% \rightarrow 20\%$ AcOEt-hexane) gave 2-(p-toluenesulfonyl)malonic acid methallyl ester cyclohex-1-enylmethyl ester **3e** (663 mg, 51%) as a colourless gum and excess starting malonate (828 mg, 69 % unreacted); R_f 0.10 (10% AcOEt-hexane); v_{max} (film) 2931, 1743, 1455, 1336, 1277, 1193, 1180, 1151, 1082, 763, 750, 705 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 7.86 (2H, d, J 8.0 Hz, ortho Ts), 7.34 (2H, d, J 8.0 Hz, meta Ts), 5.74 (1H, bs, CH-2 cyclohexenyl), 5.01 (1H, s, CHTs), [4.99 (2H, bs) and 4.95 (2H, bs), =CH₂], [4.58 (2H, bs) and 4.52 (2H, bs), 2 x CH₂O], 2.45 (3H, s, CH₃ Ts), [2.03-2.02 (2H, m) and 1.90 (2H, m), CH₂-3 and CH₂-6 cyclohexenyl], 1.71 (3H, s, =CCH₃), 1.64-1.54 (4H, m, CH₂-4 and CH₂-5 cyclohexenyl); $\delta_{\rm C}$ (100 MHz) [160.8 and 160.7 (2 x C=O)], [145.8, 138.3, 134.2 and 131.5 (ipso Ts, para Ts, =CMe and C-1 cyclohexenyl)], [130.1 and 129.4 (ortho Ts and meta Ts)], 128.0 (CH-2 cyclohexenyl), 114.4 (=CH₂), 74.5 (CHTs), [71.4 and 69.9 (2 x CH₂O)], [25.5, 24.9, 22.1 and 21.8 (4 x CH₂ cyclohexenyl)], [21.6 and 19.2 (CH₃ Ts and =CCH₃)]; m/z (CI) 424 [M+NH₄]⁺, 336, 330, 270, 189, 172, 112, 95 (Found: $[M+NH_4]^+$, 424.1808. $C_{21}H_{26}O_6S$ requires $[M+NH_4]^+$, 424.1794) (Found: C, 61.95; H, 6.45. C₂₁H₂₆O₆S requires C, 62.05; H, 6.45%).

2-(*p*-Toluenesulfonyl)malonic acid cinnamyl ester cyclohex-1-enylmethyl ester (3f)

According to the general procedure, malonic acid cinnamyl ester cyclohex-1-enylmethyl ester (1.958 g, 6.229 mmol, 2 equiv.) was combined with potassium tert-butoxide (699 mg, 6.23 mmol, 2 equiv.) and p-toluenesulfonyl fluoride (572 mg, 3.28 mmol, 1 equiv.) in DMSO (3 mL). Chromatography ($10\% \rightarrow 20\%$ AcOEt-petrol) gave 2-(p-toluenesulfonyl)malonic acid cinnamyl ester cyclohex-1-envlmethyl ester 3f (1.084 g, 74%) as a colourless gum and excess starting malonate (1.079 g, 88% unreacted); R_f 0.13 (10% AcOEt-petrol); v_{max} (film) 3059, 3028, 2928, 2857, 1743, 1656, 1597, 1494, 1449, 1376, 1336, 1272, 1151, 1083, 1018, 969, 921, 815, 746, 706, 695, 673, 569, 515 cm⁻¹; δ_H (400 MHz) 7.85 (2H, d, J 8.5 Hz, ortho Ts), 7.37-7.26 (7H, m, meta Ts and Ph), 6.64 (1H, d, J 16.0 Hz, =CHPh), 6.17 (1H, dt, J 16.0, 6.5 Hz, CH=CHPh), 5.73 (1H, bs, CH-2 cyclohexenyl), 5.01 (1H, s, CHTs), 4.81 (2H, d, J 6.5 Hz, CH₂CH=CHPh), 4.53 (2H, s, OCH₂-cyclohexenyl), 2.39 (3H, s, CH₃ Ts), [1.99 (2H, bs) and 1.90 (2H, bs), CH₂-3 and CH₂-6 cyclohexenyl], 1.59-1.53 (4H, m, CH₂-4 and CH₂-5 cyclohexenyl); δ_C (100 MHz) 160.9 (2 x C=O), 145.9 (para Ts), [135.8, 134.2 and 131.6 (ipso Ph, ipso Ts and C-1 cyclohexenyl)], [135.7, 128.4, 128.1 and 121.3 (para Ph, =CHPh, CH=CHPh and CH-2 cyclohexenyl)], [130.2, 129.5, 128.6 and 126.7 (ortho Ph, meta Ph, ortho Ts and meta Ts)], 74.6 (CHTs), [71.5 and 67.4 (2 x CH₂O)], [25.6, 25.0, 22.2 and 21.9 (4 x CH₂ cyclohexenyl)], 21.7 (CH₃ Ts); *m/z* (CI) 486 $[M+NH_4]^+$, 348, 326, 174, 134 $[M-COCH(T_s)COOCH_2-cyclohexenyl+H]^+$, 117 (Found: $[M+NH_4]^+$, 486.1962. C₂₆H₂₈O₆S requires $[M+NH_4]^+$, 486.1950) (Found: C, 66.72; H, 5.93. C₂₆H₂₈O₆S requires C, 66.65; H, 6.02%).

3-Phenyl-4-(*p*-toluenesulfonyl)-1,6-heptadiene (4a)

To a mixture of 2-(*p*-toluenesulfonyl)malonic acid allyl ester cinnamyl ester **3a** (3.96 g, 9.64 mmol, 1 equiv.) and potassium acetate (101 mg, 1.03 mmol, 0.1 equiv.) under nitrogen was

added BSA (7.0 mL, 27 mmol, 2.9 equiv.). The mixture was exposed to microwave irradiation for 4 min at 170 °C. Chromatography (5%→10% AcOEt-petrol) gave 3-phenyl-4-(ptoluenesulfonyl)-1,6-heptadiene 4a as a 1:1 mixture of diastereoisomers (2.695 g, 86%) as a colourless gum; R_f 0.34 (10% AcOEt-petrol); v_{max} (film) 3028, 2980, 2921, 1638, 1597, 1493, 1452, 1300, 1289, 1143, 1085, 992, 919, 815 cm⁻¹; δ_H (270 MHz) [7.69 (2H, d, J 8.5 Hz) and 7.58 (2H, d, J 8.5 Hz), ortho Ts of both diastereoisomers], 7.29-7.08 (14H, m, meta Ts and Ph of both diastereoisomers), [6.20-6.01 (2H, m) and 5.67-5.54 (2H, m), CH-2 and CH-6 of both diastereoisomers], 5.22-4.72 (8H, m, CH₂-1 and CH₂-7 of both diastereoisomers), [4.09 (1H, dd, J 8.5, 5.0 Hz) and 4.00-3.94 (1H, m), CHPh of both diastereoisomers], 3.55-3.44 (2H, m, CHTs of both diastereoisomers), 2.74-2.67 (2H, m, CH₂-5 of one diastereoisomer), [2.41 (3H, s), 2.39 (3H, s) and 2.41-2.33 (2H, m), CH₃ of both diastereoisomers and CH₂-5 of one diastereoisomer]; δ_C (67.5 MHz) [144.5, 144.3, 141.1, 140.4, 136.7 and 136.4 (*ipso* Ph, *ipso* Ts and *para* Ts of both diastereoisomers)], [138.1, 135.8, 134.6, 133.6, 127.1 and 126.9 (para Ph, CH-2 and CH-7 of both diastereoisomers)], [129.7, 129.6, 128.9, 128.7, 128.6, 128.6, 128.4 and 128.2 (ortho Ph, meta Ph, ortho Ts and meta Ts of both diastereoisomers)], [118.7, 118.2, 117.7 and 117.0 (CH₂-1 and CH₂-7 of both diastereoisomers)], [68.9 and 68.5 (CHTs of both diastereoisomers)], [49.4 and 48.3 (CHPh of both diastereoisomers)], [31.9 and 30.1 (CH₂-5 of both diastereoisomers)], 21.7 (CH₃ of both diastereoisomers); m/z (CI) 344 [M+NH₄]⁺ (Found: [M+NH₄]⁺, 344.1676. $C_{20}H_{22}O_2S$ requires $[M+NH_4]^+$, 344.1684).

2-Methyl-3-phenyl-4-(*p*-toluenesulfonyl)-1,6-heptadiene (4b) and 2-(*p*-toluenesulfonyl)-3-phenyl-4-methyl-4-pentenoic acid allyl ester (5b)

To a mixture of 2-(*p*-toluenesulfonyl)malonic acid allyl ester (*E*)-2-methyl-3-phenyl-2-propenyl ester **3b** (1.032 g, 2.407 mmol, 1 equiv.) and potassium acetate (56 mg, 0.57 mmol, 0.2 equiv.) under nitrogen was added BSA (1.9 mL, 7.5 mmol, 3.1 equiv.). The mixture was exposed to 4

cycles of microwave irradiation of 3 min each at 200 °C. Chromatography (6% \rightarrow 10% AcOEtpetrol) gave 2-methyl-3-phenyl-4-(p-toluenesulfonyl)-1,6-heptadiene **4b** as a 1:1 mixture of diastereoisomers (630 mg, 77%) as a colourless solid and 2-(p-toluenesulfonyl)-3-phenyl-4methyl-4-pentenoic acid allyl ester **5b** in a 1:1 mixture of diastereoisomers (68 mg, 7%) as a colourless solid.

2-Methyl-3-phenyl-4-(p-toluenesulfonyl)-1,6-heptadiene **4b**; R_f 0.31 (10% AcOEt-petrol); v_{max} (film) 3077, 3028, 2978, 2923, 1640, 1597, 1493, 1452, 1300, 1290, 1142, 1085, 913, 815, 756, 731, 702 cm⁻¹; δ_H (270 MHz) 7.74 (2H, d, J 8.5 Hz, ortho Ts of one diastereoisomer), [7.31-7.17 (8H, m) and 7.00-6.94 (6H, m), Ph and meta Ts of both diastereoisomers], 6.09-5.97 (1H, m, CH-6 of one diastereoisomer), 5.62-5.50 (1H, m, CH-6 of one diastereoisomer), 5.13-4.59 (8H, m, CH₂-1 and CH₂-7 of both diastereoisomers), 4.04-3.75 (4H, m, CH-3 and CH-4 of both diastereoisomers), 2.83-2.33 (4H, m, CH₂-5 of both diastereoisomers), 2.42 (3H, s, CH₃ Ts of one diastereoisomer), 2.31 (3H, s, CH₃ Ts of one diastereoisomer), 1.59 (3H, s, CH₃-2 of one diastereoisomer), 1.51 (3H, s, CH₃-2 of one diastereoisomer); $\delta_{\rm C}$ (67.5 MHz) [145.1, 144.9, 144.5, 143.3, 138.9, 138.8, 137.8 and 136.9 (ipso Ph, ipso Ts, para Ts and C-2 of both diastereoisomers)], [134.8, 133.9, 127.2 and 126.6 (para Ph, and CH-6 of both diastereoisomers)], [129.6, 129.2, 129.1, 128.9, 128.4, 127.9, 127.9 (ortho Ph, meta Ph, ortho Ts and meta Ts)], [118.0, 117.7, 113.7 and 113.5 (CH₂-1 and CH₂-7 of both diastereoisomers)], [66.2 and 65.7 (CHTs of both diastereoisomers)], [53.3 and 52.2 (CHPh of both diastereoisomers)], [31.9 and 31.8 (CH₂-5 of both diastereoisomers)], [21.7, 21.5, 21.1 and 20.6 (CH₃-2 and CH₃ Ts of both diastereoisomers)]; m/z (CI) 358 [M+NH₄]⁺, 341 [M+H]⁺, 268 (Found: $[M+H]^+$, 341.1580. C₂₁H₂₄O₂S requires $[M+H]^+$, 341.1575).

2-(p-*Toluenesulfonyl*)-4-methyl-3-phenyl-4-pentenoic acid allyl ester **5b**; $R_f 0.22$ (10% AcOEtpetrol); v_{max} (film) 3070, 1741, 1647, 1597, 1493, 1452, 1323, 1293, 1145, 1083, 900 cm⁻¹; δ_H (270 MHz) 7.81 (2H, d, *J* 8.5 Hz, *ortho* Ts of one diastereoisomer), 7.31-7.05 (14H, m, *meta* Ts and Ph of both diastereoisomers), 5.90-5.76 (2H, m, *CH*= of both diastereoisomers), 5.38-4.50 (12H, m, CH₂-1, CH=CH₂ and CH₂O of both diastereoisomers), 4.12-4.06 (4H, m, CH-3 and CH-4 of both diastereoisomers), [2.44 (3H, s) and 2.32 (3H, s) CH₃ Ts of both diastereoisomers], 1.61 (6H, bs, CH₃-2 of both diastereoisomers); δ_C (100 MHz) [165.1 and 164.9 (C=O of both diastereoisomers)], [145.6, 145.3, 144.4, 142.5, 138.8, 136.9, 136.1 and 135,2 (*ipso* Ph, *ipso* Ts, *para* Ts and C-2 of both diastereoisomers)], [131.1, 130.7, 129.9, 129.7, 129.2, 129.0, 128.9, 128.6, 128.4, 128.2, 128.0 and 127.3 (*ortho* Ph, *meta* Ph, *para* Ph, *ortho* Ts, *meta* Ts and CH= of both diastereoisomers)], [119.2, 118.9, 114.7 and 111.5 (CH₂-1 and CH=*C*H₂ of both diastereoisomers)], [74.5 and 72.8 (CHTs of both diastereoisomers)], [66.8 and 66.4 (CH₂O of both diastereoisomers)], [52.2 and 51.5 (CHPh of both diastereoisomers)], [21.9, 21.8, 21.7 and 21.5 (CH₃-2 and CH₃ Ts of both diastereoisomers)]; m/z (CI) 402 [M+NH₄]⁺, 318 [M+NH₄-COOCH₂CH=CH₂] (Found: [M+NH₄]⁺, 402.1752. C₂₂H₂₄O₄S requires [M+NH₄]⁺, 402.1739).

2,6-Dimethyl-3-phenyl-4-(p-toluenesulfonyl)-1,6-heptadiene (4c)

To a mixture of 2-(p-toluenesulfonyl)-malonic acid methallyl ester (E)-2-methyl-3-phenyl-2propenyl ester 3c (743 mg, 1.69 mmol, 1 equiv.) and potassium acetate (22 mg, 0.22 mmol, 0.1 equiv.) under nitrogen was added BSA (2.0 mL, 7.9 mmol, 4.7 equiv.). The mixture was exposed to 2 cycles of microwave irradiation of 3 min each at 240 °C. Chromatography $(2\% \rightarrow 10\%)$ AcOEt-petrol) gave 2,6-dimethyl-3-phenyl-4-(p-toluenesulfonyl)-1,6-heptadiene 4c as a 1:1 mixture of diastereoisomers (419 mg, 70%) as a colourless gum; $R_f 0.35$ (10% AcOEt-petrol); v_{max} (film) 3070, 3027, 2970, 2920, 1649, 1597, 1493, 1451, 1301, 1290, 1143, 1085, 895, 753, 701, 667 cm⁻¹; δ_H (270 MHz) 7.71 (2H, d, J 8.0 Hz, ortho Ts of one diastereoisomer), 7.34-7.02 (16H, m, ortho Ts of one diastereoisomer, meta Ts and Ph of both diastereoisomers), 4.99-3.81 (12H, m, CH₂-1, CH-3, CH-4 and CH₂-7 of both diastereoisomers), 2.88-2.13 (4H, m, CH₂-5 of both diastereoisomers), [2.42 (3H, s) and 2.33 (2H, s), CH₃ Ts of both diastereoisomers], [1.70 (3H, s), 1.60 (3H, s), 1.57 (3H, s) and 1.37 (3H, s), CH₃-2 and CH₃-6 of both diastereoisomers]; δ_C (67.5 MHz) [145.7, 144.9, 144.4, 143.6, 142.5, 141.2, 139.2, 138.6, 137.3 and 136.8 (*ipso* Ph, ipso Ts, para Ts, C-2 and C-6 of both diastereoisomers)], [129.7, 129.4, 129.3, 128.9, 128.3 and 128.0 (ortho Ph, meta Ph, ortho Ts and meta Ts of both diastereoisomers)], [127.2 and 126.7 (para Ph of both diastereoisomers)], [114.2, 112.6, 112.6 and 112.1 (CH₂-1 and CH₂-7 of both diastereoisomers)], [64.8 and 64.1 (CHTs of both diastereoisomers)], [54.3 and 52.0 (CHPh of both diastereoisomers)], [35.4 and 34.8 (CH₂-5 of both diastereoisomers)], [22.8, 22.2, 22.0, 21.7, 21.6 and 21.3 (CH₃-2, CH₃-6 and CH₃ Ts of both diastereoisomers)]; m/z (CI) 372 $[M+NH_4]^+$, 219 $[M+NH_4-T_5]^+$, 182 (Found: $[M+H]^+$, 355.1736. $C_{22}H_{26}O_2S$ requires $[M+H]^+$, 355.1732).

2,5,6-Trimethyl-3-phenyl-4-(*p*-toluenesulfonyl)-1,6-heptadiene (4d) and 3,4-dimethyl-2-(*p*-toluenesulfonyl)-4-pentenoic acid (*E*)-2-methyl-3-phenyl-2-propenyl ester (5d)

To a mixture of 2-(*p*-toluenesulfonyl)-malonic acid (*E*)-2-methyl-2-butenyl ester (*E*)-2-methyl-3phenyl-2-propenyl ester **3d** (2.817 g, 6.170 mmol, 1 equiv.) and potassium acetate (76 mg, 0.77 mmol, 0.1 equiv.) under nitrogen was added BSA (5.0 mL, 20 mmol, 3 equiv.). The mixture was exposed to 6 cycles of microwave irradiation of 1 min each at 180 °C. Chromatography ($1\% \rightarrow 5\%$ AcOEt–petrol) gave 2,5,6-trimethyl-3-phenyl-4-(p-toluenesulfonyl)-1,6-heptadiene **4d** as a mixture of diastereoisomers (1.275 g, 56%) as a colourless solid and 2-(p-toluenesulfonyl)-3,4-dimethyl-4-pentenoic acid (E)-2-methyl-3-phenyl-2-propenyl ester **5d** as a 3:2 mixture of diastereoisomers (576 mg, 23%) as a colourless solid.

2,5,6-*Trimethyl-3-phenyl-4*-(p-*toluenesulfonyl)-1*,6-*heptadiene* **4d**; R_f 0.35 (10% AcOEt–petrol); v_{max} (film) 3061, 3028, 2970, 2924, 1643, 1597, 1493, 1452, 1379, 1300, 1144, 1086, 893, 814, 760, 702, 665 cm⁻¹; δ_H (400 MHz) [7.78 (2H, d, *J* 8.5 Hz) and 7.73 (2H, d, *J* 8.5 Hz), *ortho* Ts of 2 diastereoisomers], 7.33-6.87 (32H, m, *ortho* Ts of 2 diastereoisomers and *meta* Ts and Ph of all diastereoisomers), 5.09-4.01 (24H, m, CH₂-1, CH-3, CH-4 and CH₂-7 of all diastereoisomers), [3.43-3.38 (1H, m), 2.96-2.91 (1H, m), 2.84-2.78 (1H, m), CH-5 of 3 diastereoisomers], [2.45 (3H, s), 2.43 (3H, s), 2.38-2.36 (1H, m), 2.33 (3H, s) and 2.30 (3H, s), CH-5 of one diastereoisomer and CH₃ Ts of all diastereoisomers], [2.05 (3H, s), 1.90 (3H, s), 1.80 (3H, s), 1.62 (3H, s) and 1.56-1.14 (24H, m), CH₃-2, CH₃-5 and CH₃-6 of all diastereoisomers]; δ_C (125 MHz) [146.8, 146.2, 145.1, 144.8, 144.8, 144.6, 144.5, 144.2, 143.9, 142.8, 142.6, 140.2, 140.1, 139.7, 139.5, 139.2, 139.1, 138.4 and 138.0 (*ipso* Ph, *ipso* Ts, *para* Ts, C-2 and C-6 of all diastereoisomers)], [129.5, 129.3, 129.2, 129.1, 128.9, 128.8, 128.7, 128.6, 127.8, 127.7, 127.6, 127.2, 127.0, 126.9 and 126.4 (*ortho* Ph, *meta* Ph, *para* Ph, *ortho* Ts and *meta* Ts of all

diastereoisomers)], [114.5, 114.4, 114.1, 113.8, 111.9, 111.4 and 111.2 (CH₂-1 and CH₂-7 of all diastereoisomers)], [67.5, 67.3, 67.1 and 67.0 (CHTs of all diastereoisomers)], [54.1, 53.3, 52.5 and 51.9 (CHPh of all diastereoisomers)], [39.7, 39.3, 38.5 and 38.4 (CHMe of all diastereoisomers)], [22.7, 22.7, 22.3, 21.8, 21.7, 21.5, 21.4, 20.9, 20.8, 20.5, 20.1 and 19.3 (CH₃-2, CH₃-6 and CH₃ Ts of all diastereoisomers)], [14.6, 13.8, 12.7 and 12.6 (CH₃- 5 of all diastereoisomers)]; m/z (CI) 386 [M+NH₄]⁺, 369 [M+H]⁺, 198 (Found: [M+H]⁺, 369.1880; [M+NH₄]⁺, 386.2152. C₂₃H₂₈O₂S requires [M+H]⁺, 369.1888; [M+NH₄]⁺, 386.2154).

3,4-Dimethyl-2-(p-toluenesulfonyl)-4-pentenoic acid (E)-2-methyl-3-phenyl-2-propenyl ester **5d**; R_f 0.31 (10% AcOEt-petrol); v_{max} (film) 2972, 2938, 2924, 1739, 1596, 1493, 1451, 1322, 1290, 1209, 1143, 1083, 902, 815, 751 cm⁻¹; δ_H (270 MHz) 7.79 (2H, d, J 8.5 Hz, ortho Ts of the major diastereoisomer), 7.77 (2H, d, J 8.5 Hz, ortho Ts of the minor diastereoisomer), 7.37-7.20 (14 H, m, meta Ts and Ph of both diastereoisomers), 6.47 (1H, s, CHPh of the minor diastereoisomer), 6.35 (1H, s, CHPh of the major diastereoisomer), 4.86-4.02 (10H, m, CHTs, CH₂-5 and CH₂O of both diastereoisomers), 3.12-3.02 (2H, m, CH-3 of both diastereoisomers), 2.36 (3H, s, CH₃ Ts of the minor diastereoisomer), 2.35 (3H, s, CH₃ Ts of the major diastereoisomer), 1.80 (3H, d, J 1.0 Hz, CH₃C=CHPh of the minor diastereoisomer), 1.72 (3H, d, J 1.0 Hz, CH₃C=CHPh of the major diastereoisomer), 1.68 (3H, s, CH₃-3 of the major diastereoisomer), 1.67 (3H, s, CH₃-3 of the minor diastereoisomer), 1.41 (3H, d, J 7.0 Hz, CH₃-4 of the major diastereoisomer), 1.12 (3H, d, J 7.0 Hz, CH₃-4 of the minor diastereoisomer); δ_C (100 MHz) [165.7 and 165.6 (C=O of both diastereoisomers)], [145.7, 145.2, 145.1, 144.5, 136.7, 135.3, 135.1, 131.5 and 131.5 (ipso Ph, ipso Ts, para Ts, C-4 and CH₃C=CHPh of both diastereoisomers)], [129.6, 129.6, 129.5, 129.4, 129.4, 129.2, 129.0, 128.8, 128.1 and 126.9 (ortho Ph, meta Ph, para Ph, ortho Ts, meta Ts and =*C*HPh of both diastereoisomers)], [114.0 and 113.2 (CH_2 -5 of both diastereoisomers)], [75.5 and 73.4 (CHTs of both diastereoisomers)], [71.8 and 71.6 (CH₂O of both diastereoisomers)], [40.8 and 40.3 (CH-3 of both diastereoisomers)], [21.5, 19.2, 18.3, 18.2, 17.7, 15.5 and 15.5 (CH₃-3, CH₃-4 CH₃ Ts and CH₃C=CHPh of both diastereoisomers)]; m/z (CI) 430 $[M+NH_4]^+$, 318 (Found: $[M+NH_4]^+$, 430.2047. $C_{24}H_{28}O_4S$ requires $[M+NH_4]^+$, 430.2052).

1-Methyl-4-[3-methyl-1-(2-methylenecyclohexyl)but-3-enylsulfonyl]benzene (4e)

To a mixture of 2-(p-toluenesulfonyl)malonic acid methallyl ester cyclohex-1-enymethyl ester 3e (65 mg, 0.16 mmol, 1 equiv.) and potassium acetate (5 mg, 0.05 mmol, 0.3 equiv.) under nitrogen was added BSA (300 µL, 1.19 mmol, 7 equiv.). The mixture was exposed to 6 cycles of microwave irradiation of 1 min each at 220 °C followed by 3 cycles of microwave irradiation of 2 min each at 240 °C. Chromatography (0%→10% AcOEt-hexane) gave 1-methyl-4-[3-methyl-1-(2-methylenecyclohexyl)but-3-enylsulfonyl]benzene 4e as a 1:1 mixture of diastereoisomers (32 mg, 62%) as a colourless gum; R_f 0.22 (10% AcOEt-hexane); v_{max} (film) 2931, 2859, 1741, 1668, 1596, 1448, 1311, 1301, 1293, 1145, 1085, 892, 815 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 7.77 (2H, d, J 8.0 Hz, ortho Ts of one diastereoisomer), 7.73 (2H, d, J 8.0 Hz, ortho Ts of one diastereoisomer), 7.33 (2H, d, J 8.0 Hz, meta Ts of one diastereoisomer), 7.29 (2H, d, J 8.0 Hz, meta Ts of one diastereoisomer), 4.83-4.46 (8H, m, 2 x =CH₂ of both diastereoisomers), [3.70 (1H, dt, J 9.5, 2.5 Hz) and 3.60-3.56 (1H, m), CHTs of both diastereoisomers], [2.97-2.94 (1H, m), 2.76-2.65 (2H, m), 2.50-2.00 (8H, m) and (11H, m), CH₂CHTs and CH-1, CH₂-3, CH₂-4, CH₂-5, CH₂-6 cyclohexyl of both diastereoisomers], [2.44 (3H, s) and 2.43 (3H, s), CH₃ Ts of both diastereoisomers], [1.56 (3H, s) and 1.46 (3H, s), =CCH₃ of both diastereoisomers]; δ_C (100 MHz) [149.6, 148.7, 144.3, 144.2, 141.4, 141.0, 137.1 and 136.7 (ipso Ts, para Ts, C-2 cyclohexyl and =CMe of both diastereoisomers)], [129.5, 129.4 and 128.8 (ortho Ts and meta Ts of both diastereoisomers)], [112.7, 112.5, 110.1 and 105.5 (2 x =CH₂ of both diastereoisomers)], [62.8 and 61.9 (CHTs of both diastereoisomers)], [44.3 and 41.7 (CH-1 cyclohexyl of both diastereoisomers)], [37.1, 36.3, 34.5, 33.2, 30.4, 28.6, 28.0, 28.0, 25.8 and 23.3 (CH₂-3, CH₂-4, CH₂-5 and CH₂-6 cyclohexenyl and CH₂CHTs of both diastereoisomers)], [22.2, 21.9 and 21.6 $(=CCH_3 \text{ and } CH_3 \text{ Ts of both diastereoisomers})]; m/z$ (CI) 336 $[M+NH_4]^+$, 319 $[M+H]^+$, 296, 174, 163, 52 (Found: [M+NH₄]⁺, 336.1993; [M+H]⁺, 319.1731. C₁₉H₂₆O₂S requires [M+NH₄]⁺, 336.1997; [M+H]⁺, 319.1732).

1-Methyl-4-[1-(2-methylenecyclohexyl)-2-phenylbut-3-enylsulfonyl]benzene (4f)

To a mixture of 2-(p-toluenesulfonyl)malonic acid cinnamyl ester cyclohex-1-enylmethyl ester **3f** (543 mg, 1.16 mmol, 1 equiv.) and potassium acetate (14 mg, 0.15 mmol, 0.1 equiv.) under nitrogen was added BSA (900 µL, 3.57 mmol, 3 equiv.). The mixture was exposed to 6 cycles of microwave irradiation of 1 min each at 190 °C. Chromatography ($1\% \rightarrow 2\%$ AcOEt-petrol) gave 1-methyl-4-[1-(2-methylenecyclohexyl)-2-phenylbut-3-enylsulfonyl]benzene 4f as a mixture of 4 diastereoisomers (257 mg, 58%) as a colourless gum; Rf 0.33 (5% AcOEt-petrol); v_{max} (film) $3064, 2932, 2857, 1598, 1494, 1451, 1314, 1301, 1143, 1085, 906, 815, 740, 700, 662 \text{ cm}^{-1}; \delta_H$ (400 MHz) 7.70 (2H, d, J 8.5 Hz, ortho Ts of one diastereoisomer), 7.56-6.97 (26H, m, Ph and meta Ts of all diastereoisomers and ortho Ts of three diastereoisomers), [6.71-6.62 (1H, m), 6.35 (1H, dt, J 17.0, 10.0 Hz) and 6.25-6.15 (2H, m), CH= of all diastereosiomers], 5.33-4.86 (16H, m, 2 x =CH₂ of all diastereoisomers), [4.64 (1H, s), 4.44 (1H, s), 4.36-4.32 (1H, m), 4.23 (1H, dd, J 9.0, 3.0 Hz) and 4.16-4.02 (4H, m), CHTs and CHPh of all diastereoisomers], [3.30-3.25 (1H, m), 3.01-2.93 (2H, m) and 2.68-2.65 (1H, m), CH-1 cyclohexyl of all diastereoisomers], [2.42 (3H, s), 2.40 (3H, s), 2.39 (3H, s) and 2.36 (3H, s), CH₃ Ts of all diastereoisomers)], 2.33-1.28 (32H, m, CH₂-3, CH₂-4, CH₂-5 and CH₂-6 cyclohexyl of all diastereoisomers); $\delta_{\rm C}$ (100 MHz) [149.7, 148.9, 148.5 and 148.3 (C-2 cyclohexyl of all diastereoisomers)], [144.0, 143.7, 143.5, 143.1, 142.9, 142.3, 141.4, 140.8, 139.4, 138.6, 138.4 and 137.7 (ipso Ts, para Ts and ipso Ph of all diastereoisomers)], [137.9, 137.5, 136.9 and 134.6 (CH= of all diastereoisomers)], [129.4, 129.4, 129.3, 129.0, 128.5, 128.4, 128.3, 128.2, 128.1, 127.9, 127.8, 127.4, 126.5, 126.4 and 125.9 (ortho Ts, meta Ts and Ph of all diastereoisomers)], [120.0, 117.9, 117.7, 117.5, 110.8, 109.1, 108.6 and 108.0 (2 x =CH₂ of all diastereoisomers)], [69.6, 69.5, 68.5 and 68.2 (CHTs of all diastereoisomers)], [49.3, 48.5, 48.3 and 48.2 (CHPh of all diastereoisomers)], [44.2, 43.7, 43.2 and 42.0 (CH-1 cyclohexyl of all diastereoisomers)], [35.7, 35.6, 35.1, 33.4, 30.2, 29.6, 29.4, 28.3, 27.9, 27.8, 27.3, 25.2, 25.0, 24.3 and 22.1 (CH2-3, CH2-4, CH2-5 and CH2-6 cyclohexyl of all diastereoisomers)], [21.5, 21.5 and 21.4 (CH₃ Ts of all diastereoisomers)]; m/z

(CI) 398 $[M+NH_4]^+$, 381 $[M+H]^+$, 52 (Found: $[M+H]^+$, 381.1888. $C_{24}H_{28}O_2S$ requires $[M+H]^+$, 381.1888).

3-Phenyl-4-(prop-2-enyl)-4-(p-toluenesulfonyl)tridec-1-ene (6a)

To a 1:1 diastereoisomeric mixture of 3-phenyl-4-(p-toluenesulfonyl)-1,6-heptadiene 4a (630 mg, 1.93 mmol, 1 equiv.) in THF (10 mL) at 0 °C and under nitrogen was added dropwise a commercial solution of n-BuLi in hexane (Acros, titrated to be 2.16 M, 1.1 mL, 2.4 mmol, 1.2 equiv.). The solution turned deep red and 1-iodononane (460 µL, 2.33 mmol, 1.2 equiv.) was immediately added. The reaction was allowed to warm to rt and after 15 h of stirring the excess n-BuLi was quenched with MeOH (2.5 mL). Concentration under reduced pressure and (3%→5%) 3-phenyl-4-(prop-2-enyl)-4-(pchromatography AcOEt-petrol) gave toluenesulfonyl)tridec-1-ene 6a as a 2:3 mixture of diastereoisomers (754 mg, 86%) as a colourless gum; Rf 0.69 (10% AcOEt-petrol); vmax (film) 2924, 2853, 1635, 1598, 1454, 1286, 1129, 1079, 917, 815 cm⁻¹; δ_H (270 MHz) 7.47-7.43 (4H, m, *ortho* Ts of both diastereoisomers), 7.27-7.13 (14H, m, meta Ts and Ph of both diastereoisomers), [6.42-6.27 (2H, m), 6.20-6.07 (1H, m) and 5.82-5.70 (1H, m), CH-2 and CH-6 of both diastereoisomers], 5.19-4.97 (8H, m, CH₂-1 and CH₂-7 of both diastereoisomers), 4.19-4.12 (2H, m, CHPh of both diastereoisomers), 2.78-2.43 (4H, m, CH₂-5 of both diastereoisomers), 2.37 (6H, s, CH₃ Ts of both diastereoisomers), 1.97-1.55 (4H, m, TsCCH₂CH₂ of both diastereoisomers), 1.26 (28H, bs, TsCCH₂(CH₂)₇Me of both diastereoisomers), 0.90-0.85 (6H, m, CH₂CH₃ of both diastereoisomers); S_C (100 MHz) [144.0, 140.0, 135.6 and 135.4 (*ipso* Ph, *ipso* Ts and *para* Ts of both diastereoisomers)], [137.6 and 132.8 (CH-2 and CH-6 of the major diastereoisomer)], [137.5 and 133.2 (CH-2 and CH-6 of the minor diastereoisomers)], [130.6, 130.5, 130.3, 130.2, 129.0, 129.0, 128.2, and 127.1 (ortho Ph, meta Ph, para Ph, ortho Ts and meta Ts of both diastereoisomers)], [118.9 and 118.1 (CH₂-1 and CH₂-7 of the minor diastereoisomer)], [118.9 and 117.8 (CH₂-1 and CH₂-7 of the major diastereoisomer)], 73.4 (C-4 of the minor diastereoisomer), 73.2 (C-4 of the major diastereoisomer), 53.3 (CHPh of the minor diastereosiomer), 52.7 (CHPh of the major diastereoisomer), [37.7, 36.4, 33.2, 32.6, 31.9, 31.9,

30.4, 30.3, 29.6, 29.5, 29.4, 29.3, 29.3, 29.3, 23.8, 23.6 and 22.7 (CH₂-5 and TsC(*C*H₂)₈Me of both diastereoisomers)], [21.5 and 14.1 (CH₃ Ts and CH₂*C*H₃ of both diastereoisomers)]; m/z (CI) 470 [M+NH₄]⁺, 297 [M+H-Ts]⁺, 174 [M+H-Ts-nonyl]⁺ (Found: [M+NH₄]⁺, 470.3094. C₂₉H₄₀O₂S requires [M+NH₄]⁺, 470.3093).

2-Methyl-3-phenyl-4-(prop-2-enyl)-4-(p-toluenesulfonyl)tridec-1-ene (6b)

To a solution of a 1:1 diastereoisomeric mixture of 2-methyl-3-phenyl-4-(p-toluenesulfonyl)-1,6heptadiene 4b (245 mg, 0.720 mmol, 1 equiv.) in THF (3.6 mL) at 0 °C and under nitrogen was added dropwise a commercial solution of n-BuLi in hexane (Aldrich, titrated to be 2.42 M, 300 µL, 0.708 mmol, 1.2 equiv.). The solution turned bright orange and 1-iodononane (140µL, 0.799 mmol, 1.1 equiv.) was immediately added. The reaction was allowed to warm to rt and after 43 h of stirring at rt the excess n-BuLi was quenched with MeOH (1 mL). Concentration under reduced pressure and chromatography (2%→10% AcOEt-petrol) gave 2-methyl-3-phenyl-4-(prop-2-enyl)-4-(p-toluenesulfonyl)tridec-1-ene 6b as a 1:1 mixture of diastereoisomers (136 mg, 40%) as a pale yellow oil and the diene starting material 4b (83 mg, 34%) as a colourless oil; R_f 0.34 (10% AcOEt-hexane); v_{max} (film) 2955, 2925, 2854, 1455, 1276, 1261, 1130, 1077, 1041, 763 cm⁻¹; δ_H (400 MHz) 7.47-7.10 (18H, m, Ph and Ts of both diastereoisomers), 6.23-6.13 (1H, m, CH-6 of the major diastereoisomer), 5.86-5.76 (1H, m, CH-6 of the minor diastereoisomer), 5.19-4.93 (8H, m, CH₂-1 and CH₂-7 of both diastereoisomers), 4.34 (1H, s, CH-3 of the minor diastereoisomer), 4.24 (1H, s, CH-3 of the major diastereoisomer), 3.00-2.71 (4H, m, CH₂-5 of both diastereoisomers), 2.37 (6H, s, CH₃ Ts of both diastereoisomers), [2.27-1.84 (4H, m) and 1.40-1.20 (28H, m), TsC(CH₂)₈Me of both diastereoisomers], 1.74 (3H, s, CH₃-2 of the minor diastereoisomer), 1.69 (3H, s, CH₃-2 of the major diastereoisomer), 0.97-0.87 (6H, m, CH₂CH₃ of both diastereoisomers); δ_C (100 MHz) [145.1, 144.8, 143.9, 143.8, 139.0, 138.7, 136.0 and 135.9 (ipso Ph, ipso Ts, para Ts and C-2 of both diastereoisomers)], [133.4, 133.1, 127.1 and 127.0 (para Ph, and CH-6 of both diastereoisomers)], [131.3, 131.2, 130.1, 129.9, 128.8, 127.9 and 127.8 (ortho Ph, meta Ph, ortho Ts and meta Ts)], [118.9, 118.9, 113.9 and 113.7 (CH₂-1 and CH₂-7 of both diastereoisomers)], [75.4 and 74.8 (C-4 of both diastereoisomers)], [54.1 and

53.4 (CHPh of both diastereoisomers)], [37.6, 36.8, 33.4, 32.8, 31.9, 31.8, 30.3, 30.2, 29.5, 29.4, 29.3, 29.3, 29.2, 23.9 and 22.7 (CH₂-5 and TsC(*C*H₂)₈Me of both diastereoisomers)], [25.4, 25.1 and 21.5 (CH₃-2 and CH₃ Ts of both diastereoisomers)], 14.1 (CH₂CH₃ of both diastereoisomers); m/z (CI) 484 [M+NH₄]⁺, 358, 301, 264, 218, 200, 188, 148 (Found: [M+NH₄]⁺, 484.3258. C₃₀H₄₂O₂S requires [M+H]⁺, 484.3249).

4-Benzyl-2-methyl-3-phenyl-4-(*p*-toluenesulfonyl)-1,6-heptadiene (6c)

To a solution of a 1:1 diastereoisomeric mixture of 2-methyl-3-phenyl-4-(p-toluenesulfonyl)-1,6heptadiene 4b (732 mg, 2.15 mmol, 1 equiv.) in THF (10 mL) at 0 °C and under nitrogen was added dropwise a commercial solution of n-BuLi in hexane (Aldrich, titrated to be 1.50 M, 1.750 mL, 2.625 mmol, 1.2 equiv.). The solution turned bright orange and benzyl bromide (310 µL, 2.61 mmol, 1.2 equiv.) was immediately added. The reaction was allowed to warm to rt and after 42 h of stirring at rt and 2 h of stirring at 40 °C the excess n-BuLi was quenched with MeOH (2 mL). Concentration under reduced pressure and chromatography $(3\% \rightarrow 4\% \text{ AcOEt-petrol})$ gave 4-benzyl-2-methyl-3-phenyl-4-(p-toluenesulfonyl)-1,6-heptadiene 6c as a 2:3 mixture of diastereoisomers (523 mg, 56%) as a colourless gum and the diene starting material 4b (28 mg, 4%) as a colourless solid; R_f 0.59 (10% AcOEt-petrol); v_{max} (film) 3062, 3030, 2925, 2853, 1670, 1638, 1597, 1494, 1453, 1374, 1286, 1185, 1134, 1076, 918, 815, 758, 738, 703, 650 cm⁻¹; δ_H (400 MHz) 7.61-7.59 (4H, m, ortho Ts of both diastereoisomers), 7.41-6.99 (24H, m, 2 x Ph and meta Ts of both diastereoisomers), 6.26-6.13 (2H, m, CH-6 of both diastereoisomers), 5.30-4.98 (8H, m, CH₂-1 and CH₂-7 of both diastereoisomers), 4.45 (1H, s, CH-3 of the major diastereoisomer), 4.05 (1H, s, CH-3 of the minor diastereoisomer), [3.69 (2H, s), 3.65 (1H, d, J 15.5 Hz) and 3.45 (1H, d, J 15.5 Hz), PhCH₂ of both diastereoisomers], [3.07 (1H, dd, J 16.5, 8.0 Hz) and 2.65-2.59 (1H, m), CH₂-5 of the major diastereoisomer], [2.91 (1H, dd, J 16.5, 7.5 Hz) and 2.52-2.46 (1H, m), CH₂-5 of the minor diastereoisomer], 2.32 (3H, s, CH₃ Ts of the minor diastereoisomer), 2.31 (3H, s, CH₃ Ts of the major diastereoisomer), 1.67 (3H, s, CH₃-2 of the major diastereoisomer), 1.55 (3H, s, CH₃-2 of the minor diastereoisomer); $\delta_{\rm C}$ (100 MHz) [145.2, 144.9, 143.5, 143.4, 138.5, 138.0, 136.1, 135.9 and 135.6 (2 x ipso Ph, ipso Ts, para Ts

and C-2 of both diastereoisomers)], [132.8 and 132.5 (CH-6 of both diastereoisomers)], [131.8, 131.8, 131.5, 131.4, 130.0, 130.0, 128.5, 128.5, 127.9, 127.9, 127.7 and 127.6 (2 x *ortho* Ph, 2 x *meta* Ph, *ortho* Ts and *meta* Ts of both diastereoisomers)], [127.1, 127.1, 126.8 and 126.6 (2 x *para* Ph of both diastereoisomers)], [119.3, 119.1, 114.1 and 113.1 (CH₂-1 and CH₂-7 of both diastereoisomers)], [76.4 and 76.0 (C-4 of both diastereoisomers)], [54.1 and 53.1 (CHPh of both diastereoisomers)], [38.6, 38.4 and 38.1 (CH₂-5 and CH₂Ph of both diastereoisomers)], [26.0, 25.7 and 21.3 (CH₃-2 and CH₃ Ts of both diastereoisomers)]; m/z (CI) 448 [M+NH₄]⁺, 431 [M+H]⁺, 299, 275, 174, 52 (Found: [M+H]⁺, 431.2044. C₂₈H₃₀O₂S requires [M+H]⁺, 431.2045).

3-Phenyl-4-(p-toluenesulfonyl)heptane-2,6-dione

Ozone was bubbled through a solution of a 1:1 diastereoisomeric mixture of 2,6-dimethyl-3phenyl-4-(*p*-toluenesulfonyl)-1,6-heptadiene **4c** (179 mg, 0.504 mmol, 1 equiv.) in MeOH:CH₂Cl₂ (1:5, 6 mL) at -78 °C for 10 min, until a blue colour persisted. After 5 min of bubbling O₂ through the reaction mixture, PPh₃ (414 mg, 1,58 mmol, 3.1 equiv.) was added. After stirring for 3 h at -78 °C the mixture was concentrated under reduced pressure and chromatography (20% AcOEt–petrol) gave *3-phenyl-4-*(p-*toluenesulfonyl*)*heptane-2,6-dione* as a 1:1 mixture of diastereoisomers (130 mg, 72%), the less polar as a colourless solid, the more polar as a colourless gum.

Less polar diastereoisomer of 3-phenyl-4-(p-toluenesulfonyl)heptane-2,6-dione; mp 144-146 °C with decomposition (20% AcOEt–petrol); $R_f 0.23$ (20% AcOEt–petrol); v_{max} (film) 1718, 1644, 1419, 1358, 1276, 1210, 1085 cm⁻¹; δ_H (270 MHz) 7.73 (2H, d, *J* 8.5 Hz, ortho Ts), 7.36-7.11 (7H, m, meta Ts and Ph), 5.08-4.99 (1H, m, CHTs), 4.36 (1H, d, *J* 11.0 Hz, CHPh), [2.82 (1H, dd, *J* 18.0, 7.0 Hz), 2.25 (1H, dd, *J* 18.0, 4.5 Hz), CH₂-5], 2.44 (3H, s, CH₃ Ts), [2.18 (3H, s) and 1.73 (3H, s), CH₃-1 and CH₃-7]; δ_C (67.5 MHz) [204.4 and 203.9 (2 x C=O)], [144.9, 136.5 and 133.9 (*ipso* Ph, *ipso* Ts and *para* Ts)], [129.8, 129.7, 129.4 and 128.5 (*ortho* Ph, *meta* Ph, *ortho* Ts and *meta* Ts)], 128.6 (*para* Ph), 61.6 (CHTs), 57.1 (CHPh), 40.8 (CH₂-5), [29.9, 29.5 and

21.8 (CH₃-1, CH₃-7 and CH₃ Ts)]; m/z (CI) 376 [M+NH₄]⁺, 220 [M+NH₄-Ts]⁺, 203, 174 (Found: [M+NH₄]⁺, 376.1571. C₂₀H₂₂O₄S requires [M+NH₄]⁺, 376.1583).

More polar diastereoisomer of 3-phenyl-4-(p-toluenesulfonyl)heptane-2,6-dione; $R_f 0.12$ (20% AcOEt–petrol); v_{max} (film) 1717, 1644, 1419, 1358, 1276, 1210, 1085 cm⁻¹; δ_H (270 MHz) 7.33-7.05 (9H, m, *ortho* Ts, *meta* Ts and Ph), 4.65-4.58 (1H, m, CHTs), 4.37 (1H, d, *J* 9.0 Hz, CHPh), [3.36 (1H, dd, *J* 18.0, 8.5 Hz), 2.71 (1H, dd, *J* 18.0, 2.5 Hz), CH₂-5], 2.34 (3H, s, CH₃ Ts), [2.18 (3H, s) and 2.08 (3H, s), CH₃-1 and CH₃-7]; δ_C (100 MHz) [205.3 and 203.9 (2 x C=O)], [143.9, 136.7 and 133.7 (*ipso* Ph, *ipso* Ts and *para* Ts)], [129.4, 128.9, 128.1 and 127.9 (*ortho* Ph, *meta* Ph, *para* Ph, *ortho* Ts and *meta* Ts)], 63.1 (CHTs), 57.3 (CHPh), 39.8 (CH₂-5), [30.1, 30.0 and 21.6 (CH₃-1, CH₃-7 and CH₃ Ts)]; *m*/z (CI) 376 [M+NH₄]⁺, 220 [M+NH₄-Ts]⁺, 203, 174 (Found: [M+NH₄]⁺, 376.1578. C₂₀H₂₂O₄S requires [M+NH₄]⁺, 376.1583).

3-Phenylpyridine (7a)²

According to the general procedure, a 1:1 diastereoisomeric mixture of 3-phenyl-4-(*p*-toluenesulfonyl)-1,6-heptadiene **4a** (344 mg, 1.05 mmol, 1 equiv.) in MeOH:CH₂Cl₂ (7.5 mL) was ozonolysed and reduced with polymer bound PPh₃ (Fluka, 3 mmol/g resin, 1.1 g, 3.3 mmol, 3.1 equiv.). The crude dialdehyde in MeOH (4 mL) was then reacted with NH₄HCO₃ (655 mg, 8.29 mmol, 7.9 equiv.). Chromatography on basic alumina (BDH, 63-200 μ m, 3% \rightarrow 5% AcOEt–petrol) gave *3-phenylpyridine* **7a** (86 mg, 53%) as a colourless oil; R_f 0.25 (20% AcOEt–petrol); v_{max} (film) 3058, 3031, 2923, 1652, 1582, 1473, 1451, 1408, 1276, 1025, 1006, 814, 755, 711, 698 cm⁻¹; $\delta_{\rm H}$ (270 MHz) 8.84 (1H, d, *J* 2.0 Hz, CH-2), 8.58 (1H, dd, *J* 5.0, 2.0 Hz, CH-6), 7.86 (1H, dt, *J* 8.0, 2.0 Hz, CH-4), 7.59-7.25 (6H, m, CH-5 and Ph); $\delta_{\rm C}$ (100 MHz) [148.2 and 148.1 (CH-2 and CH-6)], [137.7 and 136.8 (*ipso* Ph and C-3)], 134.6 (CH-4), [129.1 and 127.1 (*ortho* Ph and *meta* Ph)], 128.2 (*para* Ph), 123.6 (CH-5); *m*/z (CI) 156 [M+H]⁺ (Found: [M+H]⁺, 156.0815. C₁₁H₉N requires [M+H]⁺, 156.0813) (Found: C, 84.99; H, 5.90; N, 8.97. C₁₁H₉N requires C, 85.13; H, 5.85, N, 9.03). Data in agreement with those previously reported.

² Pouchert, C. J.; Behnke, J. *The Aldrich Library of* ¹³C and ¹H FT-NMR Spectra; 1st edition, Vol. 3, Aldrich **1993**, p 243.

2-Methyl-3-phenylpyridine (7b)³

According to the general procedure, a 1:1 diastereoisomeric mixture of 2-methyl-3-phenyl-4-(*p*-toluenesulfonyl)-1,6-heptadiene **4b** (520 mg, 1.59 mmol, 1 equiv.) in MeOH:CH₂Cl₂ (10.5 mL) was ozonolysed and reduced with polymer bound PPh₃ (Fluka, 3 mmol/g resin, 1.6 g, 4.7 mmol, 3 equiv.). The crude ketoaldehyde in MeOH (4 mL) was then reacted with NH₄HCO₃ (964 mg, 12.2 mmol, 7.7 equiv.).Work-up gave 2-*methyl-3-phenylpyridine* **7b** (230 mg, 86%) as a red oil. Chromatography (10% AcOEt–petrol) gave 2-*methyl-3-phenylpyridine* **7b** (180 mg, 67%) as a colourless oil; $R_f 0.23$ (20% AcOEt–petrol); v_{max} (film) 3083, 2925, 1657, 1428, 1377, 763, 737, 703 cm⁻¹; δ_{H} (270 MHz) 8.49 (1H, dd, *J* 5.0, 1.5 Hz, CH-6), 7.49-7.15 (7H, m, CH-4, CH-5 and Ph), 2.50 (3H, s, CH₃); δ_{C} (67.5 MHz) 155.9 (C-2), 148.0 (CH-6), [140.0 and 137.0 (C-3 and *ipso* Ph)], 137.2 (CH-4), [129.1 and 128.5 (*ortho* Ph and *meta* Ph)], 127.5 (*para* Ph), 121.1 (CH-5), 23.5 (CH₃); m/z (Cl) 170 [M+H]⁺ (Found: [M+H]⁺, 170.0965. C₁₂H₁₁N requires [M+H]⁺, 170.0970) (Found: C, 85.08; H, 6.49; N, 8.14. C₁₂H₁₁N requires C, 85.17; H, 6.55; N, 8.28). Data in agreement with those previously reported.

2,6-Dimethyl-3-phenylpyridine (7c)⁴

Procedure A

According to the general procedure, a 1:1 diastereoisomeric mixture of 2,6-dimethyl-3-phenyl-4-(*p*-toluenesulfonyl)-1,6-heptadiene **4c** (220 mg, 0.619 mmol, 1 equiv.) in MeOH:CH₂Cl₂ (6 mL) was ozonolysed and reduced with PPh₃ (528 mg, 2.01 mmol, 3.3 equiv.). The crude diketone in MeOH (2 mL) was then reacted with NH₄HCO₃ (399 mg, 5.05 mmol, 8.2 equiv.). Chromatography (5% \rightarrow 10% AcOEt–petrol) gave 2,6-dimethyl-3-phenylpyridine **7c** (83 mg, 73%) as a yellow oil.

Procedure B

To a solution of 3-phenyl-4-(*p*-toluenesulfonyl)heptane-2,6-dione (71 mg, 0.198 mmol, 1 equiv.) in CH₂Cl₂:MeOH (1:2; 4.5 mL) at rt was added NH₄HCO₃ (153 mg, 1.94 mmol, 9.8 equiv.) and the mixture was exposed to microwave irradiation for 10 min at 100 °C. The yellow solution was concentrated under reduced pressure. The red residue was dissolved in CH₂Cl₂ (30 mL) and then washed with H₂O (2 x 30 mL). The organic layer was dried (MgSO₄) and concentrated under reduced pressure to give 2,6-dimethyl-3-phenylpyridine **7c** (36 mg, 98%) as a yellow oil.

Procedure C

A solution of 3-phenyl-4-(*p*-toluenesulfonyl)heptane-2,6-dione (67 mg, 0.187 mmol, 1 equiv.) in CH_2Cl_2 :MeOH (5:1; 3 mL) at rt and under nitrogen was treated with a methanolic solution of ammonia (2 M, 1 mL) for 15 h. The orange solution was concentrated under reduced pressure. The orange residue was dissolved in CH_2Cl_2 (25 mL), washed with H_2O (2 x 25 mL), dried

⁴ Balaban A. T.; Nenitzescu C. D. J. Chem .Soc **1961**, 3566–3572.

(MsSO₄) and concentrated under reduced pressure to give 2,6-*dimethyl-3-phenyl pyridine* **7c** (34 mg, 98%) as a yellow oil.

2,6-Dimethyl-3-phenylpyridine, $R_f 0.26$ (10% AcOEt–petrol); v_{max} (film) 2923, 1644, 1461, 1434, 1388, 1262, 1010, 766, 701 cm⁻¹; δ_H (270 MHz) 7.41-7.26 (6H, m, CH-4 and Ph), 7.00 (1H, d, *J* 7.5 Hz, CH-5), [2.55 (3H, s) and 2.46 (3H,s), CH₃-2 and CH₃-6]; δ_C (67.5 MHz) [156.5 and 155.0 (C-2 and C-6)], [140.2 and 134.0 (C-3 and *ipso* Ph)], 137.6 (CH-4), [129.2 and 128.4 (*ortho* Ph and *meta* Ph)], 127.3 (*para* Ph), 120.6 (CH-5), [24.3 and 23.4 (CH₃-2 and CH₃-6)]; *m/z* (CI) 184 [M+H]⁺ (Found: [M+H]⁺, 184.1118. C₁₃H₁₃N requires [M+H]⁺, 184.1126) (Found: C, 85.11; H, 7.03; N, 7.54. C₁₃H₁₃N requires C, 85.21; H, 7.15; N, 7.64). Data in agreement with those previously reported.

2,5,6-Trimethyl-3-phenylpyridine (7d)

According to the general procedure, a diastereoisomeric mixture of 2,5,6-trimethyl-3-phenyl-4-(*p*-toluenesulfonyl)-1,6-heptadiene **4d** (78 mg, 0.211 mmol, 1 equiv.) in MeOH:CH₂Cl₂ (2 mL) was ozonolysed and reduced with dimethyl sulfide (0.9 mL, 21 mmol, 99 equiv.). The crude diketone in MeOH (1 mL) was then reacted with NH₄HCO₃ (133 mg, 1.68 mmol, 8 equiv.). Chromatography (10% AcOEt–petrol) gave *2,5,6-trimethyl-3-phenylpyridine* **7d** (21 mg, 51%) as a pale yellow oil; R_f 0.17 (10% AcOEt–petrol); v_{max} (film) 2922, 2856, 1605, 1554, 1460, 1429, 1367, 1203, 1142, 1074, 1018, 1001, 958, 906, 762, 702 cm⁻¹; $\delta_{\rm H}$ (270 MHz) 7.44-7.25 (6H, m, CH-4 and Ph), [2.52 (3H, s) and 2.45 (3H,s), CH₃-2 and CH₃-6], 2.27 (3H, s, CH₃-5); $\delta_{\rm C}$ (67.5 MHz) [155.1 and 151.9 (C-2 and C-6)], [140.0, 134.6 and 128.7 (C-3, C-5 and *ipso* Ph)], 139.0 (CH-4), [129.2 and 128.4 (*ortho* Ph and *meta* Ph)], 127.3 (*para* Ph), [22.6, 22.1 and 18.7 (CH₃-2, CH₃-5 and CH₃-6)]; *m*/z (CI) 198 [M+H]⁺, (Found: [M+H]⁺, 198.1282. C₁4H₁₅N requires [M+H]⁺, 198.1283) (Found: C, 85.33; H, 7.59; N, 6.99. C₁₃H₁₃N requires C, 85.24; H, 7.66; N, 7.10).

2-Methyl-5,6,7,8-tetrahydroquinoline (7e)⁵

According to the general procedure, a 1:1 diastereoisomeric mixture of 1-methyl-4-[(*R*)-3-methyl-1-(2-methylenecyclohexyl)but-3-enylsulfonyl]benzene **4e** (187 mg, 0.587 mmol, 1 equiv.) in MeOH:CH₂Cl₂ (6 mL) was ozonolysed and reduced with triphenylphosphine (478 mg, 1.82 mmol, 3 equiv.). The crude diketone in MeOH (3 mL) was then reacted with NH₄HCO₃ (385 mg, 4.87 mmol, 8.3 equiv.). Chromatography (40% \rightarrow 60% AcOEt–hexane) gave 2-methyl-5,6,7,8-tetrahydroquinoline **7e** (32 mg, 37%) as a colourless oil; R_f 0.30 (50% AcOEt–hexane); v_{max} (film) 2931, 2859, 1597, 1573, 1470, 1454, 1261, 1092, 1021, 805 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 7.23 (1H, d, *J* 7.5 Hz, CH-4), 6.88 (1H, d, *J* 7.5 Hz, CH-3), 2.89-2.85 (2H, m, CH₂-8), 2.73-2.70 (2H, m, CH₂-5), 2.48 (3H, s, CH₃), 1.91-1.76 (4H, m, CH₂-6 and CH₂-7); $\delta_{\rm C}$ (100 MHz) [156.4 and 155.0 (C-2 and C-8a)], 137.1 (CH-4), 128.9 (C-4a), 120.4 (CH-3), [32.5, 28.4, 23.2 and 22.8 (CH₂-5, CH₂-6, CH₂-7 and CH₂-8)], 24.1 (CH₃); *m*/*z* (CI) 148 [M+H]⁺, (Found: [M+H]⁺, 148.1127. C₁₀H₁₃N requires [M+H]⁺, 148.1126). Data in agreement with those previously reported.

3-Phenyl-5,6,7,8-tetrahydroquinoline (7f)⁶

According to the general procedure, a diastereoisomeric mixture of 1-methyl-4-[1-(2-methylenecyclohexyl)-2-phenylbut-3-enylsulfonyl]benzene **4f** (205 mg, 0.539 mmol, 1 equiv.) in MeOH:CH₂Cl₂ (5.5 mL) was ozonolysed and reduced with dimethylsulfide (2.4 mL, 55 mmol,

⁵ Bell, T. W.; Khasanov, A. B.; Drew, M.G.B. J. Am. Chem. Soc. **2002**, 124, 14092–14103.

⁶ Winter, A.; Risch, N. Synthesis **2003**, 17, 2667–2670.

103 equiv.). The crude ketoaldehyde in MeOH (3 mL) was then reacted with NH₄HCO₃ (401 mg, 5.07 mmol, 9.4 equiv.). Chromatography (20% AcOEt–petrol) gave *3-phenyl-5,6,7,8-tetrahydroquinoline* **7f** (72 mg, 63%) as a pale yellow oil; R_f 0.30 (20% AcOEt–hexane); v_{max} (film) 3060, 3030, 2934, 2860, 1604, 1582, 1558, 1460, 1427, 1394, 1352, 1249, 1150, 1076, 1028, 989, 928, 911, 823, 763, 698 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 8.58 (1H, d, *J* 1.5 Hz, CH-2), [7.57-7.55 (3H, m) and 7.47 (2H, m), CH-4, *ortho* Ph and *meta* Ph], 7.37 (1H, tt, *J* 7.0, 2.0 Hz, *para* Ph), 2.97 (2H, t, *J* 6.5 Hz, CH₂-8), 2.84 (2H, t, *J* 6.5 Hz, CH₂-5), [1.97-1.91 (2H, m) and 1.88-1.82 (2H, m), CH₂-6 and CH₂-7); $\delta_{\rm C}$ (100 MHz) 156.3 (C-8a), 145.2 (CH-2), [138.1, 133.9 and 132.1 (C-3, C-4a and *ipso* Ph)], 135.1 (CH-4), [128.9 and 127.0 (*ortho* Ph and *meta* Ph)], 127.6 (*para* Ph), [32.2, 28.9, 23.1 and 22.7 (CH₂-5, CH₂-6, CH₂-7 and CH₂-8)]; *m/z* (CI) 210 [M+H]⁺, 52 (Found: [M+H]⁺, 210.1287. C₁₅H₁₅N requires [M+H]⁺, 210.1283) (Found: C, 85.97; H, 7.19; N, 6.67. C₁₃H₁₃N requires C, 86.08; H, 7.22; N, 6.69). Data in agreement with those previously reported.

4-Nonyl-3-phenylpyridine (7g)

According to the general procedure, a 35:65 diastereoisomeric mixture of *4-nonyl-3-phenyl-4-(p*-toluenesulfonyl)-*1,6-heptadiene* **6a** (320 mg, 0.706 mmol, 1 equiv.) in MeOH:CH₂Cl₂ (8.2 mL) was ozonolysed and reduced with dimethyl sulfide (3.1 mL, 71 mmol, 101 equiv.). The crude dialdehyde in MeOH (3.5 mL) was then reacted with NH₄HCO₃ (443 mg, 5.60 mmol, 7.9 equiv.). Work-up gave *4-nonyl-3-phenylpyridine* **7g** (196 mg, 98%) as a red oil. Chromatography on basic alumina (BDH, 63-200 μ m, 4% AcOEt–petrol) gave *4-nonyl-3-phenylpyridine* **7g** (147 mg, 74%) as a red oil; R_f 0.19 (10% AcOEt–petrol); v_{max} (film) 2954, 2854, 1638, 1465, 1377, 1007, 830, 763, 702 cm⁻¹; $\delta_{\rm H}$ (270 MHz) 8.47 (1H, d, *J* 5.0 Hz, CH-6), 8.40 (1H, s, CH-2), 7.48-7.20 (6H, m, CH-5 and Ph), 2.60-2.54 (2H, m, CCH₂(CH₂)₇Me), [1.46-1.40 (2H, m) and 1.23-1.16 (12H, m), CCH₂(CH₂)₇Me], 0.85 (3H, t, *J* 6.5 Hz, CH₃); $\delta_{\rm C}$ (100 MHz) 150.0 (C-4), [149.5 and 147.7 (CH-2 and CH-6)], 137.7 (C-3 and C Ph), [129.3 and 128.4 (*ortho* Ph and *meta* Ph)], [127.7 and 124.1 (*para* Ph and CH-5)], [32.4, 31.8, 30.2, 29.3, 29.2, 29.2 and 29.2 (C(CH₂)₇CH₂Me)], 22.6 (C(CH₂)₇CH₂Me), 14.1 (CH₃); *m/z* (CI) 563 [2M+H]⁺, 282 [M+H]⁺,

156 [M+H-nonyl]⁺ (Found: [M+H]⁺, 282.2214. C₂₀H₂₇N requires [M+H]⁺, 282.2222) (Found: C, 85.28; H, 9.57; N, 4.89. C₂₀H₂₇N requires C, 85.35; H, 9.67; N, 4.98%).

2-Methyl-4-nonyl-3-phenylpyridine (7h)

According to the general procedure, a 45:55 diastereoisomeric mixture of 2,6-dimethyl-4-nonyl-3-phenyl-4-(p-toluenesulfonyl)-1,6-heptadiene 6b (89 mg, 0.19 mmol, 1 equiv.) in MeOH:CH₂Cl₂ (2 mL) was ozonolysed and reduced with dimethylsulfide (830 µL, 19.2 mmol, 100 equiv.). The crude ketoaldehyde in MeOH (1.5 mL) was then reacted with NH₄HCO₃ (120 mg, 4.87 mmol, 7.9 equiv.). Work-up gave 2-methyl-4-nonyl-3-phenylpyridine 7h (56 mg, 99%) as an orange oil. Chromatography (10% AcOEt-petrol) gave 2-methyl-4-nonyl-3-phenylpyridine **7h** (41 mg, 73%) as a pale yellow oil; $R_f 0.27$ (10% AcOEt–petrol); v_{max} (film) 2954, 2923, 2855, 1683, 1660, 1649, 1633, 1465, 1409, 1151, 1091, 1068, 1061, 761 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 8.37 (1H, d, J 5.0 Hz, CH-6), [7.46-7.38 (3H, m) and 7.15-7.14 (2H, m), Ph], 7.06 (1H, d, J 5.0 Hz, CH-5), 2.33-2.29 (2H, m, CH₂(CH₂)₇Me), 2.26 (3H, s, CH₃-2), [1.42-1.39 (2H, m) and 1.25-1.13 (12H, m), CH₂(CH₂)₇Me], 0.87 (3H, t, J 7.0 Hz, TsCCH₂(CH₂)₇CH₃); δ_C (100 MHz) 156.2 (C-2), 149.9 (C-4), 147.4 (CH-6), [138.5 and 136.6 (C-3 and ipso Ph)], [129.1 and 128.5 (ortho Ph and meta Ph)], [127.2 and 121.5 (para Ph and CH-5)], [32.9, 31.8, 30.1, 29.3, 29.2, 29.2 and 29.1 $((CH_2)_7CH_2Me)$], 23.7 (CH₃-2), 22.6 ((CH₂)₇CH₂Me), 14.1 ((CH₂)₈CH₃); m/z (CI) 591 [2M+H]⁺, 296 $[M+H]^+$, 282 (Found: $[M+H]^+$, 296.2369. $C_{21}H_{29}N$ requires $[M+H]^+$, 296.2378) (Found: C, 85.28; H, 9.87; N, 4.89. C₂₀H₂₇N requires C, 85.37; H, 9.89; N, 4.74%).

4-Benzyl-2-methyl-3-phenylpyridine (7i)

According to the general procedure, a 43:57 diastereoisomeric mixture of 4-benzyl-2-methyl-3-phenyl-4-(*p*-toluenesulfonyl)-1,6-heptadiene **6c** (92 mg, 0.21 mmol, 1 equiv.) in MeOH:CH₂Cl₂ (2.5 mL) was ozonolysed and reduced with dimethyl sulfide (950 μ L, 21.9 mmol, 103 equiv.). The crude ketoaldehyde in MeOH (2 mL) was then reacted with NH₄HCO₃ (139 mg, 1.76 mmol, 8.3 equiv.). Chromatography (20% AcOEt–petrol) gave *4-benzyl-2-methyl-3-phenylpyridine* **7i** (42 mg, 75%) as a pale yellow oil; R_f 0.31 (20% AcOEt–petrol); v_{max} (film) 3028, 2923, 2851, 1602, 1579, 1561, 1495, 1453, 1444, 1407, 1243, 1156, 1074, 1030, 1009, 915, 848, 812, 763, 701, 633 cm⁻¹; $\delta_{\rm H}$ (400 MHz) 8.39 (1H, d, *J* 5.0 Hz, CH-6), [7.43-7.34 (3H, m), 7.22-7.14 (3H, m), 7.10-7.09 (2H, m) and 6.92-6.90 (2H, m), 2 x Ph], 6.96 (1H, d, *J* 5.0 Hz, CH-5), 3.69 (2H, s, CH₂), 2.28 (3H, s, CH₃); $\delta_{\rm C}$ (100 MHz) 156.6 (C-2), 148.0 (C-4), 147.8 (CH-6), [139.4, 138.3 and 136.8 (C-3 and 2 x *ipso* Ph)], [129.2, 129.0, 128.7 and 128.4 (2 x *ortho* Ph and 2 x *meta* Ph)], [127.4 and 126.3 (2 x *para* Ph)], 122.3 (CH-5), 39.1 (CH₂), 23.8 (CH₃); *m*/z (CI) 260 [M+H]⁺ (Found: [M+H]⁺, 260.1445. C₁₉H₁₇N requires [M+H]⁺, 260.1439) (Found: C, 88.12; H, 6.70; N, 5.33. C₁₉H₁₇N requires C, 87.99; H, 6.61; N, 5.40%).