Double decarboxylative Claisen rearrangement reactions: microwave-assisted de novo synthesis of pyridines

Donald Craig, Federica Paina and Stephen C. Smith

General experimental:

Melting points were determined using Stuart Scientific SMP1 melting point apparatus and are uncorrected. Infrared spectra were recorded on a Mattson 5000 FTIR spectrometer and on a Perkin-Elmer Spectrum RX FT-IR System. Proton magnetic resonance (${ }^{1} \mathrm{H}$ NMR) and carbon magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectra were recorded in CDCl_{3} unless otherwise stated on a Jeol GSX-270, a Bruker DRX-300, a Bruker AV-400 or a Bruker AV-500 spectrometer. Chemical shifts are in part per million (ppm) and are referenced relative to the residual proton-containing solvent (${ }^{1} \mathrm{H}$ NMR: 7.26 ppm for $\mathrm{CDCl}_{3} ;{ }^{13} \mathrm{C}$ NMR: 77.0 ppm for CDCl_{3}). The following abbreviations are used to indicate the multiplicities: s, singlet, bs , broad signal; d , doublet; t , triplet; m multiplet. Mass spectra (CI) were recorded using Micromass AutoSpec-Q, Micromass Platform II or Micromass AutoSpec Premier instruments. Elemental analyses were performed at the microanalytical laboratory of the London Metropolitan University. Analytical thin layer chromatography (TLC) was performed on pre-coated aluminium-backed Merck Kiesegel $60 \mathrm{~F}_{254}$ plates. Visualisation was effected with ultraviolet light, potassium permanganate or vanillin as appropriate. Flash chromatography was performed using $\operatorname{BDH}(40-63 \mu \mathrm{~m})$ silica gel unless otherwise stated. DMSO and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were distilled under nitrogen from CaH_{2} prior to use. All other solvents were reagent-grade. Petrol refers to the fraction with $\mathrm{bp}_{760} 40-60^{\circ} \mathrm{C}$. All liquid reagents except HCl and $\mathrm{Me}_{2} \mathrm{~S}$ were distilled prior to use. KOAc was oven-dried at $120{ }^{\circ} \mathrm{C}$ for several days prior to use. All other reagents were purchased from Aldrich, Fluka, Acros, Alfa Aesar Lancaster and used as such unless otherwise stated. Microwave-assisted reactions were carried out in a Biotage Initiator instrument. Ozonolyses were performed with using an Ozonia Triogen LAB2B ozone generator.

General procedure for the preparation of diallylic 2-(p-toluenesulfonyl)malonates 3a-f: To a solution of diallylic malonates (2 equiv.) in DMSO (ca. 2 M) was added very slowly, at rt and under nitrogen solid potassium tert-butoxide (2 equiv.). The reaction was stirred for 30 min before the addition of p-toluenesulfonyl fluoride (1 equiv.). After stirring overnight at rt , the mixture was poured into aqueous $\mathrm{HCl}(10 \%)$ and extracted twice with ether. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography gave the diallylic (p-toluenesulfonyl)malonates 3a-f and excess starting malonates. Yields cited for 3 are based on p-toluenesulfonyl fluoride; yields cited for recovered starting material are calculated from the total recoverable amount based on the yield of $\mathbf{3}$ and the amount of malonate used (2 equiv.). For example, a 70% yield of 3 means the total recoverable amount of malonate is $(2-0.7)=1.3$ equiv.; 74% recovery means that $(0.74 \times 1.3)=0.962$ equiv. of starting material was recovered.

General procedure for the preparation of pyridines 7a-i: Ozone was bubbled through a solution of a diastereoisomeric mixture of dienes 4 and 6 (1 equiv.) in $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:5, $\mathrm{c} \sim$ 0.1 M) at $-78^{\circ} \mathrm{C}$, until a blue colour persisted. After bubbling O_{2} through the reaction mixture until it returned colourless, the reducing agent was added. After stirring for 3 h at $-78{ }^{\circ} \mathrm{C}$ the mixture was concentrated under reduced pressure, previous filtering of the resin when solid supported PPh_{3} was used as the reducing agent. To a solution of the crude dicarbonyl compound in $\mathrm{MeOH}(0.1-0.4 \mathrm{M})$ was added $\mathrm{NH}_{4} \mathrm{HCO}_{3}$ (ca. 8 equiv.) and the mixture was exposed to microwave irradiation for 10 min at $100{ }^{\circ} \mathrm{C}$. The solution was concentrated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then washed twice with $\mathrm{H}_{2} \mathrm{O}$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to give products, which were purified by chromatography to give the pyridines $\mathbf{7 a - i}$.

2-(p-Toluenesulfonyl)malonic acid allyl ester cinnamyl ester (3a) ${ }^{1}$

According to the general procedure, malonic acid allyl ester cinnamyl ester ($10.89 \mathrm{~g}, 41.82$ mmol, 2 equiv.) was combined with potassium tert-butoxide ($4.707 \mathrm{~g}, 41.94 \mathrm{mmol}, 2$ equiv.) and p-toluenesulfonyl fluoride ($3.670 \mathrm{~g}, 21.07 \mathrm{mmol}$, 1 equiv.) in DMSO (20 mL). Chromatography (10% AcOEt-petrol) gave 2-(p-toluenesulfonyl)malonic acid allyl ester cinnamyl ester 3a (6.585 $\mathrm{g}, 76 \%$) as a colourless gum and excess starting malonate ($5.627 \mathrm{~g}, 83 \%$ unreacted); $v_{\max }$ (film) 3058 , 3027, 2946, 1743, 1667, 1596, 1494, 1449, 1336, 1305, 1292, 1276, 1193, 1180, 1151, 1084, 988, 970, 939, 846, 815, 747, 705, 694, $673 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}(270 \mathrm{MHz}) 7.84(2 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}$, ortho Ts), $7.35-7.25(7 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ and meta Ts), $6.63(1 \mathrm{H}, \mathrm{d}, J 16.0 \mathrm{~Hz},=\mathrm{CHPh}), 6.21-6.10(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}=\mathrm{CHPh}), 5.89-5.76\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.35-5.21\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.02(1 \mathrm{H}, \mathrm{s}, \mathrm{CHTs})$, $4.80\left(2 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHPh}\right), 4.66\left(2 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 2.37(3 \mathrm{H}, \mathrm{s}$, CH_{3}); $\delta_{\mathrm{C}}(100 \mathrm{MHz})$ [160.6 and $160.6(2 \mathrm{x} \mathrm{C=O})$], 145.9 (ipso Ts), [135.7 and 134.0 (ipso Ph and para Ts)], $135.6\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$, [130.4, 128.3 and 121.2 (para $\mathrm{Ph},=\mathrm{CHPh}$ and $\left.\mathrm{CH}=\mathrm{CHPh}\right)$], [130.1, 129.4, 128.6 and 126.6 (ortho Ph , meta Ph , ortho Ts and meta Ts)] $119.5\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$, 74.4 (CHTs), [67.3 and $67.3\left(2 \mathrm{x} \mathrm{CH}_{2} \mathrm{O}\right)$], $21.6\left(\mathrm{CH}_{3} \mathrm{Ts}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 432\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 388,356$ $\left[\mathrm{M}+\mathrm{NH}_{4}-\mathrm{CH}_{3} \mathrm{Ph}\right]^{+}, 272,202,188,174\left[\mathrm{M}+\mathrm{NH}_{4}-\mathrm{Ts}-\mathrm{CH}=\mathrm{CHPh}\right]^{+}, 134,117$ (Found: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, 432.1481. $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{~S}$ requires $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, 432.1481) (Found: C, 63.78; H, 5.40. $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{~S}$ requires C, $63.75 ; \mathrm{H}, 5.35 \%)$. Data were in agreement with those previously reported.

2-(p-Toluenesulfonyl)malonic acid allyl ester (E)-2-methyl-3-phenyl-2-propenyl ester (3b)

According to the general procedure, malonic acid allyl ester (E)-2-methyl-3-phenyl-2-propenyl ester ($4.491 \mathrm{~g}, 16.37 \mathrm{mmol}, 2$ equiv.) was combined with potassium tert-butoxide (1.849 g , $16.47 \mathrm{mmol}, 2$ equiv.) and p-toluenesulfonyl fluoride ($1.433 \mathrm{~g}, 8.226 \mathrm{mmol}$, 1 equiv.) in DMSO
(8.2 mL). Chromatography (10% AcOEt-hexane) gave 2-(p-toluenesulfonyl)malonic acid allyl ester (E)-2-methyl-3-phenyl-2-propenyl ester $\mathbf{3 b}(2.517 \mathrm{~g}, 72 \%)$ as a colourless gum and excess starting malonate ($2.495 \mathrm{~g}, 87 \%$ unreacted); $\mathrm{R}_{f} 0.15$ (10% AcOEt-petrol); $v_{\text {max }}$ (film) 2937, 1743, $1596,1446,1335,1292,1276,1150,1082,1019,992,937,815,749 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 7.85$ ($2 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}$, ortho Ts), 7.31-7.25 ($7 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ and meta Ts), $6.49(1 \mathrm{H}, \mathrm{s},=\mathrm{CHPh}), 5.88-5.76$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.35-5.21\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.03(1 \mathrm{H}, \mathrm{s}, \mathrm{CHTs}), 4.72\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CMe}=\right)$, 4.67-4.64 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $2.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ts}\right), 1.83\left(3 \mathrm{H}, \mathrm{d}, J 1.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{C}=\right)$; $\delta_{\mathrm{C}}(67.5$ MHz) [160.9 and 160.8 ($2 \times \mathrm{C}=\mathrm{O}$)], 146.2 (ipso Ts), [136.3, 133.9 and 131.3 (ipso Ph , para Ts and $\left.\mathrm{CH}_{2} \mathrm{CMe}=\right)$], [130.6, 129.8 and 127.1 (para $\mathrm{Ph},=\mathrm{CHPh}$ and $\left.\mathrm{CH}=\mathrm{CH}_{2}\right)$], [130.2, 129.7, 129.0 and 128.3 (ortho Ph , meta Ph , ortho Ts and meta Ts)] $119.7\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$, $74.6(\mathrm{CHTs})$, [72.7 and $\left.67.5\left(2 \mathrm{x} \mathrm{CH}_{2} \mathrm{O}\right)\right], 21.8\left(\mathrm{CH}_{3} \mathrm{Ts}\right), 15.5\left(\mathrm{CH}_{3} \mathrm{C}=\right)$; $\mathrm{m} / \mathrm{z}(\mathrm{CI}) 446\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 362,356\left[\mathrm{M}+\mathrm{NH}_{4}-\right.$ $\left.\mathrm{CH}_{3} \mathrm{Ph}\right]^{+}, 344,292\left[\mathrm{M}+\mathrm{NH}_{4}-\mathrm{Ts}\right]^{+}, 272[\mathrm{M}+\mathrm{H}-\mathrm{Ts}]^{+}, 208,202,188,174\left[\mathrm{M}+\mathrm{NH}_{4}-\mathrm{Ts}-\right.$ $\mathrm{CMe}=\mathrm{CHPh}]^{+}, \quad 165,148 \quad\left[\mathrm{M}+\mathrm{NH}_{4}-\mathrm{Ts}-\mathrm{CMe}=\mathrm{CHPh}-\mathrm{CH}=\mathrm{CH}_{2}\right]^{+}, 131$ (Found: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, 446.1625. $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{~S}$ requires $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, 446.1638) (Found: C , 64.45 ; H, 5.54. $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{~S}$ requires $\mathrm{C}, 64.47$; $\mathrm{H}, 5.65 \%$).

2-(p-Toluenesulfonyl)malonic acid methallyl ester (E)-2-methyl-3-phenyl-2-propenyl ester (3c)

According to the general procedure, malonic acid methallyl ester ((E)-2-methyl-3-phenyl-2propen)yl ester ($3.586 \mathrm{~g}, 12.44 \mathrm{mmol}, 2$ equiv.) was combined with potassium tert-butoxide ($1.405 \mathrm{~g}, 12.52 \mathrm{mmol}, 2$ equiv.) and p-toluenesulfonyl fluoride ($1.087 \mathrm{~g}, 6.240 \mathrm{mmol}, 1$ equiv.) in DMSO (6.2 mL). Chromatography (10% AcOEt-petrol) gave 2-(p-toluenesulfonyl)malonic acid methallyl ester (E)-2-methyl-3-phenyl-2-propenyl ester 3c (1.958 g, 71\%) as a yellow gum and excess starting malonate ($2.111 \mathrm{~g}, 91 \%$ unreacted); $\mathrm{R}_{f} 0.14$ (10% AcOEt-petrol); $\mathrm{v}_{\text {max }}$ (film) $2928,1742,1653,1596,1447,1335,1292,1150,1083,1027,916,814 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 7.85$ ($2 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}$, ortho Ts), 7.37-7.22 ($7 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ and meta Ts), $6.49(1 \mathrm{H}, \mathrm{s},=\mathrm{CHPh}), 5.04(1 \mathrm{H}$, $\mathrm{s}, \mathrm{CHTs})$, $\left[4.98(1 \mathrm{H}, \mathrm{bs})\right.$ and $\left.4.93(1 \mathrm{H}, \mathrm{bs}),=\mathrm{CH}_{2}\right],\left[4.71(2 \mathrm{H}, \mathrm{s})\right.$ and $\left.4.58(2 \mathrm{H}, \mathrm{s}), 2 \mathrm{x} \mathrm{CH}_{2} \mathrm{O}\right]$, $2.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ts}\right)$, [1.83-1.82 $(3 \mathrm{H}, \mathrm{m})$ and $1.70(3 \mathrm{H}, \mathrm{s}), \mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}_{2}$ and $\left.\mathrm{CH}_{3} \mathrm{C}=\mathrm{CHPh}\right] ; \delta_{\mathrm{C}}$ (67.5 MHz) [160.9 and $160.8(2 \times \mathrm{C}=\mathrm{O})$], [146.1, 138.5, 136.7, 134.3 and 131.3 (ipso Ph , ipso

Ts, para Ts, $C \mathrm{Me}=\mathrm{CHPh}$ and $\mathrm{CMe}=\mathrm{CH}_{2}$)], [130.2, 129.6, 129.0 and 128.3 (ortho Ph , meta Ph , ortho Ts and meta Ts)], [129.9 and 127.1 (para Ph and $\mathrm{CMe}=\mathrm{CHPh})$], $114.7\left(\mathrm{CMe}=\mathrm{CH}_{2}\right), 74.7$ (CHTs), [72.8 and $70.2(2 \mathrm{x} \mathrm{CH} 2 \mathrm{O})$], $21.8\left(\mathrm{CH}_{3} \mathrm{Ts}\right)$, [19.4 and $15.5\left(\mathrm{CCH}_{3}=\mathrm{CHPh}\right.$ and $\left.\left.\mathrm{CCH}_{3}=\mathrm{CH}_{2}\right)\right] ; \mathrm{m} / \mathrm{z}$ (CI) $460\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 286\left[\mathrm{M}+\mathrm{NH}_{4}-\mathrm{Ts}\right]^{+}, 188,174,148\left[\mathrm{M}+\mathrm{NH}_{4}-\mathrm{Ts}-\right.$ $\left.\mathrm{CMe}=\mathrm{CHPh}-\mathrm{CMe}=\mathrm{CH}_{2}\right]^{+}$, 131 (Found: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, 460.1802. $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{~S}$ requires $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, 460.1794) (Found: C, 65.07; H, 5.97. $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{~S}$ requires C, 65.14; H, 5.92\%).

2-(p-Toluenesulfonyl)malonic acid (E)-2-methyl-2-butenyl ester (E)-2-methyl-3-phenyl-2propenyl ester (3d)

According to the general procedure, malonic acid ((E)-2-methyl-2-buten)yl ester ((E)-2-methyl-3-phenyl-2-propen)yl ester $(9.284 \mathrm{~g}, 30.71 \mathrm{mmol}, 2$ equiv.) was combined with potassium tertbutoxide ($3.466 \mathrm{~g}, 30.89 \mathrm{mmol}, 2$ equiv.) and p-toluenesulfonyl fluoride ($2.705 \mathrm{~g}, 15.53 \mathrm{mmol}, 1$ equiv.) in DMSO (15 mL). Chromatography ($5 \% \rightarrow 10 \%$ AcOEt-petrol) gave 2 -(ptoluenesulfonyl)malonic acid (E)-2-methyl-2-butenyl ester (E)-2-methyl-3-phenyl-2-propenyl ester $3 \mathbf{d}(4.946 \mathrm{~g}, 71 \%)$ as a colourless gum and excess starting malonate ($4.862 \mathrm{~g}, 81 \%$ unreacted); $\mathrm{R}_{f} 0.17$ (10% AcOEt-petrol); $v_{\max }$ (film) 2924, 1741, 1645, 1598, 1446, 1335, 1290, $1180,1151,1082,814,702,665 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 7.85(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0 \mathrm{~Hz}$, ortho Ts), 7.37-7.22 $(7 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ and meta Ts$), 6.49(1 \mathrm{H}, \mathrm{s},=\mathrm{CHPh}), 5.56-5.50(1 \mathrm{H}, \mathrm{m}, \mathrm{CMe}=\mathrm{CHMe}), 5.02(1 \mathrm{H}, \mathrm{s}$, CHTs), [4.71 ($2 \mathrm{H}, \mathrm{s}$) and $4.54(2 \mathrm{H}, \mathrm{s}), 2 \times \mathrm{CH}_{2} \mathrm{O}$], $2.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ts}\right), 1.82(3 \mathrm{H}, \mathrm{d}, J 1.0 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{C}=\mathrm{CHPh}\right), 1.60-1.57\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CMe}=\mathrm{CHCH}_{3}\right), 1.57\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{CHMe}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz})$ 160.9 ($2 \times \mathrm{C}=\mathrm{O}$), [145.9, 136.6, 134.3, 131.3 and 129.6 (ipso Ph , ipso Ts, para $\mathrm{Ts}, \mathrm{CMe}=\mathrm{CHPh}$ and $\mathrm{CMe}=\mathrm{CHMe}$)], [130.2, 129.5, 128.9 and 128.2 (ortho Ph , meta Ph , ortho Ts and meta Ts)], [129.8, 127.0 and 125.9 (para $\mathrm{Ph}, \mathrm{CHPh}=\mathrm{CMe}$ and $\mathrm{CHMe}=\mathrm{CMe}$)], 74.7 (CHTs), [72.9 and 72.6 $\left.\left(2 \times \mathrm{CH}_{2} \mathrm{O}\right)\right],\left[21.7,15.4,13.5\right.$ and $\left.13.3\left(4 \mathrm{x} \mathrm{CH}_{3}\right)\right] ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 474\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 362,323,300,174$, $148\left[\mathrm{M}+\mathrm{NH}_{4}-\mathrm{Ts}-\mathrm{CMe}=\mathrm{CHPh}-\mathrm{CMe}=\mathrm{CHMe}\right]^{+}$, 131 (Found: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, 474.1947. $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{~S}$ requires $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 474.1950$) (Found: $\mathrm{C}, 65.79 ; \mathrm{H}, 6.12 . \mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{~S}$ requires C , 65.77; H , $6.18 \%)$.

2-(p-Toluenesulfonyl)malonic acid methallyl ester cyclohex-1-enylmethyl ester (3e)

According to the general procedure, malonic acid methallyl ester cyclohex-1-enylmethyl ester ($1.619 \mathrm{~g}, 6.418 \mathrm{mmol}, 2$ equiv.) was combined with potassium tert-butoxide ($740 \mathrm{mg}, 6.59$ mmol, 2 equiv.) and p-toluenesulfonyl fluoride ($561 \mathrm{mg}, 3.22 \mathrm{mmol}, 1$ equiv.) in DMSO (3.2 mL). Chromatography ($2 \% \rightarrow 20 \%$ AcOEt-hexane) gave 2-(p-toluenesulfonyl)malonic acid methallyl ester cyclohex-1-enylmethyl ester $3 \mathbf{~ (~} 663 \mathrm{mg}, 51 \%$) as a colourless gum and excess starting malonate (828 mg , 69% unreacted); $\mathrm{R}_{f} 0.10$ (10% AcOEt-hexane); $v_{\max }$ (film) 2931, 1743, 1455, 1336, 1277, 1193, 1180, 1151, 1082, 763, 750, $705 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 7.86(2 \mathrm{H}, \mathrm{d}$, $J 8.0 \mathrm{~Hz}$, ortho Ts), 7.34 ($2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}$, meta Ts), 5.74 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{CH}-2$ cyclohexenyl), 5.01 $(1 \mathrm{H}, \mathrm{s}, \mathrm{CHTs}),\left[4.99(2 \mathrm{H}, \mathrm{bs})\right.$ and $\left.4.95(2 \mathrm{H}, \mathrm{bs}),=\mathrm{CH}_{2}\right],[4.58(2 \mathrm{H}, \mathrm{bs})$ and $4.52(2 \mathrm{H}, \mathrm{bs}), 2 \mathrm{x}$ $\left.\mathrm{CH}_{2} \mathrm{O}\right], 2.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ts}\right),\left[2.03-2.02(2 \mathrm{H}, \mathrm{m})\right.$ and $1.90(2 \mathrm{H}, \mathrm{m}), \mathrm{CH}_{2}-3$ and $\mathrm{CH}_{2}-6$ cyclohexenyl], $1.71\left(3 \mathrm{H}, \mathrm{s},=\mathrm{CCH}_{3}\right), 1.64-1.54\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-4\right.$ and $\mathrm{CH}_{2}-5$ cyclohexenyl); $\delta_{\mathrm{C}}(100$ MHz) [160.8 and $160.7(2 \times \mathrm{C}=\mathrm{O})$], [145.8, 138.3, 134.2 and 131.5 (ipso Ts , para Ts , $=\mathrm{CMe}$ and C-1 cyclohexenyl)], [130.1 and 129.4 (ortho Ts and meta Ts)], 128.0 (CH-2 cyclohexenyl), $114.4\left(=\mathrm{CH}_{2}\right)$, $74.5(\mathrm{CHTs})$, [71.4 and $69.9\left(2 \mathrm{x} \mathrm{CH}_{2} \mathrm{O}\right)$], [25.5, 24.9, 22.1 and $21.8\left(4 \mathrm{x} \mathrm{CH}_{2}\right.$ cyclohexenyl)], [21.6 and $19.2\left(\mathrm{CH}_{3} \mathrm{Ts}\right.$ and $\left.\left.=\mathrm{CCH}_{3}\right)\right] ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 424\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 336,330,270$, 189, 172, 112, 95 (Found: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 424.1808 . \mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{~S}$ requires $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, 424.1794) (Found: C, 61.95; H, 6.45. $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{6}$ S requires C, 62.05; H, 6.45\%).

2-(p-Toluenesulfonyl)malonic acid cinnamyl ester cyclohex-1-enylmethyl ester (3f)

According to the general procedure, malonic acid cinnamyl ester cyclohex-1-enylmethyl ester ($1.958 \mathrm{~g}, 6.229 \mathrm{mmol}, 2$ equiv.) was combined with potassium tert-butoxide ($699 \mathrm{mg}, 6.23$ mmol, 2 equiv.) and p-toluenesulfonyl fluoride ($572 \mathrm{mg}, 3.28 \mathrm{mmol}$, 1 equiv.) in DMSO (3 mL). Chromatography ($10 \% \rightarrow 20 \%$ AcOEt-petrol) gave 2-(p-toluenesulfonyl)malonic acid cinnamyl ester cyclohex-1-enylmethyl ester $\mathbf{3 f}(1.084 \mathrm{~g}, 74 \%)$ as a colourless gum and excess starting malonate ($1.079 \mathrm{~g}, 88 \%$ unreacted); $\mathrm{R}_{f} 0.13$ (10% AcOEt-petrol); $v_{\text {max }}$ (film) 3059, 3028, 2928, 2857, 1743, 1656, 1597, 1494, 1449, 1376, 1336, 1272, 1151, 1083, 1018, 969, 921, 815, 746, $706,695,673,569,515 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 7.85(2 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}$, ortho Ts), 7.37-7.26 (7H, m, meta Ts and Ph), $6.64(1 \mathrm{H}, \mathrm{d}, J 16.0 \mathrm{~Hz},=\mathrm{CHPh}), 6.17(1 \mathrm{H}, \mathrm{dt}, J 16.0,6.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHPh}), 5.73$ ($1 \mathrm{H}, \mathrm{bs}, \mathrm{CH}-2$ cyclohexenyl), 5.01 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHTs}$), 4.81 ($2 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHPh}$), 4.53 $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right.$-cyclohexenyl), $2.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ts}\right),\left[1.99(2 \mathrm{H}, \mathrm{bs})\right.$ and $1.90(2 \mathrm{H}, \mathrm{bs}), \mathrm{CH}_{2}-3$ and $\mathrm{CH}_{2}-6$ cyclohexenyl], $1.59-1.53\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-4\right.$ and $\mathrm{CH}_{2}-5$ cyclohexenyl); $\delta_{\mathrm{C}}(100 \mathrm{MHz}) 160.9$ (2 x $\mathrm{C}=\mathrm{O}$), 145.9 (para Ts), [135.8, 134.2 and 131.6 (ipso Ph , ipso Ts and C-1 cyclohexenyl)], [135.7, 128.4, 128.1 and 121.3 (para $\mathrm{Ph},=\mathrm{CHPh}, \mathrm{CH}=\mathrm{CHPh}$ and $\mathrm{CH}-2$ cyclohexenyl)], [130.2, 129.5, 128.6 and 126.7 (ortho Ph , meta Ph , ortho Ts and meta Ts)], 74.6 (CHTs), [71.5 and 67.4 ($2 \mathrm{x} \mathrm{CH}_{2} \mathrm{O}$)], [25.6, 25.0, 22.2 and $21.9\left(4 \mathrm{x} \mathrm{CH}_{2}\right.$ cyclohexenyl)], 21.7 ($\mathrm{CH}_{3} \mathrm{Ts}$); m/z (CI) 486 $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 348,326,174,134$ [M-COCH(Ts) $\mathrm{COOCH}_{2}-$ cyclohexenyl+H] ${ }^{+}$, 117 (Found: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, 486.1962. $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{~S}$ requires $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, 486.1950) (Found: C, 66.72; H, 5.93. $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{~S}$ requires C, 66.65; H, 6.02\%).

3-Phenyl-4-(p-toluenesulfonyl)-1,6-heptadiene (4a)

To a mixture of 2-(p-toluenesulfonyl)malonic acid allyl ester cinnamyl ester 3a (3.96 g, 9.64 mmol, 1 equiv.) and potassium acetate ($101 \mathrm{mg}, 1.03 \mathrm{mmol}, 0.1$ equiv.) under nitrogen was
added BSA ($7.0 \mathrm{~mL}, 27 \mathrm{mmol}, 2.9$ equiv.). The mixture was exposed to microwave irradiation for 4 min at $170{ }^{\circ} \mathrm{C}$. Chromatography $(5 \% \rightarrow 10 \%$ AcOEt-petrol) gave 3-phenyl-4-(p-toluenesulfonyl)-1,6-heptadiene 4a as a $1: 1$ mixture of diastereoisomers ($2.695 \mathrm{~g}, 86 \%$) as a colourless gum; $\mathrm{R}_{f} 0.34$ (10\% AcOEt-petrol); $\mathrm{v}_{\max }(f i 1 m)$ 3028, 2980, 2921, 1638, 1597, 1493, 1452, 1300, 1289, 1143, 1085, 992, 919, $815 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(270 \mathrm{MHz})[7.69(2 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz})$ and $7.58(2 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz})$, ortho Ts of both diastereoisomers], 7.29-7.08 (14H, m, meta Ts and Ph of both diastereoisomers), [6.20-6.01 $(2 \mathrm{H}, \mathrm{m})$ and $5.67-5.54(2 \mathrm{H}, \mathrm{m}), \mathrm{CH}-2$ and $\mathrm{CH}-6$ of both diastereoisomers], $5.22-4.72\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-1\right.$ and $\mathrm{CH}_{2}-7$ of both diastereoisomers), $[4.09(1 \mathrm{H}, \mathrm{dd}$, $J 8.5,5.0 \mathrm{~Hz})$ and 4.00-3.94 ($1 \mathrm{H}, \mathrm{m}$), CHPh of both diastereoisomers], 3.55-3.44 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CHTs}$ of both diastereoisomers), 2.74-2.67 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-5$ of one diastereoisomer), [2.41 ($3 \mathrm{H}, \mathrm{s}$), 2.39 ($3 \mathrm{H}, \mathrm{s}$) and 2.41-2.33 $(2 \mathrm{H}, \mathrm{m}), \mathrm{CH}_{3}$ of both diastereoisomers and $\mathrm{CH}_{2}-5$ of one diastereoisomer]; $\delta_{\mathrm{C}}(67.5 \mathrm{MHz})$ [144.5, 144.3, 141.1, 140.4, 136.7 and 136.4 (ipso Ph , ipso Ts and para Ts of both diastereoisomers)], [138.1, 135.8, 134.6, 133.6, 127.1 and 126.9 (para $\mathrm{Ph}, \mathrm{CH}-2$ and $\mathrm{CH}-7$ of both diastereoisomers)], [129.7, 129.6, 128.9, 128.7, 128.6, 128.6, 128.4 and 128.2 (ortho Ph , meta Ph , ortho Ts and meta Ts of both diastereoisomers)], [118.7, 118.2, 117.7 and $117.0\left(\mathrm{CH}_{2}-\right.$ 1 and $\mathrm{CH}_{2}-7$ of both diastereoisomers)], [68.9 and 68.5 (CHTs of both diastereoisomers)], [49.4 and 48.3 (CHPh of both diastereoisomers)], [31.9 and $30.1\left(\mathrm{CH}_{2}-5\right.$ of both diastereoisomers)], $21.7\left(\mathrm{CH}_{3}\right.$ of both diastereoisomers); m/z (CI) $344\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$(Found: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 344.1676$. $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~S}$ requires $\left.\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 344.1684\right)$.

2-Methyl-3-phenyl-4-(p-toluenesulfonyl)-1,6-heptadiene (4b) and 2-(p-toluenesulfonyl)-3-phenyl-4-methyl-4-pentenoic acid allyl ester (5b)

3b

4b

5b

To a mixture of 2-(p-toluenesulfonyl)malonic acid allyl ester (E)-2-methyl-3-phenyl-2-propenyl ester $\mathbf{3 b}$ ($1.032 \mathrm{~g}, 2.407 \mathrm{mmol}$, 1 equiv.) and potassium acetate ($56 \mathrm{mg}, 0.57 \mathrm{mmol}, 0.2$ equiv.) under nitrogen was added BSA ($1.9 \mathrm{~mL}, 7.5 \mathrm{mmol}, 3.1$ equiv.). The mixture was exposed to 4
cycles of microwave irradiation of 3 min each at $200{ }^{\circ} \mathrm{C}$. Chromatography $(6 \% \rightarrow 10 \% \mathrm{AcOEt}-$ petrol) gave 2-methyl-3-phenyl-4-(p-toluenesulfonyl)-1,6-heptadiene $\mathbf{4} \mathbf{b}$ as a $1: 1$ mixture of diastereoisomers ($630 \mathrm{mg}, 77 \%$) as a colourless solid and 2-(p-toluenesulfonyl)-3-phenyl-4-methyl-4-pentenoic acid allyl ester $\mathbf{5 b}$ in a $1: 1$ mixture of diastereoisomers ($68 \mathrm{mg}, 7 \%$) as a colourless solid.

2-Methyl-3-phenyl-4-(p-toluenesulfonyl)-1,6-heptadiene $\mathbf{4 b} ; \mathrm{R}_{f} 0.31$ (10\% AcOEt-petrol); $\mathrm{v}_{\max }$ (film) 3077, 3028, 2978, 2923, 1640, 1597, 1493, 1452, 1300, 1290, 1142, 1085, 913, 815, 756, $731,702 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 7.74(2 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}$, ortho Ts of one diastereoisomer), [7.31-7.17 $(8 \mathrm{H}, \mathrm{m})$ and $7.00-6.94(6 \mathrm{H}, \mathrm{m}), \mathrm{Ph}$ and meta Ts of both diastereoisomers], $6.09-5.97(1 \mathrm{H}, \mathrm{m}$, CH-6 of one diastereoisomer), 5.62-5.50 (1H, m, CH-6 of one diastereoisomer), 5.13-4.59 (8H, $\mathrm{m}, \mathrm{CH}_{2}-1$ and $\mathrm{CH}_{2}-7$ of both diastereoisomers), $4.04-3.75$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}-3$ and $\mathrm{CH}-4$ of both diastereoisomers), 2.83-2.33 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-5$ of both diastereoisomers), $2.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ts}\right.$ of one diastereoisomer), $2.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ts}\right.$ of one diastereoisomer), $1.59\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-2\right.$ of one diastereoisomer), $1.51\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-2\right.$ of one diastereoisomer); $\delta_{\mathrm{C}}(67.5 \mathrm{MHz})$ [145.1, 144.9, 144.5, 143.3, 138.9, 138.8, 137.8 and 136.9 (ipso Ph , ipso Ts, para Ts and $\mathrm{C}-2$ of both diastereoisomers)], [134.8, 133.9, 127.2 and 126.6 (para Ph , and $\mathrm{CH}-6$ of both diastereoisomers)], [129.6, 129.2, 129.1, 128.9, 128.4, 127.9, 127.9 (ortho Ph , meta Ph , ortho Ts and meta Ts)], [118.0, 117.7, 113.7 and $113.5\left(\mathrm{CH}_{2}-1\right.$ and $\mathrm{CH}_{2}-7$ of both diastereoisomers)], [66.2 and 65.7 (CHTs of both diastereoisomers)], [53.3 and 52.2 (CHPh of both diastereoisomers)], [31.9 and $31.8\left(\mathrm{CH}_{2}-5\right.$ of both diastereoisomers)], [21.7, 21.5, 21.1 and 20.6 $\left(\mathrm{CH}_{3}-2\right.$ and $\mathrm{CH}_{3} \mathrm{Ts}$ of both diastereoisomers)]; $\mathrm{m} / \mathrm{z}(\mathrm{CI}) 358\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 341[\mathrm{M}+\mathrm{H}]^{+}, 268$ (Found: $[\mathrm{M}+\mathrm{H}]^{+}, 341.1580 . \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~S}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 341.1575$).

2-(p-Toluenesulfonyl)-4-methyl-3-phenyl-4-pentenoic acid allyl ester 5b; $\mathrm{R}_{f} 0.22$ ($10 \% \mathrm{AcOEt}$ petrol); $v_{\max }(f i l m) 3070,1741,1647,1597,1493,1452,1323,1293,1145,1083,900 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}$ (270 MHz) 7.81 ($2 \mathrm{H}, \mathrm{d}, ~ J 8.5 \mathrm{~Hz}$, ortho Ts of one diastereoisomer), 7.31-7.05 (14H, m, meta Ts and Ph of both diastereoisomers), $5.90-5.76(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=$ of both diastereoisomers), 5.38-4.50 $\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-1, \mathrm{CH}=\mathrm{CH}_{2}\right.$ and $\mathrm{CH}_{2} \mathrm{O}$ of both diastereoisomers), 4.12-4.06 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}-3$ and $\mathrm{CH}-4$ of both diastereoisomers), [2.44 (3H, s) and $2.32(3 \mathrm{H}, \mathrm{s}) \mathrm{CH}_{3} \mathrm{Ts}$ of both diastereoisomers $]$, $1.61\left(6 \mathrm{H}, \mathrm{bs}, \mathrm{CH}_{3}-2\right.$ of both diastereoisomers); $\delta_{\mathrm{C}}(100 \mathrm{MHz})$ [165.1 and $164.9(\mathrm{C}=\mathrm{O}$ of both diastereoisomers)], [145.6, 145.3, 144.4, 142.5, 138.8, 136.9, 136.1 and 135,2 (ipso Ph, ipso Ts, para Ts and C-2 of both diastereoisomers)], [131.1, 130.7, 129.9, 129.7, 129.2, 129.0, 128.9, 128.6, 128.4, 128.2, 128.0 and 127.3 (ortho Ph , meta Ph , para Ph , ortho Ts, meta Ts and $\mathrm{CH}=$ of
both diastereoisomers)], [119.2, 118.9, 114.7 and $111.5\left(\mathrm{CH}_{2}-1\right.$ and $\mathrm{CH}=\mathrm{CH}_{2}$ of both diastereoisomers)], [74.5 and 72.8 (CHTs of both diastereoisomers)], [66.8 and $66.4\left(\mathrm{CH}_{2} \mathrm{O}\right.$ of both diastereoisomers)], [52.2 and 51.5 (CHPh of both diastereoisomers)], [21.9, 21.8, 21.7 and $21.5\left(\mathrm{CH}_{3}-2\right.$ and $\mathrm{CH}_{3} \mathrm{Ts}$ of both diastereoisomers)]; $\mathrm{m} / \mathrm{z}(\mathrm{CI}) 402\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 318\left[\mathrm{M}+\mathrm{NH}_{4}{ }^{-}\right.$ $\mathrm{COOCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$] (Found: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, 402.1752. $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}$ requires $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 402.1739$).

2,6-Dimethyl-3-phenyl-4-(p-toluenesulfonyl)-1,6-heptadiene (4c)

To a mixture of 2-(p-toluenesulfonyl)-malonic acid methallyl ester (E)-2-methyl-3-phenyl-2propenyl ester 3c ($743 \mathrm{mg}, 1.69 \mathrm{mmol}, 1$ equiv.) and potassium acetate ($22 \mathrm{mg}, 0.22 \mathrm{mmol}, 0.1$ equiv.) under nitrogen was added BSA ($2.0 \mathrm{~mL}, 7.9 \mathrm{mmol}, 4.7$ equiv.). The mixture was exposed to 2 cycles of microwave irradiation of 3 min each at $240{ }^{\circ} \mathrm{C}$. Chromatography $(2 \% \rightarrow 10 \%$ AcOEt-petrol) gave 2,6-dimethyl-3-phenyl-4-(p-toluenesulfonyl)-1,6-heptadiene 4c as a 1:1 mixture of diastereoisomers ($419 \mathrm{mg}, 70 \%$) as a colourless gum; $\mathrm{R}_{f} 0.35$ (10% AcOEt-petrol); $v_{\max }$ (film) 3070, 3027, 2970, 2920, 1649, 1597, 1493, 1451, 1301, 1290, 1143, 1085, 895, 753, $701,667 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 7.71(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}$, ortho Ts of one diastereoisomer), 7.34-7.02 $(16 \mathrm{H}, \mathrm{m}$, ortho Ts of one diastereoisomer, meta Ts and Ph of both diastereoisomers), 4.99-3.81 $\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-1, \mathrm{CH}-3, \mathrm{CH}-4\right.$ and $\mathrm{CH}_{2}-7$ of both diastereoisomers), $2.88-2.13\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-5\right.$ of both diastereoisomers), [2.42 $(3 \mathrm{H}, \mathrm{s})$ and $2.33(2 \mathrm{H}, \mathrm{s}), \mathrm{CH}_{3} \mathrm{Ts}$ of both diastereoisomers], [1.70 $(3 \mathrm{H}, \mathrm{s}), 1.60(3 \mathrm{H}, \mathrm{s}), 1.57(3 \mathrm{H}, \mathrm{s})$ and $1.37(3 \mathrm{H}, \mathrm{s}), \mathrm{CH}_{3}-2$ and $\mathrm{CH}_{3}-6$ of both diastereoisomers]; $\delta_{\mathrm{C}}(67.5 \mathrm{MHz})[145.7,144.9,144.4,143.6,142.5,141.2,139.2,138.6,137.3$ and 136.8 (ipso Ph , ipso Ts, para Ts, C-2 and C-6 of both diastereoisomers)], [129.7, 129.4, 129.3, 128.9, 128.3 and 128.0 (ortho Ph , meta Ph , ortho Ts and meta Ts of both diastereoisomers)], [127.2 and 126.7 (para Ph of both diastereoisomers)], [114.2, 112.6, 112.6 and $112.1\left(\mathrm{CH}_{2}-1\right.$ and $\mathrm{CH}_{2}-7$ of both diastereoisomers)], [64.8 and 64.1 (CHTs of both diastereoisomers)], [54.3 and 52.0 (CHPh of both diastereoisomers)], [35.4 and $34.8\left(\mathrm{CH}_{2}-5\right.$ of both diastereoisomers)], [22.8, 22.2, 22.0, 21.7, 21.6 and $21.3\left(\mathrm{CH}_{3}-2, \mathrm{CH}_{3}-6\right.$ and $\mathrm{CH}_{3} \mathrm{Ts}$ of both diastereoisomers)]; m/z (CI) 372 $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 219\left[\mathrm{M}+\mathrm{NH}_{4}-\mathrm{Ts}\right]^{+}, 182$ (Found: $[\mathrm{M}+\mathrm{H}]^{+}, 355.1736 . \mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~S}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 355.1732).

2,5,6-Trimethyl-3-phenyl-4-(p-toluenesulfonyl)-1,6-heptadiene (4d) and 3,4-dimethyl-2-(p-toluenesulfonyl)-4-pentenoic acid (E)-2-methyl-3-phenyl-2-propenyl ester (5d)

4d

To a mixture of 2-(p-toluenesulfonyl)-malonic acid (E)-2-methyl-2-butenyl ester (E)-2-methyl-3-phenyl-2-propenyl ester $3 \mathbf{d}$ ($2.817 \mathrm{~g}, 6.170 \mathrm{mmol}$, 1 equiv.) and potassium acetate ($76 \mathrm{mg}, 0.77$ $\mathrm{mmol}, 0.1$ equiv.) under nitrogen was added BSA ($5.0 \mathrm{~mL}, 20 \mathrm{mmol}, 3$ equiv.). The mixture was exposed to 6 cycles of microwave irradiation of 1 min each at $180^{\circ} \mathrm{C}$. Chromatography $(1 \% \rightarrow 5 \%$ AcOEt-petrol) gave 2,5,6-trimethyl-3-phenyl-4-(p-toluenesulfonyl)-1,6-heptadiene 4d as a mixture of diastereoisomers ($1.275 \mathrm{~g}, 56 \%$) as a colourless solid and 2-(p-toluenesulfonyl)-3,4-dimethyl-4-pentenoic acid (E)-2-methyl-3-phenyl-2-propenyl ester 5d as a 3:2 mixture of diastereoisomers ($576 \mathrm{mg}, 23 \%$) as a colourless solid.

2,5,6-Trimethyl-3-phenyl-4-(p-toluenesulfonyl)-1,6-heptadiene 4d; $\mathrm{R}_{f} 0.35$ (10\% AcOEt-petrol); $v_{\text {max }}$ (film) 3061, 3028, 2970, 2924, 1643, 1597, 1493, 1452, 1379, 1300, 1144, 1086, 893, 814, $760,702,665 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(400 \mathrm{MHz})[7.78(2 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz})$ and $7.73(2 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz})$, ortho Ts of 2 diastereoisomers], 7.33-6.87 ($32 \mathrm{H}, \mathrm{m}$, ortho Ts of 2 diastereoisomers and meta Ts and Ph of all diastereoisomers), $5.09-4.01\left(24 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-1, \mathrm{CH}-3, \mathrm{CH}-4\right.$ and $\mathrm{CH}_{2}-7$ of all diastereoisomers), [3.43-3.38 $(1 \mathrm{H}, \mathrm{m}), 2.96-2.91(1 \mathrm{H}, \mathrm{m}), 2.84-2.78(1 \mathrm{H}, \mathrm{m}), \mathrm{CH}-5$ of 3 diastereoisomers], [2.45 $(3 \mathrm{H}, \mathrm{s}), 2.43(3 \mathrm{H}, \mathrm{s}), 2.38-2.36(1 \mathrm{H}, \mathrm{m}), 2.33(3 \mathrm{H}, \mathrm{s})$ and $2.30(3 \mathrm{H}, \mathrm{s}), \mathrm{CH}-5$ of one diastereoisomer and CH_{3} Ts of all diastereoisomers], [2.05 ($3 \mathrm{H}, \mathrm{s}$), $1.90(3 \mathrm{H}, \mathrm{s}), 1.80(3 \mathrm{H}, \mathrm{s})$, $1.62(3 \mathrm{H}, \mathrm{s})$ and $1.56-1.14(24 \mathrm{H}, \mathrm{m}), \mathrm{CH}_{3}-2, \mathrm{CH}_{3}-5$ and $\mathrm{CH}_{3}-6$ of all diastereoisomers $] ; \delta_{\mathrm{C}}(125$ MHz) $[146.8,146.2,145.1,144.8,144.8,144.6,144.5,144.2,143.9,142.8,142.6,140.2,140.1$, 139.7, 139.5, 139.2, 139.1, 138.4 and 138.0 (ipso Ph, ipso Ts, para Ts, C-2 and C-6 of all diastereoisomers)], [129.5, 129.3, 129.2, 129.1, 128.9, 128.8, 128.7, 128.6, 127.8, 127.7, 127.6, 127.2, 127.0, 126.9 and 126.4 (ortho Ph , meta Ph , para Ph , ortho Ts and meta Ts of all
diastereoisomers)], $\left[114.5,114.4,114.1,113.8,111.9,111.4\right.$ and $111.2\left(\mathrm{CH}_{2}-1\right.$ and $\mathrm{CH}_{2}-7$ of all diastereoisomers)], [67.5, 67.3, 67.1 and 67.0 (CHTs of all diastereoisomers)], [54.1, 53.3, 52.5 and 51.9 (CHPh of all diastereoisomers)], [39.7, 39.3, 38.5 and 38.4 (CHMe of all diastereoisomers)], [22.7, 22.7, 22.3, 21.8, 21.7, 21.5, 21.4, 20.9, 20.8, 20.5, 20.1 and $19.3\left(\mathrm{CH}_{3}-\right.$ 2, $\mathrm{CH}_{3}-6$ and CH_{3} Ts of all diastereoisomers)], [14.6, 13.8, 12.7 and $12.6\left(\mathrm{CH}_{3}-5\right.$ of all diastereoisomers)]; m / z (CI) $386\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 369[\mathrm{M}+\mathrm{H}]^{+}, 198$ (Found: $[\mathrm{M}+\mathrm{H}]^{+}, 369.1880$; $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 386.2152 . \mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{~S}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 369.1888$; $\left.\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 386.2154\right)$.

3,4-Dimethyl-2-(p-toluenesulfonyl)-4-pentenoic acid (E)-2-methyl-3-phenyl-2-propenyl ester 5d; $\mathrm{R}_{f} 0.31$ (10\% AcOEt-petrol); $v_{\max }$ (film) 2972, 2938, 2924, 1739, 1596, 1493, 1451, 1322, 1290, $1209,1143,1083,902,815,751 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 7.79(2 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}$, ortho Ts of the major diastereoisomer), 7.77 ($2 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}$, ortho Ts of the minor diastereoisomer), 7.37-7.20 (14 H , m , meta Ts and Ph of both diastereoisomers), $6.47(1 \mathrm{H}, \mathrm{s}, \mathrm{CHPh}$ of the minor diastereoisomer), $6.35\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHPh}\right.$ of the major diastereoisomer), 4.86-4.02 ($10 \mathrm{H}, \mathrm{m}, \mathrm{CHTs}, \mathrm{CH}_{2}-5$ and $\mathrm{CH}_{2} \mathrm{O}$ of both diastereoisomers), 3.12-3.02 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-3$ of both diastereoisomers), $2.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ts}\right.$ of the minor diastereoisomer), $2.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ Ts of the major diastereoisomer), $1.80(3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $1.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{CHPh}$ of the minor diastereoisomer), $1.72\left(3 \mathrm{H}, \mathrm{d}, J 1.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{CHPh}\right.$ of the major diastereoisomer), $1.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-3\right.$ of the major diastereoisomer), $1.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-3\right.$ of the minor diastereoisomer), $1.41\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{CH}_{3}-4\right.$ of the major diastereoisomer), 1.12 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{CH}_{3}-4$ of the minor diastereoisomer); $\delta_{\mathrm{C}}(100 \mathrm{MHz})$ [165.7 and $165.6(\mathrm{C}=\mathrm{O}$ of both diastereoisomers)], [145.7, 145.2, 145.1, 144.5, 136.7, 135.3, 135.1, 131.5 and 131.5 (ipso Ph , ipso Ts, para Ts, C-4 and $\mathrm{CH}_{3} \mathrm{C}=\mathrm{CHPh}$ of both diastereoisomers)], [129.6, 129.6, 129.5, 129.4, 129.4, 129.2, 129.0, 128.8, 128.1 and 126.9 (ortho Ph , meta Ph , para Ph , ortho Ts, meta Ts and $=\mathrm{CHPh}$ of both diastereoisomers)], [114.0 and $113.2\left(\mathrm{CH}_{2}-5\right.$ of both diastereoisomers)], [75.5 and 73.4 (CHTs of both diastereoisomers)], [71.8 and $71.6\left(\mathrm{CH}_{2} \mathrm{O}\right.$ of both diastereoisomers)], [40.8 and 40.3 (CH-3 of both diastereoisomers)], [21.5, 19.2, 18.3, 18.2, 17.7, 15.5 and $15.5\left(\mathrm{CH}_{3}-3, \mathrm{CH}_{3}-4 \mathrm{CH}_{3} \mathrm{Ts}\right.$ and $\mathrm{CH}_{3} \mathrm{C}=\mathrm{CHPh}$ of both diastereoisomers)]; m / z (CI) $430\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 318$ (Found: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 430.2047 . \mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{~S}$ requires $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, 430.2052).

1-Methyl-4-[3-methyl-1-(2-methylenecyclohexyl)but-3-enylsulfonyl]benzene (4e)

To a mixture of 2-(p-toluenesulfonyl)malonic acid methallyl ester cyclohex-1-enymethyl ester 3e ($65 \mathrm{mg}, 0.16 \mathrm{mmol}, 1$ equiv.) and potassium acetate ($5 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.3$ equiv.) under nitrogen was added BSA ($300 \mu \mathrm{~L}, 1.19 \mathrm{mmol}, 7$ equiv.). The mixture was exposed to 6 cycles of microwave irradiation of 1 min each at $220^{\circ} \mathrm{C}$ followed by 3 cycles of microwave irradiation of 2 min each at $240^{\circ} \mathrm{C}$. Chromatography $(0 \% \rightarrow 10 \%$ AcOEt-hexane) gave 1-methyl-4-[3-methyl-1-(2-methylenecyclohexyl)but-3-enylsulfonyl]benzene $\mathbf{4 e}$ as a 1:1 mixture of diastereoisomers ($32 \mathrm{mg}, 62 \%$) as a colourless gum; $\mathrm{R}_{f} 0.22$ (10% AcOEt-hexane); $\mathrm{v}_{\text {max }}$ (film) 2931, 2859, 1741, $1668,1596,1448,1311,1301,1293,1145,1085,892,815 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 7.77(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0$ Hz , ortho Ts of one diastereoisomer), $7.73(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}$, ortho Ts of one diastereoisomer), $7.33(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}$, meta Ts of one diastereoisomer), $7.29(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}$, meta Ts of one diastereoisomer), 4.83-4.46 ($8 \mathrm{H}, \mathrm{m}, 2 \mathrm{x}=\mathrm{CH}_{2}$ of both diastereoisomers), [3.70 $(1 \mathrm{H}, \mathrm{dt}, J 9.5,2.5$ $\mathrm{Hz})$ and 3.60-3.56 $(1 \mathrm{H}, \mathrm{m})$, CHTs of both diastereoisomers], [2.97-2.94 $(1 \mathrm{H}, \mathrm{m})$, 2.76-2.65 $(2 \mathrm{H}$, $\mathrm{m}), 2.50-2.00(8 \mathrm{H}, \mathrm{m})$ and $(11 \mathrm{H}, \mathrm{m}), \mathrm{CH}_{2} \mathrm{CHTs}$ and $\mathrm{CH}-1, \mathrm{CH}_{2}-3, \mathrm{CH}_{2}-4, \mathrm{CH}_{2}-5, \mathrm{CH}_{2}-6$ cyclohexyl of both diastereoisomers], $\left[2.44(3 \mathrm{H}, \mathrm{s})\right.$ and $2.43(3 \mathrm{H}, \mathrm{s}), \mathrm{CH}_{3} \mathrm{Ts}$ of both diastereoisomers], $\left[1.56(3 \mathrm{H}, \mathrm{s})\right.$ and $1.46(3 \mathrm{H}, \mathrm{s}),=\mathrm{CCH}_{3}$ of both diastereoisomers]; $\delta_{\mathrm{C}}(100$ MHz) [149.6, 148.7, 144.3, 144.2, 141.4, 141.0, 137.1 and 136.7 (ipso Ts, para Ts, C-2 cyclohexyl and =CMe of both diastereoisomers)], [129.5, 129.4 and 128.8 (ortho Ts and meta Ts of both diastereoisomers)], [112.7, 112.5, 110.1 and $105.5\left(2 \mathrm{x}=\mathrm{CH}_{2}\right.$ of both diastereoisomers)], [62.8 and 61.9 (CHTs of both diastereoisomers)], [44.3 and 41.7 (CH-1 cyclohexyl of both diastereoisomers)], [37.1, 36.3, 34.5, 33.2, 30.4, 28.6, 28.0, 28.0, 25.8 and $23.3\left(\mathrm{CH}_{2}-3, \mathrm{CH}_{2}-4\right.$, $\mathrm{CH}_{2}-5$ and $\mathrm{CH}_{2}-6$ cyclohexenyl and $\mathrm{CH}_{2} \mathrm{CHTs}$ of both diastereoisomers)], [22.2, 21.9 and 21.6 ($=\mathrm{CCH}_{3}$ and $\mathrm{CH}_{3} \mathrm{Ts}$ of both diastereoisomers) $] ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 336\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 319[\mathrm{M}+\mathrm{H}]^{+}, 296,174$, 163, 52 (Found: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 336.1993$; $[\mathrm{M}+\mathrm{H}]^{+}$, 319.1731. $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~S}$ requires $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, 336.1997; $\left.[\mathrm{M}+\mathrm{H}]^{+}, 319.1732\right)$.

1-Methyl-4-[1-(2-methylenecyclohexyl)-2-phenylbut-3-enylsulfonyl]benzene (4f)

$4 f$

To a mixture of 2-(p-toluenesulfonyl)malonic acid cinnamyl ester cyclohex-1-enylmethyl ester 3f ($543 \mathrm{mg}, 1.16 \mathrm{mmol}, 1$ equiv.) and potassium acetate ($14 \mathrm{mg}, 0.15 \mathrm{mmol}, 0.1$ equiv.) under nitrogen was added BSA ($900 \mu \mathrm{~L}, 3.57 \mathrm{mmol}, 3$ equiv.). The mixture was exposed to 6 cycles of microwave irradiation of 1 min each at $190{ }^{\circ} \mathrm{C}$. Chromatography ($1 \% \rightarrow 2 \%$ AcOEt-petrol) gave 1-methyl-4-[1-(2-methylenecyclohexyl)-2-phenylbut-3-enylsulfonyl]benzene $\mathbf{4 f}$ as a mixture of 4 diastereoisomers ($257 \mathrm{mg}, 58 \%$) as a colourless gum; $\mathrm{R}_{f} 0.33$ ($5 \% \mathrm{AcOEt}$-petrol); $v_{\text {max }}$ (film) 3064, 2932, 2857, 1598, 1494, 1451, 1314, 1301, 1143, 1085, 906, 815, 740, 700, $662 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}$ (400 MHz) $7.70(2 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}$, ortho Ts of one diastereoisomer), 7.56-6.97 $(26 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ and meta Ts of all diastereoisomers and ortho Ts of three diastereoisomers), [6.71-6.62 ($1 \mathrm{H}, \mathrm{m}$), 6.35 $(1 \mathrm{H}, \mathrm{dt}, J 17.0,10.0 \mathrm{~Hz})$ and $6.25-6.15(2 \mathrm{H}, \mathrm{m}), \mathrm{CH}=$ of all diastereosiomers], 5.33-4.86 (16 H , $\mathrm{m}, 2 \mathrm{x}=\mathrm{CH}_{2}$ of all diastereoisomers), [4.64(1H, s), $4.44(1 \mathrm{H}, \mathrm{s}), 4.36-4.32(1 \mathrm{H}, \mathrm{m}), 4.23(1 \mathrm{H}$, dd, $J 9.0,3.0 \mathrm{~Hz}$) and 4.16-4.02 (4H, m), CHTs and CHPh of all diastereoisomers], [3.30-3.25 $(1 \mathrm{H}, \mathrm{m}), 3.01-2.93(2 \mathrm{H}, \mathrm{m})$ and $2.68-2.65(1 \mathrm{H}, \mathrm{m}), \mathrm{CH}-1$ cyclohexyl of all diastereoisomers], [2.42(3H, s), $2.40(3 \mathrm{H}, \mathrm{s}), 2.39(3 \mathrm{H}, \mathrm{s})$ and $2.36(3 \mathrm{H}, \mathrm{s}), \mathrm{CH}_{3} \mathrm{Ts}$ of all diastereoisomers)], 2.33$1.28\left(32 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-3, \mathrm{CH}_{2}-4, \mathrm{CH}_{2}-5\right.$ and $\mathrm{CH}_{2}-6$ cyclohexyl of all diastereoisomers); δ_{C} (100 MHz) [149.7, 148.9, 148.5 and 148.3 (C-2 cyclohexyl of all diastereoisomers)], [144.0, 143.7, 143.5, 143.1, 142.9, 142.3, 141.4, 140.8, 139.4, 138.6, 138.4 and 137.7 (ipso Ts, para Ts and ipso Ph of all diastereoisomers)], [137.9, 137.5, 136.9 and 134.6 ($\mathrm{CH}=$ of all diastereoisomers)], [129.4, 129.4, 129.3, 129.0, 128.5, 128.4, 128.3, 128.2, 128.1, 127.9, 127.8, 127.4, 126.5, 126.4 and 125.9 (ortho Ts, meta Ts and Ph of all diastereoisomers)], [120.0, 117.9, 117.7, 117.5, 110.8, 109.1, 108.6 and $108.0\left(2 \mathrm{x}=\mathrm{CH}_{2}\right.$ of all diastereoisomers)], [69.6, 69.5, 68.5 and 68.2 (CHTs of all diastereoisomers)], [49.3, 48.5, 48.3 and 48.2 (CHPh of all diastereoisomers)], [44.2, 43.7, 43.2 and 42.0 (CH-1 cyclohexyl of all diastereoisomers)], [35.7, 35.6, 35.1, 33.4, 30.2, 29.6, 29.4, 28.3, 27.9, 27.8, 27.3, 25.2, 25.0, 24.3 and $22.1\left(\mathrm{CH}_{2}-3, \mathrm{CH}_{2}-4, \mathrm{CH}_{2}-5\right.$ and $\mathrm{CH}_{2}-6$ cyclohexyl of all diastereoisomers)], [21.5, 21.5 and $21.4\left(\mathrm{CH}_{3}\right.$ Ts of all diastereoisomers)]; m / z
(CI) $398\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 381[\mathrm{M}+\mathrm{H}]^{+}$, 52 (Found: $[\mathrm{M}+\mathrm{H}]^{+}, 381.1888 . \mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{~S}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 381.1888).

3-Phenyl-4-(prop-2-enyl)-4-(p-toluenesulfonyl)tridec-1-ene (6a)

To a 1:1 diastereoisomeric mixture of 3-phenyl-4-(p-toluenesulfonyl)-1,6-heptadiene 4a (630 $\mathrm{mg}, 1.93 \mathrm{mmol}$, 1 equiv.) in THF (10 mL) at $0{ }^{\circ} \mathrm{C}$ and under nitrogen was added dropwise a commercial solution of n - BuLi in hexane (Acros, titrated to be $2.16 \mathrm{M}, 1.1 \mathrm{~mL}, 2.4 \mathrm{mmol}, 1.2$ equiv.). The solution turned deep red and 1 -iodononane ($460 \mu \mathrm{~L}, 2.33 \mathrm{mmol}, 1.2$ equiv.) was immediately added. The reaction was allowed to warm to rt and after 15 h of stirring the excess $n-\mathrm{BuLi}$ was quenched with $\mathrm{MeOH}(2.5 \mathrm{~mL})$. Concentration under reduced pressure and chromatography $\quad(3 \% \rightarrow 5 \% \quad$ AcOEt-petrol) gave 3-phenyl-4-(prop-2-enyl)-4-(p-toluenesulfonyl)tridec-1-ene 6a as a $2: 3$ mixture of diastereoisomers ($754 \mathrm{mg}, 86 \%$) as a colourless gum; $\mathrm{R}_{f} 0.69$ (10% AcOEt-petrol); $\mathrm{v}_{\max }(f \mathrm{film}$) 2924, 2853, 1635, 1598, 1454, 1286, $1129,1079,917,815 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 7.47-7.43(4 \mathrm{H}, \mathrm{m}$, ortho Ts of both diastereoisomers), 7.27-7.13 ($14 \mathrm{H}, \mathrm{m}$, meta Ts and Ph of both diastereoisomers), [6.42-6.27 ($2 \mathrm{H}, \mathrm{m}$), 6.20-6.07 $(1 \mathrm{H}, \mathrm{m})$ and 5.82-5.70 $(1 \mathrm{H}, \mathrm{m}), \mathrm{CH}-2$ and $\mathrm{CH}-6$ of both diastereoisomers], 5.19-4.97 $(8 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2}-1$ and $\mathrm{CH}_{2}-7$ of both diastereoisomers), 4.19-4.12 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CHPh}$ of both diastereoisomers), 2.78-2.43 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-5$ of both diastereoisomers), $2.37\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ts}\right.$ of both diastereoisomers), 1.97-1.55 (4H, m, $\mathrm{TsCCH}_{2} \mathrm{CH}_{2}$ of both diastereoisomers), $1.26(28 \mathrm{H}$, bs, $\mathrm{TsCCH}_{2}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{Me}$ of both diastereoisomers), $0.90-0.85\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ of both diastereoisomers); $\delta_{\mathrm{C}}(100 \mathrm{MHz}$) [144.0, 140.0, 135.6 and 135.4 (ipso Ph , ipso Ts and para Ts of both diastereoisomers)], [137.6 and 132.8 (CH-2 and CH-6 of the major diastereoisomer)], [137.5 and 133.2 (CH-2 and CH-6 of the minor diastereoisomers)], [130.6, 130.5, 130.3, 130.2, 129.0, 129.0, 128.2, and 127.1 (ortho Ph , meta Ph , para Ph , ortho Ts and meta Ts of both diastereoisomers)], [118.9 and $118.1\left(\mathrm{CH}_{2}-1\right.$ and $\mathrm{CH}_{2}-7$ of the minor diastereoisomer)], [118.9 and $117.8\left(\mathrm{CH}_{2}-1\right.$ and $\mathrm{CH}_{2}-7$ of the major diastereoisomer)], 73.4 (C-4 of the minor diastereoisomer), 73.2 (C-4 of the major diastereoisomer), 53.3 (CHPh of the minor diastereosiomer), 52.7 (CHPh of the major diastereoisomer), [37.7, 36.4, 33.2, 32.6, 31.9, 31.9,
30.4, 30.3, 29.6, 29.5, 29.4, 29.3, 29.3, 29.3, 23.8, 23.6 and $22.7\left(\mathrm{CH}_{2}-5\right.$ and $\mathrm{TsC}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{Me}$ of both diastereoisomers)], [21.5 and $14.1\left(\mathrm{CH}_{3}\right.$ Ts and $\mathrm{CH}_{2} \mathrm{CH}_{3}$ of both diastereoisomers)]; m / z (CI) $470\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 297[\mathrm{M}+\mathrm{H}-\mathrm{Ts}]^{+}, 174[\mathrm{M}+\mathrm{H}-\mathrm{Ts}-\text { nonyl }]^{+}$(Found: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 470.3094$. $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{~S}$ requires $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 470.3093$).

2-Methyl-3-phenyl-4-(prop-2-enyl)-4-(p-toluenesulfonyl)tridec-1-ene (6b)

To a solution of a 1:1 diastereoisomeric mixture of 2-methyl-3-phenyl-4-(p-toluenesulfonyl)-1,6heptadiene $\mathbf{4 b}$ ($245 \mathrm{mg}, 0.720 \mathrm{mmol}, 1$ equiv.) in THF (3.6 mL) at $0{ }^{\circ} \mathrm{C}$ and under nitrogen was added dropwise a commercial solution of $n-\mathrm{BuLi}$ in hexane (Aldrich, titrated to be $2.42 \mathrm{M}, 300$ $\mu \mathrm{L}, 0.708 \mathrm{mmol}, 1.2$ equiv.). The solution turned bright orange and 1 -iodononane ($140 \mu \mathrm{~L}, 0.799$ mmol, 1.1 equiv.) was immediately added. The reaction was allowed to warm to rt and after 43 h of stirring at rt the excess n - BuLi was quenched with $\mathrm{MeOH}(1 \mathrm{~mL})$. Concentration under reduced pressure and chromatography ($2 \% \rightarrow 10 \%$ AcOEt-petrol) gave 2-methyl-3-phenyl-4-(prop-2-enyl)-4-(p-toluenesulfonyl)tridec-1-ene $\mathbf{6 b}$ as a 1:1 mixture of diastereoisomers (136 mg , 40%) as a pale yellow oil and the diene starting material $\mathbf{4 b}$ ($83 \mathrm{mg}, 34 \%$) as a colourless oil; R_{f} 0.34 (10% AcOEt-hexane); $v_{\text {max }}$ (film) 2955, 2925, 2854, 1455, 1276, 1261, 1130, 1077, 1041, $763 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(400 \mathrm{MHz})$ 7.47-7.10 (18H, m, Ph and Ts of both diastereoisomers), 6.23-6.13 (1 H , $\mathrm{m}, \mathrm{CH}-6$ of the major diastereoisomer), $5.86-5.76(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-6$ of the minor diastereoisomer), 5.19-4.93 ($8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-1$ and $\mathrm{CH}_{2}-7$ of both diastereoisomers), $4.34(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-3$ of the minor diastereoisomer), $4.24\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-3\right.$ of the major diastereoisomer), $3.00-2.71\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-5\right.$ of both diastereoisomers), $2.37\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ Ts of both diastereoisomers), [2.27-1.84 ($4 \mathrm{H}, \mathrm{m}$) and 1.40-1.20 $(28 \mathrm{H}, \mathrm{m}), \mathrm{TsC}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{Me}$ of both diastereoisomers], $1.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-2\right.$ of the minor diastereoisomer), $1.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-2\right.$ of the major diastereoisomer), $0.97-0.87\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ of both diastereoisomers); $\delta_{C}(100 \mathrm{MHz}$) [145.1, 144.8, 143.9, 143.8, 139.0, 138.7, 136.0 and 135.9 (ipso Ph, ipso Ts, para Ts and C-2 of both diastereoisomers)], [133.4, 133.1, 127.1 and 127.0 (para Ph , and CH-6 of both diastereoisomers)], [131.3, 131.2, 130.1, 129.9, 128.8, 127.9 and 127.8 (ortho Ph , meta Ph , ortho Ts and meta Ts)], [118.9, 118.9, 113.9 and $113.7\left(\mathrm{CH}_{2}-1\right.$ and $\mathrm{CH}_{2}-7$ of both diastereoisomers)], [75.4 and 74.8 (C-4 of both diastereoisomers)], [54.1 and
53.4 (CHPh of both diastereoisomers)], [37.6, 36.8, 33.4, 32.8, 31.9, 31.8, 30.3, 30.2, 29.5, 29.4, 29.3, 29.3, 29.2, 23.9 and $22.7\left(\mathrm{CH}_{2}-5\right.$ and $\mathrm{TsC}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{Me}$ of both diastereoisomers)], [25.4, 25.1 and $21.5\left(\mathrm{CH}_{3}-2\right.$ and CH_{3} Ts of both diastereoisomers $)$, $14.1\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ of both diastereoisomers); m/z (CI) $484\left[\mathrm{M}_{+} \mathrm{NH}_{4}\right]^{+}, 358,301,264,218,200,188,148$ (Found: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 484.3258 . \mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{~S}$ requires $\left.[\mathrm{M}+\mathrm{H}]^{+}, 484.3249\right)$.

4-Benzyl-2-methyl-3-phenyl-4-(p-toluenesulfonyl)-1,6-heptadiene (6c)

S
To a solution of a 1:1 diastereoisomeric mixture of 2-methyl-3-phenyl-4-(p-toluenesulfonyl)-1,6heptadiene 4b ($732 \mathrm{mg}, 2.15 \mathrm{mmol}$, 1 equiv.) in THF (10 mL) at $0^{\circ} \mathrm{C}$ and under nitrogen was added dropwise a commercial solution of $n-\mathrm{BuLi}$ in hexane (Aldrich, titrated to be $1.50 \mathrm{M}, 1.750$ $\mathrm{mL}, 2.625 \mathrm{mmol}, 1.2$ equiv.). The solution turned bright orange and benzyl bromide ($310 \mu \mathrm{~L}$, $2.61 \mathrm{mmol}, 1.2$ equiv.) was immediately added. The reaction was allowed to warm to rt and after 42 h of stirring at rt and 2 h of stirring at $40^{\circ} \mathrm{C}$ the excess n - BuLi was quenched with $\mathrm{MeOH}(2$ mL). Concentration under reduced pressure and chromatography ($3 \% \rightarrow 4 \%$ AcOEt-petrol) gave 4-benzyl-2-methyl-3-phenyl-4-(p-toluenesulfonyl)-1,6-heptadiene 6c as a 2:3 mixture of diastereoisomers ($523 \mathrm{mg}, 56 \%$) as a colourless gum and the diene starting material $\mathbf{4 b}$ (28 mg , 4%) as a colourless solid; $\mathrm{R}_{f} 0.59$ (10% AcOEt-petrol); $v_{\max }$ (film) 3062, 3030, 2925, 2853, $1670,1638,1597,1494,1453,1374,1286,1185,1134,1076,918,815,758,738,703,650 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 7.61-7.59(4 \mathrm{H}, \mathrm{m}$, ortho Ts of both diastereoisomers), 7.41-6.99 $(24 \mathrm{H}, \mathrm{m}, 2 \mathrm{x} \mathrm{Ph}$ and meta Ts of both diastereoisomers), 6.26-6.13 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-6$ of both diastereoisomers), 5.30$4.98\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-1\right.$ and $\mathrm{CH}_{2}-7$ of both diastereoisomers), $4.45(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-3$ of the major diastereoisomer), 4.05 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-3$ of the minor diastereoisomer), $[3.69(2 \mathrm{H}, \mathrm{s}), 3.65(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $15.5 \mathrm{~Hz})$ and $3.45(1 \mathrm{H}, \mathrm{d}, J 15.5 \mathrm{~Hz}), \mathrm{PhCH}_{2}$ of both diastereoisomers], [3.07 $(1 \mathrm{H}, \mathrm{dd}, J 16.5$, $8.0 \mathrm{~Hz})$ and 2.65-2.59 $(1 \mathrm{H}, \mathrm{m}), \mathrm{CH}_{2}-5$ of the major diastereoisomer], [2.91 $(1 \mathrm{H}, \mathrm{dd}, J 16.5,7.5$ $\mathrm{Hz})$ and 2.52-2.46 $(1 \mathrm{H}, \mathrm{m}), \mathrm{CH}_{2}-5$ of the minor diastereoisomer], $2.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ts}\right.$ of the minor diastereoisomer), $2.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ts}\right.$ of the major diastereoisomer), $1.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-2\right.$ of the major diastereoisomer), $1.55\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-2\right.$ of the minor diastereoisomer); $\delta_{\mathrm{C}}(100 \mathrm{MHz})$ [145.2, 144.9, 143.5, 143.4, 138.5, 138.0, 136.1, 135.9 and 135.6 ($2 \times$ ipso Ph, ipso Ts, para Ts
and C-2 of both diastereoisomers)], [132.8 and 132.5 (CH-6 of both diastereoisomers)], [131.8, $131.8,131.5,131.4,130.0,130.0,128.5,128.5,127.9,127.9,127.7$ and 127.6 (2 x ortho $\mathrm{Ph}, 2 \mathrm{x}$ meta Ph, ortho Ts and meta Ts of both diastereoisomers)], [127.1, 127.1, 126.8 and 126.6 (2 x para Ph of both diastereoisomers)], [119.3, 119.1, 114.1 and $113.1\left(\mathrm{CH}_{2}-1\right.$ and $\mathrm{CH}_{2}-7$ of both diastereoisomers)], [76.4 and 76.0 (C-4 of both diastereoisomers)], [54.1 and 53.1 (CHPh of both diastereoisomers)], [38.6, 38.4 and $38.1\left(\mathrm{CH}_{2}-5\right.$ and $\mathrm{CH}_{2} \mathrm{Ph}$ of both diastereoisomers)], [26.0, 25.7 and $21.3\left(\mathrm{CH}_{3}-2\right.$ and $\mathrm{CH}_{3} \mathrm{Ts}$ of both diastereoisomers)]; m / z (CI) $448\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 431$ $[\mathrm{M}+\mathrm{H}]^{+}, 299,275,174,52$ (Found: $[\mathrm{M}+\mathrm{H}]^{+}, 431.2044 . \mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{2}$ S requires $[\mathrm{M}+\mathrm{H}]^{+}, 431.2045$).

3-Phenyl-4-(p-toluenesulfonyl)heptane-2,6-dione

Ozone was bubbled through a solution of a 1:1 diastereoisomeric mixture of 2,6-dimethyl-3-phenyl-4-(p-toluenesulfonyl)-1,6-heptadiene $4 c \quad(179 \mathrm{mg}, \quad 0.504 \mathrm{mmol}, 1$ equiv. $)$ in $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 5,6 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ for 10 min , until a blue colour persisted. After 5 min of bubbling O_{2} through the reaction mixture, $\mathrm{PPh}_{3}(414 \mathrm{mg}, 1,58 \mathrm{mmol}, 3.1$ equiv.) was added. After stirring for 3 h at $-78{ }^{\circ} \mathrm{C}$ the mixture was concentrated under reduced pressure and chromatography (20% AcOEt-petrol) gave 3-phenyl-4-(p-toluenesulfonyl)heptane-2,6-dione as a 1:1 mixture of diastereoisomers ($130 \mathrm{mg}, 72 \%$), the less polar as a colourless solid, the more polar as a colourless gum.

Less polar diastereoisomer of 3-phenyl-4-(p-toluenesulfonyl)heptane-2,6-dione; mp 144-146 ${ }^{\circ} \mathrm{C}$ with decomposition (20\% AcOEt-petrol); $\mathrm{R}_{f} 0.23$ (20\% AcOEt-petrol); $v_{\text {max }}$ (film) 1718, 1644, $1419,1358,1276,1210,1085 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 7.73(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5 \mathrm{~Hz}$, ortho Ts), 7.36-7.11 ($7 \mathrm{H}, \mathrm{m}$, meta Ts and Ph), 5.08-4.99 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHTs}$), $4.36(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.0 \mathrm{~Hz}, \mathrm{CHPh})$, [2.82 (1 H , dd, J $18.0,7.0 \mathrm{~Hz}$), $\left.2.25(1 \mathrm{H}, \mathrm{dd}, J 18.0,4.5 \mathrm{~Hz}), \mathrm{CH}_{2}-5\right], 2.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ts}\right),[2.18(3 \mathrm{H}, \mathrm{s})$ and $1.73(3 \mathrm{H}, \mathrm{s}), \mathrm{CH}_{3}-1$ and $\mathrm{CH}_{3}-7$]; $\delta_{\mathrm{C}}(67.5 \mathrm{MHz})$ [204.4 and $203.9(2 \times \mathrm{C}=\mathrm{O})$], [144.9, 136.5 and 133.9 (ipso Ph, ipso Ts and para Ts)], [129.8, 129.7, 129.4 and 128.5 (ortho Ph, meta Ph , ortho Ts and meta Ts)], 128.6 (para Ph), $61.6(\mathrm{CHTs}), 57.1(\mathrm{CHPh}), 40.8\left(\mathrm{CH}_{2}-5\right)$, [29.9, 29.5 and
$21.8\left(\mathrm{CH}_{3}-1, \mathrm{CH}_{3}-7\right.$ and $\left.\left.\mathrm{CH}_{3} \mathrm{Ts}\right)\right] ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 376\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 220\left[\mathrm{M}+\mathrm{NH}_{4}-\mathrm{Ts}\right]^{+}, 203$, 174 (Found: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 376.1571 . \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~S}$ requires $\left.\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 376.1583\right)$.

More polar diastereoisomer of 3-phenyl-4-(p-toluenesulfonyl)heptane-2,6-dione; $\mathrm{R}_{f} 0.12$ (20\% AcOEt-petrol); $v_{\max }($ film $) 1717,1644,1419,1358,1276,1210,1085 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 7.33-$ $7.05(9 \mathrm{H}, \mathrm{m}$, ortho Ts, meta Ts and Ph), 4.65-4.58 (1H, m, CHTs), 4.37 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.0 \mathrm{~Hz}, \mathrm{CHPh}$), [3.36(1H, dd, J 18.0, 8.5 Hz), $\left.2.71(1 \mathrm{H}, \mathrm{dd}, J 18.0,2.5 \mathrm{~Hz}), \mathrm{CH}_{2}-5\right], 2.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ts}\right)$, [2.18 $(3 \mathrm{H}, \mathrm{s})$ and $2.08(3 \mathrm{H}, \mathrm{s}), \mathrm{CH}_{3}-1$ and $\mathrm{CH}_{3}-7$]; $\delta_{\mathrm{C}}(100 \mathrm{MHz})$ [205.3 and $203.9(2 \times \mathrm{C}=\mathrm{O})$], [143.9, 136.7 and 133.7 (ipso Ph, ipso Ts and para Ts)], [129.4, 128.9, 128.1 and 127.9 (ortho Ph , meta Ph , para Ph , ortho Ts and meta Ts)], 63.1 (CHTs), $57.3(\mathrm{CHPh}), 39.8\left(\mathrm{CH}_{2}-5\right),[30.1,30.0$ and $21.6\left(\mathrm{CH}_{3}-1, \mathrm{CH}_{3}-7\right.$ and $\left.\left.\mathrm{CH}_{3} \mathrm{Ts}\right)\right] ; m / z(\mathrm{CI}) 376\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 220\left[\mathrm{M}+\mathrm{NH}_{4}-\mathrm{Ts}\right]^{+}, 203$, 174 (Found: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 376.1578 . \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~S}$ requires $\left.\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 376.1583\right)$.

3-Phenylpyridine (7a) ${ }^{2}$

According to the general procedure, a 1:1 diastereoisomeric mixture of 3-phenyl-4-(p -toluenesulfonyl)-1,6-heptadiene 4a (344 mg , 1.05 mmol , 1 equiv.) in $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (7.5 mL) was ozonolysed and reduced with polymer bound PPh_{3} (Fluka, $3 \mathrm{mmol} / \mathrm{g}$ resin, $1.1 \mathrm{~g}, 3.3 \mathrm{mmol}$, 3.1 equiv.). The crude dialdehyde in $\mathrm{MeOH}(4 \mathrm{~mL})$ was then reacted with $\mathrm{NH}_{4} \mathrm{HCO}_{3}(655 \mathrm{mg}$, $8.29 \mathrm{mmol}, 7.9$ equiv.). Chromatography on basic alumina ($\mathrm{BDH}, 63-200 \mu \mathrm{~m}, 3 \% \rightarrow 5 \% \mathrm{AcOEt}-$ petrol) gave 3-phenylpyridine 7 a ($86 \mathrm{mg}, 53 \%$) as a colourless oil; $\mathrm{R}_{f} 0.25$ (20% AcOEt-petrol); $v_{\text {max }}$ (film) 3058, 3031, 2923, 1652, 1582, 1473, 1451, 1408, 1276, 1025, 1006, 814, 755, 711, $698 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 8.84(1 \mathrm{H}, \mathrm{d}, J 2.0 \mathrm{~Hz}, \mathrm{CH}-2), 8.58(1 \mathrm{H}, \mathrm{dd}, J 5.0,2.0 \mathrm{~Hz}, \mathrm{CH}-6), 7.86$ ($1 \mathrm{H}, \mathrm{dt}, J 8.0,2.0 \mathrm{~Hz}, \mathrm{CH}-4$), $7.59-7.25(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}-5$ and Ph$) ; \delta_{\mathrm{C}}(100 \mathrm{MHz})$ [148.2 and 148.1 (CH-2 and CH-6)], [137.7 and 136.8 (ipso Ph and C-3)], 134.6 (CH-4), [129.1 and 127.1 (ortho Ph and meta Ph)], 128.2 (para Ph), $123.6(\mathrm{CH}-5)$; m/z (CI) $156[\mathrm{M}+\mathrm{H}]^{+}$(Found: $[\mathrm{M}+\mathrm{H}]^{+}$, 156.0815. $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 156.0813) (Found: C, 84.99; H, 5.90; N, 8.97. $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}$ requires $\mathrm{C}, 85.13 ; \mathrm{H}, 5.85, \mathrm{~N}, 9.03$). Data in agreement with those previously reported.

2-Methyl-3-phenylpyridine (7b) ${ }^{3}$

4b
7b

According to the general procedure, a 1:1 diastereoisomeric mixture of 2-methyl-3-phenyl-4-(p -toluenesulfonyl)-1,6-heptadiene $\mathbf{4 b}$ ($520 \mathrm{mg}, 1.59 \mathrm{mmol}$, 1 equiv.) in $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}(10.5 \mathrm{~mL})$ was ozonolysed and reduced with polymer bound PPh_{3} (Fluka, $3 \mathrm{mmol} / \mathrm{g}$ resin, $1.6 \mathrm{~g}, 4.7 \mathrm{mmol}$, 3 equiv.). The crude ketoaldehyde in $\mathrm{MeOH}(4 \mathrm{~mL})$ was then reacted with $\mathrm{NH}_{4} \mathrm{HCO}_{3}(964 \mathrm{mg}$, $12.2 \mathrm{mmol}, 7.7$ equiv.).Work-up gave 2-methyl-3-phenylpyridine $\mathbf{7 b}$ ($230 \mathrm{mg}, 86 \%$) as a red oil. Chromatography (10% AcOEt-petrol) gave 2-methyl-3-phenylpyridine $\mathbf{7 b}$ ($180 \mathrm{mg}, 67 \%$) as a colourless oil; $\mathrm{R}_{f} 0.23$ (20\% AcOEt-petrol); $v_{\max }(f i l m) 3083,2925,1657,1428,1377,763,737$, $703 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}(270 \mathrm{MHz}) 8.49(1 \mathrm{H}, \mathrm{dd}, J 5.0,1.5 \mathrm{~Hz}, \mathrm{CH}-6), 7.49-7.15(7 \mathrm{H}, \mathrm{m}, \mathrm{CH}-4, \mathrm{CH}-5$ and $\mathrm{Ph}), 2.50\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(67.5 \mathrm{MHz}) 155.9(\mathrm{C}-2), 148.0(\mathrm{CH}-6)$, [140.0 and $137.0(\mathrm{C}-3$ and ipso $\mathrm{Ph})$], 137.2 (CH-4), [129.1 and 128.5 (ortho Ph and meta Ph)], 127.5 (para Ph), 121.1 (CH-5), $23.5\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 170[\mathrm{M}+\mathrm{H}]^{+}$(Found: $[\mathrm{M}+\mathrm{H}]^{+}, 170.0965 . \mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 170.0970) (Found: C, 85.08; H, 6.49; N, 8.14. $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}$ requires C, 85.17; H, 6.55; N, 8.28). Data in agreement with those previously reported.

2,6-Dimethyl-3-phenylpyridine (7c) ${ }^{4}$

Procedure A

According to the general procedure, a 1:1 diastereoisomeric mixture of 2,6-dimethyl-3-phenyl-4(p-toluenesulfonyl)-1,6-heptadiene 4 c ($220 \mathrm{mg}, 0.619 \mathrm{mmol}, 1$ equiv.) in $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL}$) was ozonolysed and reduced with $\mathrm{PPh}_{3}(528 \mathrm{mg}, 2.01 \mathrm{mmol}, 3.3$ equiv.). The crude diketone in $\mathrm{MeOH}(2 \mathrm{~mL})$ was then reacted with $\mathrm{NH}_{4} \mathrm{HCO}_{3}$ ($399 \mathrm{mg}, 5.05 \mathrm{mmol}, 8.2$ equiv.). Chromatography ($5 \% \rightarrow 10 \%$ AcOEt-petrol) gave 2,6-dimethyl-3-phenylpyridine 7c (83 mg , 73%) as a yellow oil.

Procedure B

To a solution of 3-phenyl-4-(p-toluenesulfonyl)heptane-2,6-dione ($71 \mathrm{mg}, 0.198 \mathrm{mmol}, 1$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}(1: 2 ; 4.5 \mathrm{~mL})$ at rt was added $\mathrm{NH}_{4} \mathrm{HCO}_{3}(153 \mathrm{mg}, 1.94 \mathrm{mmol}, 9.8$ equiv.) and the mixture was exposed to microwave irradiation for 10 min at $100^{\circ} \mathrm{C}$. The yellow solution was concentrated under reduced pressure. The red residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and then washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to give 2,6-dimethyl-3-phenylpyridine 7 c ($36 \mathrm{mg}, 98 \%$) as a yellow oil.

Procedure C

A solution of 3-phenyl-4-(p-toluenesulfonyl)heptane-2,6-dione ($67 \mathrm{mg}, 0.187 \mathrm{mmol}, 1$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}(5: 1 ; 3 \mathrm{~mL})$ at rt and under nitrogen was treated with a methanolic solution of ammonia ($2 \mathrm{M}, 1 \mathrm{~mL}$) for 15 h . The orange solution was concentrated under reduced pressure. The orange residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$, washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 25 \mathrm{~mL})$, dried

[^0]$\left(\mathrm{MsSO}_{4}\right)$ and concentrated under reduced pressure to give 2,6-dimethyl-3-phenyl pyridine 7c (34 $\mathrm{mg}, 98 \%$) as a yellow oil.

2,6-Dimethyl-3-phenylpyridine, $\mathrm{R}_{f} 0.26$ (10\% AcOEt-petrol); $v_{\max }$ (film) 2923, 1644, 1461, 1434, $1388,1262,1010,766,701 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 7.41-7.26(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}-4$ and Ph$), 7.00(1 \mathrm{H}, \mathrm{d}, J$ $7.5 \mathrm{~Hz}, \mathrm{CH}-5)$, $\left[2.55(3 \mathrm{H}, \mathrm{s})\right.$ and $2.46(3 \mathrm{H}, \mathrm{s}), \mathrm{CH}_{3}-2$ and $\left.\mathrm{CH}_{3}-6\right]$; $\delta_{\mathrm{C}}(67.5 \mathrm{MHz})$ [156.5 and 155.0 (C-2 and C-6)], [140.2 and 134.0 (C-3 and ipso Ph)], 137.6 (CH-4), [129.2 and 128.4 (ortho Ph and meta Ph)], 127.3 (para Ph), $120.6(\mathrm{CH}-5)$, [24.3 and $23.4\left(\mathrm{CH}_{3}-2\right.$ and $\left.\mathrm{CH}_{3}-6\right)$]; m / z (CI) $184[\mathrm{M}+\mathrm{H}]^{+}$(Found: $[\mathrm{M}+\mathrm{H}]^{+}$, 184.1118. $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 184.1126) (Found: C, 85.11; H, 7.03; N, 7.54. $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}$ requires C, 85.21; H, 7.15; N, 7.64). Data in agreement with those previously reported.

2,5,6-Trimethyl-3-phenylpyridine (7d)

According to the general procedure, a diastereoisomeric mixture of 2,5,6-trimethyl-3-phenyl-4-(p-toluenesulfonyl)-1,6-heptadiene $\mathbf{4 d}\left(78 \mathrm{mg}, 0.211 \mathrm{mmol}, 1\right.$ equiv.) in $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL) was ozonolysed and reduced with dimethyl sulfide ($0.9 \mathrm{~mL}, 21 \mathrm{mmol}, 99$ equiv.). The crude diketone in $\mathrm{MeOH}(1 \mathrm{~mL})$ was then reacted with $\mathrm{NH}_{4} \mathrm{HCO}_{3}(133 \mathrm{mg}, 1.68 \mathrm{mmol}, 8$ equiv.). Chromatography (10% AcOEt-petrol) gave 2,5,6-trimethyl-3-phenylpyridine 7d ($21 \mathrm{mg}, 51 \%$) as a pale yellow oil; $\mathrm{R}_{f} 0.17$ (10% AcOEt-petrol); $v_{\max }$ (film) 2922, 2856, 1605, 1554, 1460, $1429,1367,1203,1142,1074,1018,1001,958,906,762,702 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 7.44-7.25$ $(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}-4$ and Ph$)$, $\left[2.52(3 \mathrm{H}, \mathrm{s})\right.$ and $2.45(3 \mathrm{H}, \mathrm{s}), \mathrm{CH}_{3}-2$ and $\left.\mathrm{CH}_{3}-6\right], 2.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-5\right)$;) δ_{C} (67.5 MHz) [155.1 and 151.9 (C-2 and C-6)], [140.0, 134.6 and 128.7 (C-3, C-5 and ipso Ph)], 139.0 (CH-4), [129.2 and 128.4 (ortho Ph and meta Ph)], 127.3 (para Ph), [22.6, 22.1 and 18.7 $\left(\mathrm{CH}_{3}-2, \mathrm{CH}_{3}-5\right.$ and $\left.\left.\mathrm{CH}_{3}-6\right)\right]$; $\mathrm{m} / \mathrm{z}(\mathrm{CI}) 198[\mathrm{M}+\mathrm{H}]^{+}$, (Found: $[\mathrm{M}+\mathrm{H}]^{+}$, 198.1282. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}$ requires
$[\mathrm{M}+\mathrm{H}]^{+}$, 198.1283) (Found: C, 85.33; H, 7.59; N, 6.99. $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}$ requires C, 85.24; H, 7.66; N, 7.10).

2-Methyl-5,6,7,8-tetrahydroquinoline (7e) ${ }^{5}$

According to the general procedure, a 1:1 diastereoisomeric mixture of 1-methyl-4-[(R)-3-methyl-1-(2-methylenecyclohexyl)but-3-enylsulfonyl]benzene $\mathbf{4 e}(187 \mathrm{mg}, 0.587 \mathrm{mmol}, 1$ equiv.) in $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was ozonolysed and reduced with triphenylphosphine (478 mg , $1.82 \mathrm{mmol}, 3$ equiv.). The crude diketone in $\mathrm{MeOH}(3 \mathrm{~mL})$ was then reacted with $\mathrm{NH}_{4} \mathrm{HCO}_{3}$ ($385 \mathrm{mg}, 4.87 \mathrm{mmol}, 8.3$ equiv.). Chromatography ($40 \% \rightarrow 60 \%$ AcOEt-hexane) gave 2-methyl-$5,6,7,8$-tetrahydroquinoline $7 \mathrm{e}(32 \mathrm{mg}, 37 \%)$ as a colourless oil; $\mathrm{R}_{f} 0.30$ ($50 \% \mathrm{AcOEt}$-hexane); $v_{\text {max }}(f i l m) 2931,2859,1597,1573,1470,1454,1261,1092,1021,805 \mathrm{~cm}^{-1} ; \delta_{H}(400 \mathrm{MHz}) 7.23$ (1H, d, J $7.5 \mathrm{~Hz}, \mathrm{CH}-4), 6.88(1 \mathrm{H}, \mathrm{d}, J 7.5 \mathrm{~Hz}, \mathrm{CH}-3), 2.89-2.85\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-8\right), 2.73-2.70(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}-5\right), 2.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.91-1.76\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-6\right.$ and $\left.\mathrm{CH}_{2}-7\right)$; $\delta_{\mathrm{C}}(100 \mathrm{MHz})$ [156.4 and 155.0 (C-2 and C-8a)], 137.1 (CH-4), 128.9 (C-4a), 120.4 (CH-3), [32.5, 28.4, 23.2 and 22.8 $\left(\mathrm{CH}_{2}-5, \mathrm{CH}_{2}-6, \mathrm{CH}_{2}-7\right.$ and $\left.\left.\mathrm{CH}_{2}-8\right)\right], 24.1\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 148[\mathrm{M}+\mathrm{H}]^{+}$, (Found: $[\mathrm{M}+\mathrm{H}]^{+}$, 148.1127. $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 148.1126). Data in agreement with those previously reported.

3-Phenyl-5,6,7,8-tetrahydroquinoline (7f) ${ }^{6}$

4f

According to the general procedure, a diastereoisomeric mixture of 1-methyl-4-[1-(2-methylenecyclohexyl)-2-phenylbut-3-enylsulfonyl]benzene $\mathbf{4 f}$ ($205 \mathrm{mg}, 0.539 \mathrm{mmol}$, 1 equiv.) in $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}(5.5 \mathrm{~mL})$ was ozonolysed and reduced with dimethylsulfide ($2.4 \mathrm{~mL}, 55 \mathrm{mmol}$,

[^1]103 equiv.). The crude ketoaldehyde in $\mathrm{MeOH}\left(3 \mathrm{~mL}\right.$) was then reacted with $\mathrm{NH}_{4} \mathrm{HCO}_{3}$ (401 $\mathrm{mg}, 5.07 \mathrm{mmol}, 9.4$ equiv.). Chromatography ($20 \% \mathrm{AcOEt}$-petrol) gave 3-phenyl-5,6,7,8tetrahydroquinoline $7 \mathbf{f}(72 \mathrm{mg}, 63 \%)$ as a pale yellow oil; $\mathrm{R}_{f} 0.30$ (20% AcOEt-hexane); $v_{\text {max }}$ (film) $3060,3030,2934,2860,1604,1582,1558,1460,1427,1394,1352,1249,1150,1076$, $1028,989,928,911,823,763,698 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 8.58(1 \mathrm{H}, \mathrm{d}, J 1.5 \mathrm{~Hz}, \mathrm{CH}-2)$, [7.57-7.55 $(3 \mathrm{H}, \mathrm{m})$ and $7.47(2 \mathrm{H}, \mathrm{m}), \mathrm{CH}-4$, ortho Ph and meta Ph$], 7.37(1 \mathrm{H}, \mathrm{tt}, J 7.0,2.0 \mathrm{~Hz}$, para Ph$)$, $2.97\left(2 \mathrm{H}, \mathrm{t}, J 6.5 \mathrm{~Hz}, \mathrm{CH}_{2}-8\right), 2.84\left(2 \mathrm{H}, \mathrm{t}, J 6.5 \mathrm{~Hz}, \mathrm{CH}_{2}-5\right),[1.97-1.91(2 \mathrm{H}, \mathrm{m})$ and $1.88-1.82$ $(2 \mathrm{H}, \mathrm{m}), \mathrm{CH}_{2}-6$ and $\left.\mathrm{CH}_{2}-7\right)$; $\delta_{\mathrm{C}}(100 \mathrm{MHz}) 156.3(\mathrm{C}-8 \mathrm{a}), 145.2(\mathrm{CH}-2)$, [138.1, 133.9 and 132.1 (C-3, C-4a and ipso Ph)], 135.1 (CH-4), [128.9 and 127.0 (ortho Ph and meta Ph)], 127.6 (para Ph), [32.2, 28.9, 23.1 and $22.7\left(\mathrm{CH}_{2}-5, \mathrm{CH}_{2}-6, \mathrm{CH}_{2}-7\right.$ and $\left.\left.\mathrm{CH}_{2}-8\right)\right] ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 210[\mathrm{M}+\mathrm{H}]^{+}, 52$ (Found: $[\mathrm{M}+\mathrm{H}]^{+}, 210.1287 . \mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 210.1283) (Found: C, 85.97; H, 7.19; N, 6.67. $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}$ requires $\mathrm{C}, 86.08 ; \mathrm{H}, 7.22$; $\mathrm{N}, 6.69$). Data in agreement with those previously reported.

4-Nonyl-3-phenylpyridine (7g)

According to the general procedure, a 35:65 diastereoisomeric mixture of 4-nonyl-3-phenyl-4-(p-toluenesulfonyl)-1,6-heptadiene 6a ($320 \mathrm{mg}, 0.706 \mathrm{mmol}$, 1 equiv.) in $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (8.2 mL) was ozonolysed and reduced with dimethyl sulfide ($3.1 \mathrm{~mL}, 71 \mathrm{mmol}, 101$ equiv.). The crude dialdehyde in $\mathrm{MeOH}(3.5 \mathrm{~mL})$ was then reacted with $\mathrm{NH}_{4} \mathrm{HCO}_{3}(443 \mathrm{mg}, 5.60 \mathrm{mmol}, 7.9$ equiv.). Work-up gave 4-nonyl-3-phenylpyridine $\mathbf{7 g}$ ($196 \mathrm{mg}, 98 \%$) as a red oil. Chromatography on basic alumina (BDH, 63-200 $\mu \mathrm{m}, 4 \%$ AcOEt-petrol) gave 4-nonyl-3-phenylpyridine 7 g (147 $\mathrm{mg}, 74 \%$) as a red oil; $\mathrm{R}_{f} 0.19$ (10% AcOEt-petrol); $v_{\max }($ film $) 2954,2854,1638,1465,1377$, $1007,830,763,702 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}(270 \mathrm{MHz}) 8.47(1 \mathrm{H}, \mathrm{d}, J 5.0 \mathrm{~Hz}, \mathrm{CH}-6), 8.40(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-2), 7.48-$ $7.20(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}-5$ and Ph$), 2.60-2.54\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CCH}_{2}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{Me}\right),[1.46-1.40(2 \mathrm{H}, \mathrm{m})$ and 1.23$\left.1.16(12 \mathrm{H}, \mathrm{m}), \mathrm{CCH}_{2}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{Me}\right], 0.85\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 150.0(\mathrm{C}-4)$, [149.5 and 147.7 (CH-2 and CH-6)], 137.7 (C-3 and C Ph), [129.3 and 128.4 (ortho Ph and meta Ph)], [127.7 and 124.1 (para Ph and $\mathrm{CH}-5$)], [32.4, 31.8, 30.2, 29.3, 29.2, 29.2 and 29.2

$156[\mathrm{M}+\mathrm{H} \text {-nonyl }]^{+}$(Found: $[\mathrm{M}+\mathrm{H}]^{+}$, 282.2214. $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 282.2222) (Found: C, 85.28; H, 9.57; N, 4.89. $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}$ requires C, 85.35; H, 9.67; N, 4.98\%).

2-Methyl-4-nonyl-3-phenylpyridine (7h)

6b
7h

According to the general procedure, a 45:55 diastereoisomeric mixture of 2,6-dimethyl-4-nonyl-3-phenyl-4-(p-toluenesulfonyl)-1,6-heptadiene $\mathbf{6 b} \quad(89 \mathrm{mg}, \quad 0.19 \mathrm{mmol}, 1$ equiv.) in $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was ozonolysed and reduced with dimethylsulfide ($830 \mu \mathrm{~L}, 19.2 \mathrm{mmol}$, 100 equiv.). The crude ketoaldehyde in $\mathrm{MeOH}(1.5 \mathrm{~mL})$ was then reacted with $\mathrm{NH}_{4} \mathrm{HCO}_{3}(120$ $\mathrm{mg}, 4.87 \mathrm{mmol}, 7.9$ equiv.). Work-up gave 2-methyl-4-nonyl-3-phenylpyridine $7 \mathrm{hh}(56 \mathrm{mg}, 99 \%$) as an orange oil. Chromatography (10% AcOEt-petrol) gave 2-methyl-4-nonyl-3-phenylpyridine 7h ($41 \mathrm{mg}, 73 \%$) as a pale yellow oil; $\mathrm{R}_{f} 0.27$ (10% AcOEt-petrol); $v_{\max }$ (film) 2954, 2923, 2855, 1683, 1660, 1649, 1633, 1465, 1409, 1151, 1091, 1068, 1061, $761 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 8.37(1 \mathrm{H}$, d, J 5.0 Hz, CH-6), [7.46-7.38 (3H, m) and 7.15-7.14 ($2 \mathrm{H}, \mathrm{m}$), Ph], $7.06(1 \mathrm{H}, \mathrm{d}, J 5.0 \mathrm{~Hz}, \mathrm{CH}-5)$, 2.33-2.29 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{Me}\right), 2.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-2\right),[1.42-1.39(2 \mathrm{H}, \mathrm{m})$ and $1.25-1.13(12 \mathrm{H}$, $\left.\mathrm{m}), \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{Me}\right], 0.87\left(3 \mathrm{H}, \mathrm{t}, J 7.0 \mathrm{~Hz}, \mathrm{TsCCH}_{2}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 156.2(\mathrm{C}-2), 149.9$ (C-4), $147.4(\mathrm{CH}-6)$, [138.5 and $136.6(\mathrm{C}-3$ and ipso Ph)], [129.1 and 128.5 (ortho Ph and meta $\mathrm{Ph})$], [127.2 and 121.5 (para Ph and $\mathrm{CH}-5$)], [32.9, 31.8, 30.1, 29.3, 29.2, 29.2 and 29.1 $\left.\left(\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}_{2} \mathrm{Me}\right)\right]$, $23.7\left(\mathrm{CH}_{3}-2\right), 22.6\left(\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}_{2} \mathrm{Me}\right)$, $14.1\left(\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}_{3}\right) ; ~ m / z(\mathrm{CI}) 591[2 \mathrm{M}+\mathrm{H}]^{+}$, $296[\mathrm{M}+\mathrm{H}]^{+}, 282$ (Found: $[\mathrm{M}+\mathrm{H}]^{+}$, 296.2369. $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 296.2378) (Found: C, 85.28; H, 9.87; N, 4.89. $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}$ requires C, 85.37; H, 9.89; N, 4.74\%).

4-Benzyl-2-methyl-3-phenylpyridine (7i)

6b'

According to the general procedure, a 43:57 diastereoisomeric mixture of 4-benzyl-2-methyl-3-phenyl-4-(p-toluenesulfonyl)-1,6-heptadiene $\mathbf{6 c}\left(92 \mathrm{mg}, 0.21 \mathrm{mmol}\right.$, 1 equiv.) in $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.5 mL) was ozonolysed and reduced with dimethyl sulfide ($950 \mu \mathrm{~L}, 21.9 \mathrm{mmol}, 103$ equiv.). The crude ketoaldehyde in $\mathrm{MeOH}(2 \mathrm{~mL})$ was then reacted with $\mathrm{NH}_{4} \mathrm{HCO}_{3}(139 \mathrm{mg}, 1.76 \mathrm{mmol}$, 8.3 equiv.). Chromatography (20% AcOEt-petrol) gave 4-benzyl-2-methyl-3-phenylpyridine $7 \mathbf{i}$ ($42 \mathrm{mg}, 75 \%$) as a pale yellow oil; $\mathrm{R}_{f} 0.31$ (20% AcOEt-petrol); $v_{\max }$ (film) 3028, 2923, 2851, $1602,1579,1561,1495,1453,1444,1407,1243,1156,1074,1030,1009,915,848,812,763$, $701,633 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 8.39(1 \mathrm{H}, \mathrm{d}, J 5.0 \mathrm{~Hz}, \mathrm{CH}-6)$, [7.43-7.34 (3H, m), 7.22-7.14 (3H, $\mathrm{m})$, 7.10-7.09 ($2 \mathrm{H}, \mathrm{m}$) and 6.92-6.90 ($2 \mathrm{H}, \mathrm{m}$), 2 x Ph , $6.96(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.0 \mathrm{~Hz}, \mathrm{CH}-5), 3.69(2 \mathrm{H}, \mathrm{s}$, CH_{2}), $2.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$;; $\delta_{\mathrm{C}}(100 \mathrm{MHz}) 156.6(\mathrm{C}-2), 148.0(\mathrm{C}-4), 147.8(\mathrm{CH}-6)$, [139.4, 138.3 and $136.8(\mathrm{C}-3$ and 2 x ipso Ph$)$], [129.2, 129.0, 128.7 and $128.4(2 \mathrm{x}$ ortho Ph and 2 x meta $\mathrm{Ph})$], [127.4 and $126.3(2 \times$ para Ph$)$], $122.3(\mathrm{CH}-5), 39.1\left(\mathrm{CH}_{2}\right), 23.8\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 260$ $[\mathrm{M}+\mathrm{H}]^{+}$(Found: $[\mathrm{M}+\mathrm{H}]^{+}$, 260.1445. $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 260.1439) (Found: C, 88.12; H, 6.70; $\mathrm{N}, 5.33 . \mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}$ requires C, 87.99; H, 6.61; N, 5.40\%).

[^0]: ${ }^{4}$ Balaban A. T.; Nenitzescu C. D. J. Chem .Soc 1961, 3566-3572.

[^1]: ${ }^{5}$ Bell, T. W .; Khasanov, A. B.; Drew, M.G.B. J. Am. Chem. Soc. 2002, 124, 14092-14103.
 ${ }^{6}$ Winter, A.; Risch, N. Synthesis 2003, 17, 2667-2670.

