Electronic Supplementary Information

Synthesis and Supramolecular Assembly of Clicked Anionic Dendritic Polymers into Polyion Complex Micelles

Ana Sousa-Herves, Eduardo Fernandez-Megia* and Ricardo Riguera*

Departamento de Química Orgánica, Facultad de Química, and Unidad de RMN de Biomoléculas Asociada al CSIC, Universidad de Santiago de Compostela, Avda. de las Ciencias S.N. 15782 Santiago de Compostela, Spain.

General Methods. CH_2Cl_2 , Et_3N , pyridine, and *i*-Pr₂EtN were distilled from CaH₂. DMSO was dried under 4Å molecular sieves. Column chromatography was performed with 70-230 and 230-400 mesh silica gel. Thin-layer chromatography (TLC) was done on silica aluminium-backed plates. Ultrafiltration was performed on stirred cells with Amicon[®] YM1 membranes. NMR chemical shifts are reported in ppm (δ units) downfield from internal tetramethylsilane (CDCl₃), or the HOD signal (D₂O and CD₃OD).

Dynamic Light Scattering. DLS measurements were carried out on a Malvern Nano ZS (Malvern Instruments, U.K.) operating at 633 nm with a 170° scattering angle. PIC micelles were aged for at least 24 h before measurements.

Gel Permeation Chromatography. GPC experiments were performed using a PSS Suprema Lux precolumn (10 μ m, 8 x 50 mm) and a PSS Suprema Lux column (10 μ m, 100 Å, 8 × 300 mm) with a refractive index detector. A mixture CH₃CN-H₂O (1:1) was used as eluent. Dendrimer solutions were filtered through 0.45 µm before injection. Dendrimer concentration was set at 0.25 mg/mL.

Atomic Force Microscopy. Samples for AFM imaging were prepared by depositing the PBS aqueous solution of micelles onto Si wafers. The AFM imaging was performed in air using a Multimode NanoScope V system (Veeco, Santa Barbara, CA) operated in tapping mode. Tip Characteristics: 1-10 OHm-cm Phosphorus (n) dopped Si. Cantilever T: $3.5 - 4.5 \mu$ m. Frecuency: 257-342 KHz. Tip ROC < 10 nm. Tip ROC MAx: 12.5 nm.

Sodium 3-butyn-1-sulfate (1). CISO₃H (0.47 mL, 7.13 mmol) was added dropwise to a solution of pyridine (1.27 mL, 15.68 mmol) in CCl₄ (6.5 mL) at 0 °C. After 30 min of stirring, 3-butyn-1-ol (0.54 mL, 7.13 mmol) was added, and the reaction was left at 0 °C for 4 h. Then, reaction was allowed to reach rt, and after 12 h of stirring, it was extracted with H₂O (3 x 15 mL). The combined aqueous phase was evaporated to half volume, and then saturated Na₂CO₃ added till no CO₂ evolution was observed. The resulting mixture was concentrated, and then triturated with hot EtOH (80 mL), and filtered. The filtrate was evaporated to give **1** as a white powder (1.22 g, 100%). ¹H NMR (250 MHz, D₂O) δ : 4.14 (t, *J* = 6.3 Hz, 2H), 2.63 (dt, *J* = 2.3 Hz, *J* = 6.3 Hz, 2H), 2.40 (t, *J* = 2.6 Hz, 1H); ¹³C NMR (63 MHz, D₂O) δ : 80.8, 70.2, 66.5, 18.6.

Sodium 4-((prop-2-ynyl carbamoyl)methoxy)naphthalene-2,7-disulfonate (2). Et₃N (0.68 mL, 4.95 mmol) was added to a solution of bromoacetyl bromide (1.00 g, 4.95 mmol) in CH₂Cl₂ (50 mL) at -50 °C. Then, propargyl amine (0.32 mL, 4.95 mmol) was added dropwise, and the resulting solution was allowed to reach rt and stir overnight. A white precipitate appeared, and was filtered off washing with CH₂Cl₂. The filtrate was evaporated to give a crude product that was purified by column chromatography (silica gel, 10% MeOH/CH₂Cl₂) to give **2-bromo-***N*-(**prop-2-ynyl)acetamide** (633 mg, 73%): ¹H NMR (250 MHz, CDCl₃) δ : 6.68 (br s, 1H), 4.09 (dd, *J* = 2.5 Hz, *J* = 5.3 Hz, 2H), 3.90 (s, 2H), 2.29 (dt, *J* = 0.8 Hz, *J* = 2.6 Hz, 1H); ¹³C NMR (63 MHz, CDCl₃) δ : 165.7, 78.6, 72.4, 30.1, 28.8. *i*-Pr₂EtN (94 µL, 0.57 mmol) and 2-bromo-*N*-(**prop-2-ynyl**)acetamide (100 mg, 0.57 mmol) were added to a solution of 1-naphthol-3,6-disulfonic acid disodium salt hydrate (157 mg, 0.28 mmol, 63% purity) in DMSO (0.40 mL). The resulting mixture was stirred at rt overnight. Then, it was poured into EtOAc (4 mL), and was triturated to give a solid that was collected by filtration washing with acetone. This solid crude product was dissolved in H₂O (25 mL), and was extracted with CH₂Cl₂ (3 x 25 mL). The aqueous phase was evaporated to give **2** as an off-white solid (157 mg, 70% conversion) that was directly used without further purification.

General procedure for the anionic functionalization of [Gn]-N₃ and PEG-[Gn]-N₃: Dendrimers [Gn]-N₃ and PEG-dendritic block copolymers PEG-[Gn]-N₃ were dissolved in *t*-BuOH-H₂O (1:1) to give a 0.1M final concentration of terminal azides. Then, **1**, **2**, or **3** (200 mol% per terminal N₃), and freshly prepared aqueous solutions of CuSO₄ (5 mol% per N₃) and sodium ascorbate (25 mol% per N₃) were added. The resulting solutions were stirred at rt for 24-48 h, and then purified by ultrafiltration [Amicon[®] YM1, H₂O (3 x 30 mL), aqueous 1M NaCl (30 mL)], and evaporated or freeze-dried. For the synthesis of [Gn]-3 and PEG-[Gn]-3, NaHCO₃ (110 mol% per carboxylic acid group) was added.

[G1]-1: From **[G1]-N₃** (35 mg, 0.051 mmol), **1** (53 mg, 0.307 mmol), sodium ascorbate (7.61 mg, 38.4 µmol) and CuSO₄ (1.92 mg, 7.7 µmol) dissolved in *t*-BuOH (0.85 mL)-H₂O (0.85 mL), and after 24 h of reaction time following the general procedure described above, **[G1]-1** (34 mg, 80%) was obtained as a white powder. IR (CsI, cm⁻¹) 2933, 1647, 1223; ¹H NMR (400 MHz, D₂O) δ : 7.90 (s, 1H), 7.80 (s, 2H), 7.14 (s, 2H), 4.56 (t, *J* = 4.9 Hz, 6H), 4.28-4.15 (m, 12H), 3.94-3.47 (m, 24H), 3.35 (t, *J* = 7.0 Hz, 2H), 3.04 (t, *J* = 6.3 Hz, 2H), 3.0 (t, *J* = 6.1 Hz, 4H), 1.63-1.60 (m, 2H), 0.93 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, D₂O) δ : 172.4, 154.6, 142.7, 133.2, 127.3, 109.4, 75.1, 73.2, 72.8, 72.7, 72.6, 72.4, 72.1, 71.8, 71.7, 71.4, 70.3, 65.5, 52.9, 44.8, 28.1, 25.0, 13.6.

[G2]-1: From [G2]-N₃ (20 mg, 8.1 μmol), 1 (25 mg, 0.145 mmol), sodium ascorbate (3.60 mg, 18.2 μmol), and CuSO₄ (0.91 mg, 3.6 μmol) dissolved in *t*-BuOH (0.36 mL)-H₂O (0.36 mL), and after 48 h of reaction time following the general procedure described above, [G2]-1 (32 mg, 92%) was obtained as a white foam. IR (CsI, cm⁻¹) 2932, 1648, 1220; ¹H NMR (250 MHz, D₂O) δ: 7.90 (s, 3H), 7.80 (s, 6H), 7.14-7.04 (m, 8H), 4.61-4.48 (m, 18H), 4.31-3.47 (m, 144H), 3.27 (t, J = 7.0 Hz, 2H), 3.10-2.94 (m, 18H), 1.63-1.60 (m, 2H), 0.90 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, D₂O) δ: 176.6, 154.8, 142.5, 133.3, 127.4, 109.0, 75.1, 73.2, 72.8, 72.7, 72.6, 72.4, 72.1, 71.6, 71.3, 70.1, 63.6, 53.1, 44.8, 28.4, 25.2, 13.8.

[G3]-1: From [G3]-N₃ (40 mg, 5.1 μmol), 1 (47 mg, 0.275 mmol), sodium ascorbate (6.81 mg, 34.4 μmol), and CuSO₄ (2.03 mg, 6.9 μmol) dissolved in *t*-BuOH (0.68 mL)-H₂O (0.68 mL), and after 48 h of reaction time following the general procedure described above, [G3]-1 (58 mg, 91%) was obtained as a white foam. IR (KBr, cm⁻¹) 2927, 1648, 1226; ¹H NMR (300 MHz, D₂O) δ: 8.19-7.83 (m, 27H), 7.10 (s, 26H), 4.63-4.46 (m, 54H), 4.34-3.43 (m, 468H), 3.35 (m, 2H), 3.16-2.83 (m, 54H), 1.63-1.60 (m, 2H), 0.86 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CD₃OD) δ: 169.2, 153.7, 140.7, 130.8, 125.6, 107.8, 73.6, 73.2, 71.5, 71.2, 70.5, 70.3, 69.8, 67.6, 51.8, 51.4, 40.9, 27.1, 12.0.

[G3]-2: From [G3]-N₃ (25 mg, 3.2 µmol), 2 (127 mg, 0.171 mmol), sodium ascorbate (47.3 mg, 0.275 mmol), and CuSO₄ (1.07 mg, 4.3 µmol) dissolved in *t*-BuOH (0.15 mL)-H₂O (0.15mL), and after 48 h of reaction time following the general procedure described above, [G3]-2 (57 mg, 91%) was obtained as a white foam. ¹H NMR (300 MHz, D₂O) δ : 8.40-8.33 (m, 27H), 8.29 (d, *J* = 4.6 Hz, 27H), 8.06-8.00 (m, 27H), 7.91-7.83 (m, 54H), 7.18 (s, 26H), 6.60 (s, 27H), 4.62-4.30 (m, 54H), 4.20-3.47 (m, 468H), 3.35 (m, 2H), 1.63-1.59 (m, 2H), 0.94 (t, *J* = 7.4 Hz, 3H).

[G3]-3: From [G3]-N₃ (37 mg, 4.7 μmol), 3 (25 mg, 0.254 mmol), NaHCO₃ (22 mg, 0.280 mmol), sodium ascorbate (6.30 mg, 31.8 μmol), and CuSO₄ (1.58 mg, 6.4 μmol) dissolved in *t*-BuOH (0.65 mL)-H₂O (0.65 mL), and after 48 h of reaction time following the general procedure described above, [G3]-3 (51 mg, 98%) was obtained as a white foam. ¹H NMR (300 MHz, D₂O) δ: 7.95-7.60 (m, 27H), 7.13 (s, 26H), 4.59-4.52 (m, 54H), 4.22-4.14 (m, 78H), 3.94-3.46 (m, 380H), 3.35 (m, 2H), 2.95-2.84 (m, 54H), 2.56-2.47 (m, 54H), 1.62-1.59 (m, 2H), 0.91 (t, J = 7.4 Hz, 3H).

PEG-[G1]-1: From **PEG-[G1]-N**₃ (50 mg, 8.6 μ mol), **1** (8.86 mg, 0.052 mmol), sodium ascorbate (1.28 mg, 6.4 m μ ol), and CuSO₄ (0.32 mg, 1.3 μ mol), dissolved in *t*-BuOH (0.130 mL)-H₂O (0.130 mL), and after 48 h of reaction time according to the general procedure, **PEG-[G1]-1** (54 mg, 100 %) was obtained as a white foam. IR (KBr, cm⁻¹) 2887, 1467, 1344, 1115; ¹H NMR (750 MHz, D₂O)

δ: 7.92 (s, 1H), 7.90 (s, 2H), 7.19 (s, 2H), 4.64-4.50 (m, 6H), 4.35-4.12 (m, 14H), 4.03-3.44 (m, 542H), 3.41 (s, 3H), 3.29 (t, *J* = 4.9 Hz, 2H), 3.04 (t, *J* = 6.0 Hz, 2H), 3.01 (t, *J* = 5.8 Hz, 4H).

PEG-[G1]-2: From **PEG-[G1]-N**₃ (20 mg, 3.4 μmol), **2** (25.1 mg, 20.6 μmol), sodium ascorbate (0.51 mg, 2.6 μmol), and CuSO₄ (0.13 mg, 0.51 μmol) dissolved in *t*-BuOH (55 μL)-H₂O (55 μL), and after 24 h of reaction time following the general procedure described above, **PEG-[G1]-2** (22 mg, 90%) was obtained as a white foam. IR (KBr, cm⁻¹) 2879, 1466, 1034; ¹H NMR (400 MHz, D₂O) δ: 8.40-8.33 (m, 3H), 8.29 (d, J = 4.6 Hz, 3H), 8.06-8.00 (m, 3H), 7.91-7.83 (m, 6H), 7.18 (s, 2H), 6.60 (s, 3H), 4.60-4.46 (m,6H), 4.16-4.04 (m, 8H), 4.00-3.47 (m, 548H), 3.41 (s, 3H), 3.25 (m, 2H).

PEG-[G1]-3: From **PEG-[G1]-N**₃ (20 mg, 3.4 μmol), **3** (2.68 mg, 20.1 μmol), NaHCO₃ (1.90 mg, 20.6 μmol), sodium ascorbate (0.51 mg, 2.6 μmol), and CuSO₄ (0.13 mg, 0.51 μmol) dissolved in *t*-BuOH (55 μL)-H₂O (55 μL), and after 48 h of reaction time following the general procedure described above, **PEG-[G1]-3** (19 mg, 91%) was obtained as a white foam. ¹H RMN (400 MHz, D₂O) δ: 7.79 (s, 1H), 7.77 (s, 2H), 7.18 (s, 2H), 4.59-4.51 (m, 6H), 4.28-4.15 (m, 8H), 3.99-3.51 (m, 542 H), 3.41 (s, 3H), 3.28 (t, *J* = 4.89 Hz, 2H), 2.94-2.84 (m, 6H), 2.57-2.45 (m, 6H).

PEG-[G2]-1: From **PEG-[G2]-N**₃ (25 mg, 3.3 µmol), **1** (10.17 mg, 0.059 mmol), sodium ascorbate (1.46 mg, 7.4 mµol), and CuSO₄ (0.37 mg, 1.5 µmol), dissolved in *t*-BuOH (0.150 mL)-H₂O (0.150 mL), and after 48 h of reaction time according to the general procedure, **PEG-[G2]-1** (28 mg, 92%) was obtained as a white foam. IR (KBr, cm⁻¹) 2887, 1467, 1344, 1115; ¹H NMR (400 MHz, D₂O) δ : 7.87 (br s, 9H), 7.09 (s, 8H), 4.60-4.51 (m, 18H), 4.31-4.00 (m, 44H), 4.00-3.50 (m, 620H), 3.41 (s, 3H), 3.26 (t, *J* = 4.9 Hz, 2H), 3.04-3.01 (m, 18H).

PEG-[G3]-1: From **PEG-[G3]-N**₃ (20 mg, 1.5 μ mol), **1** (14 mg, 0.083 mmol), sodium ascorbate (1.03 mg, 5.2 μ mol), and CuSO₄ (0.26 mg, 1.0 μ mol), dissolved in *t*-BuOH (0.21 mL)-H₂O (0.21 mL), and after 48 h of reaction time according to the general procedure, **PEG-[G3]-1** (27 mg, 100%)

was obtained as a white foam. IR (KBr, cm⁻¹) 2877, 1458, 13343, 1107; ¹H NMR (400 MHz, D₂O) δ: 7.85 (br s, 27H), 7.10 (s, 26H), 4.61-4.47 (m, 54H), 4.30-4.00 (m, 134H), 4.00-3.49 (m, ~966H), 3.42-3.35 (m, 5H), 3.09-2.97 (m, 54H).

PEG-[G3]-2: From **PEG-[G3]-N**₃ (12 mg, 0.9 μ mol), **2** (61 mg, 0.050 mmol), sodium ascorbate (1.23 mg, 6.2 μ mol), and CuSO₄ (0.31 mg, 1.2 μ mol), dissolved in *t*-BuOH (0.125 mL)-H₂O (0.125 mL), and after 48 h of reaction time according to the general procedure, **PEG-[G3]-2** (23 mg, 100%) was obtained as a white foam. ¹H NMR (400 MHz, D₂O) δ : 8.45-8.33 (m, 27H), 8.29 (m, 27H), 8.06-8.00 (m, 27H), 7.91-7.83 (m 54H), 7.18 (s, 26H), 6.60 (s, 27H), 4.63-4.34 (m, 110H), 4.01-3.48 (m, ~1023H), 3.41 (m, 5H).

PEG-[G3]-3: From **PEG-[G3]-N**₃ (34 mg, 2.6 μmol), **3** (14 mg, 0.141 mmol), NaHCO₃ (13 mg, 0.155 mmol), sodium ascorbate (3.49 mg, 17.6 μmol), and CuSO₄ (0.88 mg, 3.5 μmol), dissolved in *t*-BuOH (0.35 mL)-H₂O (0.35 mL), and after 48 h of reaction time according to the general procedure, **PEG-[G3]-3** (41 mg, 98%) was obtained as a white foam. ¹H NMR (400 MHz, D₂O) δ: 7.87-7.71 (m, 27H), 7.10 (s, 26H), 4.59-4.43 (m, 54H), 4.30-4.12 (m, 80H), 4.00-3.47 (m, ~966H), 3.41 (m, 5H), 2.95-2.83 (m, 54H), 2.63-2.40 (m, 54H).

Preparation of PIC micelles. PEG-[G3]-1 and **PLL** (M_n 12400, M_w 16100, DP = 77, by LALLS) were separately dissolved in either H₂O or 10 mM PBS pH 7.4, and filtered through 0.45 µm nylon filters. PIC micelles were prepared by mixing these solutions at an equal ratio of L-lysine repetition units and sulfate residues (total concentration: 0.98 mg/mL). Solutions were aged for at least 24 h, and filtered (0.45 µm) before any measurement being performed.