Metal-free Michael Addition Initiated Multicomponent Oxidative Cyclodehydration Route to Polysubstituted Pyridines from 1,3 Dicarbonyls

Supporting Information

Frédéric Liéby-Muller, Christophe Allais, Thierry Constantieux,^{*} and Jean Rodriguez^{*}

Aix-Marseille Université – Institut des Sciences Moléculaires de Marseille iSm2 CNRS UMR 6263 Centre Saint Jérôme - service 531 13397 MARSEILLE Cedex 20 – France

E-mail: jean.rodriguez@univ-cezanne.fr

General Information : Melting points (mp) were determined with a Büchi Melting-point B-450 apparatus and were not corrected. ¹H and ¹³C NMR spectra were recorded in solution respectively at 300.13 MHz and 75.47 MHz on a Bruker AC 300 spectrometer. NMR data were collected at ambient temperature, and chemical shifts were given in ppm referenced to the appropriate solvent peak. Data for ¹H NMR are reported as follows: chemical shift, integration, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quadruplet, dd = doublet of doublets, m = multiplet). Infrared (IR) spectra were recorded on a Perkin-Elmer 1600 Series FTIR spectrometer. Low and high-resolution mass spectra were recorded on an API 111 Plus Triple Quadrupole spectrometer (Sciex), and on a Bruker-Daltonics MALDI-ToF Autoflex spectrometer. Analytical thin layer chromatography was performed using 0.20 mm silica gel 60 (Merck).

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

Typical Procedure : To a 50 mL two-necked round bottomed flask, equipped with a magnetic stirring bar and a reflux condenser, were added toluene freshly distilled over CaH_2 (25 mL), 4Å MS (6 g), substrate 1 (200 mg, 1.0 equiv.), freshly distilled acrolein 2 (1.5 equiv.), and ammonium acetate 3 (2.0 equiv.). The heterogeneous mixture was stirred at reflux for 24h. The solution was filtered through a short pad of Celite, which was thoroughly washed with toluene. The solvent was evaporated under reduced pressure to afford crude compound 4 with acceptable chemical purity. Pure product was isolated by flash chromatography over silica gel.

Description of pyridines

1-(2-Methyl-pyridin-3-yl)-ethanone 4a

Yellow gum, 52% yield; $R_f = 0.42$ (AcOEt); **IR** (KBr, cm⁻¹) : 3051, 2957, 2926, 1691, 1583, 1435, 1357, 1277; **MS** (ESI) m/z (relative intensities (%)) :

136 $[M+H]^+$ (100), 153 $[M+NH_4]^+$ (22), 158 $[M+Na]^+$ (6); ¹H NMR (CDCl₃, 300.13 MHz) : 2.53 (3H₂, s), 2.68 (3H₇, s), 7.17 (1H₅, dd, *J* = 7.8 Hz, *J* = 4.8 Hz), 7.90 (1H₄, dd, *J* = 8 Hz, *J* = 1.6 Hz)), 8.52 (1H₆, dd, *J* = 5 Hz, *J* = 1.6 Hz); ¹³C NMR (CDCl₃, 75.47 MHz) : 24.6 (C₇), 29.2 (C₂), 120.7 (C₅), 132.7 (C₃), 136.6 (C₄), 151.1 (C₆), 157.9 (C₂), 200.3 (C₁).

1-(2,5-Dimethyl-pyridin-3-yl)-ethanone 4b

Orange oil, 65% yield; $R_f = 0.29$ (AcOEt/Hexanes 1/1); **IR** (KBr, cm⁻¹): 2973, 2929, 1688, 1556, 1455, 1354, 1293, 1197; **MS** (ESI) m/z (relative

intensities (%)): 150 [M+H]⁺ (100), 167 [M+NH₄]⁺ (29), 172 [M+Na]⁺ (7); ¹H NMR (CDCl₃,

300.13 MHz) : 2.32 (3H₇, s), 2.54 (3H₈, s), 2.65 (3H₂, s), 7.71 (1H₄, d, *J* = 2.1 Hz), 8.37 (1H₆, d, *J* = 1.8 Hz); ¹³C NMR (CDCl₃, 75.47 MHz) : 17.8 (C₇), 24.0 (C₈), 29.3 (C₂), 130.2 (C₅), 132.3 (C₃), 137.1 (C₄), 151.5 (C₆), 154.8 (C₂), 200.6 (C₁).

1-(2,6-Dimethyl-pyridin-3-yl)-ethanone 4c

Beige gum; 62% yield; $R_f = 0.45$ (AcOEt/Hexanes 1/1); **IR** (KBr, cm⁻¹): 2915, 1686, 1588, 1561, 1433, 1256; **MS** (ESI) m/z (relative

intensities(%)) : 150 $[M+H]^+$ (100), 167 $[M+NH_4]^+$ (20), 172 $[M+Na]^+$ (5); ¹H NMR (CDCl₃, 300.13 MHz) : 2.57 (3H₇+3H₈, s), 2.73 (3H₂, s), 7.07 (1H₅, d, *J* = 7.8 Hz), 7.88 (1H₄, d, J = 7.8 Hz); ¹³C NMR (CDCl₃, 75.47 MHz) : 24.3 (C₈), 24.5 (C₇), 28.9 (C₂), 120.1 (C₅), 129.6 (C₃), 137.2 (C₄), 157.6 (C₆), 160.5 (C₂), 199.7 (C₁).

2-Methyl-nicotinic acid methyl ester 4d

Yellow oil; 56% yield; $R_f = 0.39$ (AcOEt/Hexanes 1/1); **IR** (KBr, cm⁻¹) : 2953, 1724, 1435, 1281, 1258, 1088; **MS** (ESI) m/z (relative intensity (%)) :

152 $[M+H]^+$ (100), 174 $[M+Na]^+$ (69), 190 $[M+K]^+$ (4); ¹H NMR (CDCl₃, 300.13 MHz) : 2.83

 $(3H_7, s)$, 3.91 $(3H_9, s)$, 7.20 $(1H_5, dd, J = 8.1 Hz, J = 4.8 Hz)$, 8.18 $(1H_4, dd, J = 7.8 Hz, J = 1.8 Hz)$ Hz), 8.60 (1H₆, dd, J = 4.8 Hz, J = 1.8 Hz); ¹³C NMR (CDCl₃, 75.47 MHz) : 24.6 (C₇), 52.0 (C₉), 120.7 (C₅), 125.1 (C₃), 138.2 (C₄), 151.6 (C₆), 159.7 (C₂), 166.7 (C₈).

2,5-Dimethyl-nicotinic acid methyl ester 4e

Yellow oil; 44% yield; $R_f = 0.42$ (AcOEt/Hexanes 1/1); **IR** (KBr, cm⁻¹): 2952, 1723, 1459, 1436, 1297, 1256, 1205, 1089; MS (ESI) m/z (relative intensities (%)): 166 $[M+H]^+$ (100), 188 $[M+Na]^+$ (74), 204 $[M+K]^+$ (7); ¹H NMR (CDCl₃,

300.13 MHz) : 2.21 (3H₇, s), 2.65 (3H₈, s), 3.78 (3H₁₀, s), 7.86 (1H₄, d, *J* = 1.8 Hz), 8.30 (1H₆, d, J = 1.8 Hz); ¹³C NMR (CDCl₃, 75.47 MHz) : 17.4 (C₇), 23.9 (C₈), 51.8 (C₁₀), 124.4 (C₃), 130.0 (C₅), 138.4 (C₄), 151.9 (C₆), 156.5 (C₂), 166.7 (C₉).

2,6-Dimethyl-nicotinic acid methyl ester 4f

Yellow oil; 65% yield; $R_f = 0.34$ (AcOEt/Hexanes 1/3); **IR** (KBr, cm⁻¹) : 3052, 2952, 1724, 1669, 1593, 1435, 1278, 1264, 1086; MS (ESI) m/z

(relative intensities (%)): 166 $[M+H]^+$ (100), 188 $[M+Na]^+$ (62), 204 $[M+K]^+$ (9); ¹H NMR

 $(CDCl_3, 300.13 \text{ MHz}) : 2.49 (3H_7, s), 2.73 (3H_8, s), 3.82 (3H_{10}, s), 6.97 (1H_5, d, <math>J = 8.1 \text{ Hz}), 8.01$ (1H₄, d, $J = 8.1 \text{ Hz}); {}^{13}C$ NMR (CDCl₃, 75.47 MHz) : 24.5 (C₇), 24.7 (C₈), 51.9 (C₁₀), 120.3 (C₅), 122.2 (C₃), 138.6 (C₄), 159.4 (C₆), 161.2 (C₂), 166.9 (C₉).

2-trifluoromethyl-5-methyl-nicotinic acid ethyl ester 4g

Yellow oil; 70% yield; $R_f = 0.21$ (AcOEt/Hexanes 1/3); **IR** (KBr, cm⁻¹): 3029, 2964, 2285, 1576, 1411, 1346, 1255, 1068, 1031; **MS** (ESI)

m/z (relative intensities (%)) : 256 [M+Na]⁺ (100), 234 [M+H]⁺ (1); ¹H NMR (CDCl₃, 300.13 MHz) : 1.35 (3H₁₁, t, J = 7.8 Hz), 2.41 (3H₇, s), 4.36 (2H₁₀, q, J = 7.1 Hz), 7.85 (1H₄, s), 8.55 (1H₆, s); ¹³C NMR (CDCl₃, 75.47 MHz) : 13.7 (C₁₁), 18.0 (C₇), 62.4 (C₁₀), 121.2 (C₈, q, J = 273 Hz), 127.5 (C₃), 136.6 (C₅), 138.3 (C₄), 142.8 (C₂, q, J = 35 Hz), 151.0 (C₆), 165.6 (C₉); ¹⁹F NMR (CDCl₃, 282.40 MHz) : -64.5 (3F₈, s).

2-Methyl-N-phenyl-nicotinamide 4h

Beige solid (Pf = 111-112°C); 61% yield; $R_f = 0.27$ (AcOEt); **IR** (KBr, cm⁻¹) : 3294, 3054, 2986, 1677, 1599, 1523, 1442, 1265 ; **MS**

(ESI) m/z (relative intensities (%)) : 213 [M+H]⁺ (100), 230 [M+NH₄]⁺ (68), 235 [M+Na]⁺ (39),

251 $[M+K]^+$ (17); ¹H NMR (CDCl₃, 300.13 MHz) : 2.66 (3H₇, s), 7.12-7.19 (2H_{13and5}, m), 7.36 (2H_{12and14}, t, *J* = 7.8 Hz), 7.60 (2H_{11and15}, d, *J* = 7.8 Hz), 7.71 (1H₄, d, *J* = 6.6 Hz), 7.97 (1H₉, br s), 8.52 (1H₆, dd, *J* = 4.8 Hz, *J* = 1.8 Hz); ¹³C NMR (CDCl₃, 75.47 MHz) : 22.9 (C₇), 120.0 (C₅), 120.8 (2C_{12and14}), 124.9 (C₁₃), 129.1 (2C_{11and15}), 131.9 (C₃), 134.6 (C₄), 137.6 (C₁₀), 150.3 (C₆), 156.2 (C₂), 166.6 (C₈).

2,6-Dimethyl-N-phenyl-nicotinamide 4i

Beige gum; 42% yield; $R_f = 0.39$ (AcOEt); **IR** (KBr, cm⁻¹) : 3295, 3054, 2963, 2927, 1656, 1596, 1441, 1322; **MS** (ESI) m/z (relative

intensities (%)) : 227 $[M+H]^+$ (100), 244 $[M+NH_4]^+$ (65), 249 $[M+Na]^+$ (31), 265 $[M+K]^+$ (14); ¹H NMR (CDCl₃, 300.13 MHz) : 2.55 (3H₈, s), 2.68 (3H₇, s), 7.03 (1H₅, d, 7.8 Hz), 7.16 (1H₁₄, t, J = 7.2 Hz), 7.36 (2H_{13and15}, t, J = 7.5 Hz), 7.59-7.67 (4H, m); ¹³C NMR (CDCl₃, 75.47 MHz) : 23.0 (C₈), 24.5 (C₇), 120.0 (C₅), 120.3 (2C_{13and15}), 124.8 (C₁₄), 128.9 (C₃), 129.1 (2C_{12and16}), 135.1 (C₄), 137.7 (C₁₁), 155.7 (2C_{2and6}), 159.7 (C₉).

2-Phenyl-nicotinic acid ethyl ester 4j

Yellow oil; 48% yield; $R_f = 0.36$ (AcOEt/Hexanes 1/3); **IR** (KBr, cm⁻¹) : 3061, 2981, 2937, 1723, 1582, 1561, 1430, 1282; **MS** (ESI) m/z (relative

intensities(%)) : 228 [M+H]⁺, 245 [M+NH₄]⁺, 250 [M+Na]⁺, 266 [M+K]⁺; ¹H NMR (CDCl₃, 300.13 MHz) : 1.03 (3H₁₅, t, J = 7.1 Hz), 4.14 (2H₁₄, q, J = 7.2 Hz), 7.33 (1H₅, dd, J = 7.8 Hz, J = 4.8 Hz), 7.40-7.54 (5H_{8to12}, m), , 8.09 (1H₄, dd, J = 7.8 Hz, J = 2 Hz), 8.76 (1H₆, dd, J = 4.8 Hz, J = 1.8 Hz); ¹³C NMR (CDCl₃, 75.47 MHz) : 13.5 (C₁₅), 61.4 (C₁₄), 121.5 (C₅), 127.3 (C₃), 128.0 (C_{9and11}), 128.4 (C_{8and12}), 128.5 (C₁₀), 137.8 (C₄), 140.1 (C₇), 151.1 (C₆), 158.8 (C₂), 168.1 (C₁₃).

7,7-Dimethyl-7,8-dihydro-6H-quinolin-5-one 4k

Orange oil; 51% yield; $R_f = 0.22$ (AcOEt/Hexanes 1/3); **IR** (KBr, cm⁻¹) : 3053, 2957, 2871, 1691, 1583, 1459, 1432, 1425, 1302, 1284; **MS** (ESI)

m/z (relative intensities(%)) : 176 $[M+H]^+$ (100), 193 $[M+NH_4]^+$ (23), 198 $[M+Na]^+$ (16); ¹**H NMR** (CDCl₃, 300.13 MHz) : 1.09 (6H₉, s), 2.53 (2H₆, s), 3.02 (2H₈, s), 7.26 (1H₃, dd, J = 4.3Hz, J = 7.6 Hz), 8.23 (1H₄, dd, J = 7.8 Hz, J = 1.5 Hz), 8.67 (1H₂, dd, J = 4.8 Hz, J = 1.5 Hz); ¹³**C NMR** (CDCl₃, 75.47 MHz) : 28.0 (2C₉), 32.7 (C₇), 46.1 (C₈), 51.8 (C₆), 122.0 (C₃), 127.0 (C_{4a}), 134.3 (C₄), 153.6 (C₂), 162.0 (C_{8a}),197.8 (C₅).

3,7,7-Trimethyl-7,8-dihydro-6H-quinolin-5-one 4l

Yellow oil; 44% yield; $R_f = 0.20$ (AcOEt/Hexanes 1/3); **IR** (KBr, cm⁻¹) :

2958, 2868, 1690, 1647, 1465, 1302, 1283, 1217, 1195; **MS** (ESI) m/z (relative intensities(%)) : 190 $[M+H]^+$ (100), 207 $[M+NH_4]^+$ (27), 212 $[M+Na]^+$ (12), 228 $[M+K]^+$ (4); ¹H NMR (CDCl₃, 300.13 MHz) : 1.06 (6H₉, s), 2.33 (3H₁₀, s), 2.48 (2H₆, s), 2.95 (2H₈, s), 8.01 (1H₄, d, *J* = 1.6Hz), 8.48 (1H₂, d, *J* = 1.6Hz); ¹³C NMR (CDCl₃, 75.47 MHz) : 17.9 (C₁₀), 28.1 (2C₉), 32.9 (C₇), 45.8 (C₈), 52.0 (C₆), 126.5 (C₃), 131.7 (C_{4a}), 134.5 (C₄), 154.3 (C₂), 159.2 (C_{8a}), 198.3 (C₅).

Indeno[1,2-b]pyridin-5-one 4m

Red solid (Pf = 128-130°C, *litt* 132-136°C); 50% yield; $R_f = 0.5$ (AcOEt/Hexanes 1/1); **IR** (KBr, cm⁻¹) : 3051, 2917, 2844, 1710, 1591,

1569, 1403; **MS** (ESI) m/z (relative intensities (%)) : 182 $[M+H]^+$ (100), 199 $[M+NH_4]^+$ (38), 204 $[M+Na]^+$ (24), 220 $[M+K]^+$ (12); ¹H NMR (CDCl₃, 300.13 MHz) : 7.21 (1H₃, t, *J* = 5.1 Hz), 7.44 (1H₇, t, *J* = 7.5 Hz), 7.61 (1H₈, t, *J* = 7.5 Hz), 7.73 (1H₄, d, *J* = 7.5 Hz), 7.84-7.91 (2H_{6and9}, m), 8.61 (1H₂, d, *J* = 5.1 Hz); ¹³C NMR (CDCl₃, 75.47 MHz) : 121.0 (C₉), 123.3 (C₃), 124.2 (C₆), 128.4 (C_{4a}), 131.0 (C₄), 131.4 (C₇), 134.8 (C_{5a}), 135.4 (C₈), 143.5 (C_{9a}), 154.0 (C₂), 165.1 (C_{9b}), 191.8 (C₅).

3-methyl-indeno[1,2-b]pyridin-5-one 4n

Orange solid (Pf = 122-124°C); 72% yield; $R_f = 0.32$ (AcOEt/Hexanes

1/3); **IR** (KBr, cm⁻¹): 3054, 2926, 2841, 1711, 1587, 1569, 1405; **MS** (ESI) m/z (relative intensities (%)): 196 [M+H]⁺ (100), 213 [M+NH₄]⁺ (44), 218 [M+Na]⁺ (29), 234 [M+K]⁺ (11); ¹H NMR (CDCl₃, 300.13 MHz): 2.37 (3H₁₀, s), 7.38 (1H₇, dt, J = 7.5 Hz, J = 0.9 Hz), 7.55 (1H₈, dd, J = 7.4 Hz, J = 1.1 Hz), 7.59 (1H₄, d, J = 1.2 Hz), 7.68 (1H₆, d, J = 6.3 Hz), 7.79 (1H₉, d, 7.5 Hz), 8.42 (1H₂, d, J = 1.5 Hz); ¹³C NMR (CDCl₃, 75.47 MHz) : 18.5 (C₁₀), 120.4 (C₇), 123.9 (C₉), 128.1 (C₃), 130.4 (C₆), 131.8 (C_{4a}), 133.2 (C₈), 134.8 (C_{5a}), 135.2 (C₄), 143.5 (C_{9a}), 154.1 (C₂), 162.5 (C_{9b}),191.9 (C₅).

2,7,7-Trimethyl-6,7-dihydro-5H-[1]pyrindine-3-carboxylic acid ethyl ester 40

Colorless oil; 83% yield; $R_{\rm f} = 0.6$ (AcOEt/Hexanes 1/5); **IR** (KBr, cm⁻¹) : 2957, 2864, 1723, 1604, 1562, 1265, 1237; **MS** (ESI) m/z (relative intensities(%)) : 234 [M+H]⁺ (100), 251 [M+NH₄]⁺ (74), 256 [M+Na]⁺ (54), 272 [M+K]⁺ (32); ¹H NMR (CDCl₃, 300.13 MHz) : 1.28 (6H₈, s), 1.38 (3H₁₂, t, J = 6.9 Hz), 1.97 (2H₆, t, J = 7.2 Hz), 2.79 (3H₉, s), 2.84 (2H₅, t, J = 7.2 Hz), 4.34 (2H₁₁, q, J = 6.9 Hz), 7.94 (1H₄, s); ¹³C NMR (CDCl₃, 75.47 MHz) : 14.3 (C₁₂), 24.8 (C₉), 26.8 (2C₈), 39.7 (C_{5and6}), 44.1 (C₇), 60.9 (C₁₁), 123.2 (C₃), 132.7 (C_{4a}), 134.2 (C₄), 158.4 (C₂), 167.3 (C_{7a}), 174.0 (C₁₀).

8-Methoxy-2-methyl-5,6-dihydro-benzo[h]quinoline-3carboxylic acid ethyl ester 4p

White solid (Pf = 119-120°C); 55% yield; $R_{\rm f} = 0.41$

(AcOEt/EP 1/7); **IR** (KBr, cm⁻¹) : 2980, 2938, 2828, 1705, 1595, 1503, 1440, 1305, 1256, 1233; **MS** (ESI) m/z (relative intensities(%)) : 298 [M+H]⁺ (100), 315 [M+NH₄]⁺ (69), 320 [M+Na]⁺ (51), 336 [M+K]⁺ (22); ¹H **NMR** (CDCl₃, 300.13 MHz) : 1.41 (3H₁₃, t, J = 7.2 Hz), 2.86 (3H₁₅, s), 2.92 (4H_{5et6}, s), 3.86 (3H₁₄, s), 4.37 (2H₁₂, q, J = 7.2 Hz), 6.76 (1H₇, d, J = 2.0 Hz), 6. 90 (1H₉, dd, J = 8.7 Hz, J = 2.0 Hz), 7.98 (1H₄, s); 8.32 (1H₁₀, d, J = 8.7 Hz); ¹³C **NMR** (CDCl₃, 75.47 MHz) : 14.3 (C₁₃), 24.9 (C₁₅), 27.3 (C₆), 28.4 (C₅), 55.3 (C₁₄), 60.9 (C₁₂), 112.7 (C₇), 113.1 (C₉), 122.5 (C_{4a}), 126.9 (C₃), 127.4 (C₄), 127.5 (C_{6a}), 137.6 (C₁₀), 140.7 (C_{10a}), 154.3 (C₈), 158.0 (C₂), 161.0 (C_{10b}), 166.8 (C₁₁).

2-Methyl-5H-indeno[1,2-b]pyridine-3-carboxylic acid ethyl ester 4q

Yellow solid (Pf = 88-90°C); 58% yield; $R_f = 0.32$ (AcOEt/Hexanes 1/3); **IR** (KBr, cm⁻¹) : 2978, 2926, 1719, 1603, 1394, 1289, 1240, 1100, 1077; **MS** (ESI) m/z (relative intensities(%)) : 254 [M+H]⁺ (100), 271 [M+NH₄]⁺ (44), 276 [M+Na]⁺ (41), 292 [M+K]⁺ (16); ¹H NMR (CDCl₃, 300.13 MHz) : 1.43 (3H₁₃, t, J = 7.2 Hz), 2.94 (3H₁₀, s), 3.88 (2H₅, s), 4.40 (2H₁₂, q, J = 7.2 Hz), 7.45-7.47 (2H_{7and8}, m), 7.57-7.60 (1H₆, m), 8.13-8.16 (1H₉, m), 8.32 (1H₄, s); ¹³C NMR (CDCl₃, 75.47 MHz) : 14.3 (C₁₃), 25.2 (C₁₀), 34.1 (C₅), 61.1 (C₁₂), 121.7 (C₉), 122.8 (C_{4a}), 125.3 (C₆), 127.4 (C₈), 129.5 (C₇), 133.6 (C₃), 134.4 (C₄), 140.2 (C_{5a}), 145.1 (C_{9a}), 159.5 (C₂), 162.6 (C_{9b}), 167.1 (C₁₁).

NMR data

Compound 4a

Compound 4b

Compound 4c

Compound 4d

Compound 4e

Compound 4f

Compound 4g

Compound 4h

Compound 4i

Compound 4j

Compound 4k

Compound 41

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

Compound 4m

Compound 4n

Compound 4o

Compound 4p

Compound 4q

